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ABSTRACT
Motivation: In model organisms such as yeast, large
databases of protein–protein and protein-DNA interac-
tions have become an extremely important resource
for the study of protein function, evolution, and gene
regulatory dynamics. In this paper we demonstrate that
by integrating these interactions with widely-available
mRNA expression data, it is possible to generate concrete
hypotheses for the underlying mechanisms governing the
observed changes in gene expression. To perform this
integration systematically and at large scale, we introduce
an approach for screening a molecular interaction network
to identify active subnetworks, i.e., connected regions of
the network that show significant changes in expression
over particular subsets of conditions. The method we
present here combines a rigorous statistical measure for
scoring subnetworks with a search algorithm for identifying
subnetworks with high score.
Results: We evaluated our procedure on a small network
of 332 genes and 362 interactions and a large network
of 4160 genes containing all 7462 protein–protein and
protein-DNA interactions in the yeast public databases.
In the case of the small network, we identified five
significant subnetworks that covered 41 out of 77 (53%)
of all significant changes in expression. Both network
analyses returned several top-scoring subnetworks with
good correspondence to known regulatory mechanisms in
the literature. These results demonstrate how large-scale
genomic approaches may be used to uncover signalling
and regulatory pathways in a systematic, integrative
fashion.
Availability: The methods presented in this paper are
implemented in the Cytoscape software package which
is available to the academic community at http://www.
cytoscape.org.
Contact: trey@wi.mit.edu
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INTRODUCTION
Expression profiling and large-scale proteomics have
revolutionized biology by generating vast amounts of
data about cell state. Genes with significant changes in
expression have immediate and widespread interest as
markers for diseases, stages of development, and a variety
of other cellular phenotypes (Altman and Raychaudhuri,
2001). Genes with correlated expression changes over
many conditions are likely to be involved in similar func-
tions or cellular processes; these genes often also share
DNA sequence elements, providing evidence that they
are regulated by common transcription factors. Analytical
methods such as gene expression clustering (Eisen et al.,
1998; Tamayo et al., 1999), significance testing (Kerr
and Churchill, 2001; Rocke and Durbin, 2001; Ideker
et al., 2000), and sequence motif identification (Pilpel
et al., 2001) have been indispensable for enabling these
discoveries and summarizing the data at each step. By
performing these analyses, we hope ultimately to answer
questions about the underlying molecular mechanism:
What are the signalling and regulatory interactions in
control of the observed gene expression changes? How is
this control exerted?

For model organisms such as yeast, new technologies
and data sets are making it possible to address these ques-
tions more directly than ever before. For example, sys-
tematic two-hybrid screens and co-immunoprecipitation
experiments are populating the public databases with
thousands of protein–protein interactions and complexes
(Uetz et al., 2000; Gavin et al., 2002). Other ongoing
projects are defining large numbers of protein→DNA
interactions (Ren et al., 2000), and protein microarrays
are making it possible to map interactions between
proteins and drugs, hormones, and other small molecules
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(Zhu et al., 2001). These molecular interactions provide a
convenient framework for understanding changes in gene
expression and for integrating a wide variety of global
state measurements.

Along these lines, in recent work we used a molecular
interaction network to analyse changes in expression
observed over 20 perturbations to the yeast galactose-
utilization (GAL) pathway (Ideker et al., 2001). To
construct the network (shown in Figure 1), we screened
a database of publicly available protein–protein and
protein→DNA interactions to select 362 interactions
linking genes that were differentially-expressed under one
or more perturbations. We found that pairs of genes linked
by molecular interactions in this network were more
likely to have correlated expression profiles than genes
chosen at random, and we reported particular interactions
for which this pairwise correlation was strong. However,
the general task of associating gene expression changes
with higher-order groups of interactions, such as make up
signalling and regulatory pathways in the cell, was not
discussed.

To address this problem, we now introduce a general
method for searching the network to find ‘active subnet-
works’, i.e., connected sets of genes with unexpectedly
high levels of differential expression†. When expression
levels have been observed over multiple conditions, we
also wish to determine which conditions significantly af-
fect gene expression in each active subnetwork. In order
to achieve these goals, we implement a statistical scor-
ing system which captures the amount of gene expression
change in a given subnetwork. We then describe a search
algorithm, based on simulated annealing, for identifying
the highest scoring subnetworks. We explore the perfor-
mance of our method in two cases: a small interaction net-
work with expression data from a single condition, and
a large interaction network observed over multiple condi-
tions.

METHODS
Basic z-score calculation
To rate the biological activity of a particular subnetwork,
we begin by assessing the significance of differential
expression for each gene. We use the error model provided
by the program VERA (Ideker et al., 2000) to obtain
p-values pi representing the significance of expression
change‡ for each gene i . Each pi is then converted

† If the network included all interactions (and interaction types) important for
cell function, then there would exist a single subnetwork connecting all of
the genes with significant expression changes. Since the network is clearly
missing important interactions, we may potentially find many subnetworks
of interest. A search is necessary to select just those interactions relevant to
the expression data of interest while rejecting false-positive interactions.
‡ Available at http://www.systemsbiology.org/VERAandSAM. Any gene
expression analysis tool that robustly models error would suffice, so long

to a z-score zi = �−1(1 − pi ), where �−1 is the
inverse normal CDF. Thus in random data, p-values are
distributed uniformly from 0 to 1 and z-scores follow a
standard normal, with smaller p-values corresponding to
larger z-scores.

To produce an aggregate z-score z A for an entire
subnetwork A of k genes, we sum the zi over all genes
in the subnetwork:

z A = 1√
k

∑

i∈A

zi (1)

Subnetworks of all sizes are comparable under this scoring
system: if the zi are independently drawn from a standard
normal distribution, z A will also be distributed according
to a standard normal§, independent of k. A high z A
indicates a biologically active subnetwork.

Calibrating z against the background distribution
In order to properly capture the connection between
expression and network topology, we must determine
whether the score z A of a subnetwork is higher than
expected relative to a random set of genes (drawn from the
same expression data but independently of the network).
We randomly sample gene sets of size k using a Monte
Carlo approach, compute their scores z A, then use these
to derive estimates for the score mean µk and standard
deviation σk for each k. Because we expect the means and
standard deviations to be a smooth function of k, we can
reduce noise in the Monte Carlo estimates using a sliding
window average. Using these estimates, the corrected
subnet score sA is:

sA = (z A − µk)

σk
(2)

Using this correction, the scores sA of randomized subnets
are guaranteed to have µ = 0 and σ = 1. An overview of
this scoring process is shown in Figure 2a.

Scoring over multiple conditions
Our scoring system may be extended to accommo-
date gene expression changes measured over multiple
conditions as shown in Figure 2b. In this case, we
start with a matrix of p-values (genes versus condi-
tions) and corresponding z-scores. Given a subnetwork
A, we use eqn. (1) to produce m different aggre-
gate scores (z A1, z A2, . . . , z Am), one for each con-
dition. These are then sorted from highest to lowest
(z A(1), . . . , z A( j), . . . , z A(m)); we compute the signifi-
cance rA( j) of the j th highest score using a binomial

as its output can be converted to p-values.
§ This is true because the variance of a sum is the sum of the variances for
independent random variables.
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Fig. 1. Performance on a small molecular interaction network. Nodes represent genes, an edge directed from one node to another
signifies that the protein encoded by the first gene can influence the transcription of the second by DNA binding (protein→DNA), and an
undirected edge between nodes signifies that the corresponding proteins can physically interact. Z -scores (blue scale) indicate the likelihood
of differential expression of each gene in a GAL80 knockout experiment. Z -scores were used to search for active subnetworks using our
simulated annealing method; the five top-scoring subnets are shown. For further information on this network, including gene labels, see
Figure 4 in (Ideker et al., 2001).

order statistic (Kendall et al., 1987) as follows: Let
Pz = 1 − �(z A( j)) represent the probability that any
single condition has a z-score above z A( j). Then:

pA( j) =
m∑

h= j

(m
h

)
(Pz)

h (1 − Pz)
m−h (3)

This summation gives the probability that at least j
of the m conditions had scores above z A( j), which is

equivalent to the p-value for z A( j) as the j th largest of a
standard normal sample. We use the inverse CDF rA( j) =
�−1 (1 − pA( j)) to convert back into a standard normal
z-score, which is now adjusted for rank; the maximum of
these is the subnet’s new score, rmax

A :

rmax
A = max

j
(rA( j)) (4)
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Fig. 2. Scoring an example subnetwork. In panel [a], individual
scores zi are used to compute a single aggregate score z A = 1.5 for
the subnet; this value is then compared to the distribution of scores
for random gene sets of size k = 4 (depicted by the histogram)
producing the score of −1.0 by eqn. (2). Panel [b] shows the
extended procedure for scoring a subnet under multiple conditions.
Aggregate z scores for each condition (i) are sorted (ii) and adjusted
for rank (iii). As in [a], the maximum score of 4.2 is then corrected
to 2.2 using the background score distribution (iv).

We consider the subnetwork to be ‘active’ under condi-
tions ranked 1 through j . As in the single condition case,
we must also calibrate the score against the background
distribution: first, a Monte Carlo technique is used to esti-
mate means µk and standard deviations σ k for rmax

A com-
puted from random gene sets of size k; using these es-
timates, the score rmax

A is corrected to produce the final
score sA.

Searching for high-scoring subnetworks via
simulated annealing
The above methods allow us to score a given subnetwork,
but we must also find the highest-scoring subnetwork(s)
in a full network of molecular interactions. Because
the problem of finding the maximal-scoring connected
subgraph is NP-hard¶, we implement an approach based on
simulated annealing (Kirkpatrick et al., 1983). In practice,
this approach is not guaranteed to find the maximal score
overall; however, all high-scoring subnetworks are of
strong biological interest regardless of whether they are
strictly maximal‖.

Throughout the following algorithm, we associate an
‘active/inactive’ state with each node. Gw denotes the
‘working’ subgraph of G induced by the active nodes. At

¶ R. Karp, personal communication. A proof is shown in supplementary
materials at http://www.cytoscape.org/ISMB2002/.
‖ Given suitable values for annealing parameters Ti and N , the score of
the final solution is guaranteed to be the global maximum (Lundy and
Mess, 1986). However, these values are generally unknown and can be
impractically large.

each iteration i , we define si as the score (sA from above)
of the highest-scoring component in Gw.

Input: A graph G = (V, E) of molecular
interactions, a number N of iterations,
and a temperature function T i which
decreases geometrically from T start to T end
Output: A subgraph Gw of G

(1) Initialize Gw by setting each v ∈ V
to active/inactive with probability 1

2;
(2) FOR i = 1 to N DO
(3) Randomly pick a node v ∈ V and

toggle its state;
(4) Compute the score si for the

working subgraph Gw;
(5) IF (si>si−1 ), keep v toggled;
(6) ELSE keep v toggled with

probability p = e(si −si−1)/Ti

(7) Output Gw and its highest-scoring
component A.

Finally, we ‘quench’ at temperature Ti = 0 until
all adjoining possibilities have been explored and the
score has reached a local maximum. Upon termination
of annealing, the subnetwork A represents a signalling or
regulatory circuit of high biological interest∗∗.

Heuristics for improved annealing
We have extended our annealing approach to search
for M subnetworks simultaneously (where M is a user-
definable parameter). Maintaining multiple components
can dramatically improve the efficiency of annealing,
because toggling the state of a node may cause a number
of components with low score to merge into a single high-
scoring component††.

An additional heuristic increases the efficiency of an-
nealing in networks with many ‘hubs’, i.e., nodes of high
degree. Simulated annealing tends to perform poorly in
such networks, because adding a hub to Gw immediately
creates a large component incorporating all nodes adjacent
to the hub. Unless all adjacent nodes with low z-score are
inactive, the resulting component will also have low score
regardless of the contribution of the hub node itself. We
have addressed this problem by a straightforward modifi-
cation to step (3) of the algorithm: when adding a node
of degree greater than a user-definable parameter dmin, si-
multaneously remove all neighbours that are not in the top-
scoring component.

∗∗This search is robust with respect to false-positive interactions, because
adding an interaction never disrupts an existing subnetwork. With respect
to false negatives, it is possible for a missing interaction to prevent the
formation of an otherwise high-scoring subnetwork; however, the remaining
pieces of the subnetwork will still score well.
††Full details are provided in the supplementary web materials.
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Fig. 3. Score and temperature versus number of iterations.
Simulated annealing was performed for the network and expression
profile shown in Fig. 1, with parameters N = 1 × 105, Tstart = 1,
M = 5, dmin = 100. Annealing temperature (right vertical axis;
solid grey trace) decreases geometrically over consecutive iterations
according to the set schedule. By the end of the run, scores for
each of the five top scoring subnetworks have increased to a local
maximum (left vertical axis; solid black trace = top score, dashed
= sum of all five).

RESULTS
Small network with a single perturbation
We searched for active subnetworks in the network of
362 protein–protein and protein→DNA interactions from
our previous galactose utilization study (Ideker et al.,
2001). This search was performed against gene expression
changes measured in response to a single perturbation: a
strain with a complete deletion of the GAL80 gene versus
wild type yeast (as provided in the same publication). The
significance of each gene expression ratio in this data set
has already been assessed according to a statistical error
model implemented by the program VERA (Ideker et al.,
2000). We converted these significance values to z-scores,
shown superimposed on the network in Figure 1.

We ran our annealing algorithm with parameters (N =
100 000; Tstart = 1; Tend = 0.01; M = 5; dmin = 100).
Figure 1 shows the nodes involved in each of the five
top-scoring subnetworks; Figure 3 tracks the increases in
subnetwork score over the course of the run. Scores of
the five subnetworks were (7.7, 3.1, 2.8, 2.5, 2.3); their
corresponding sizes were (43, 5, 5, 3, 1). To verify that
these subnetworks contained higher-than-expected levels
of differential expression, we compared their scores to
annealing runs performed on randomized expression data
sets. As shown in Figure 4, the top score was greater than
and non-overlapping with top scores from randomized
data.
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Fig. 4. Distribution of subnetwork scores in actual and ran-
domized data. Score distributions are shown for 200 simulated-
annealing runs on actual (a) versus scrambled (b) data, for each
of the top-five scoring subnetworks (vertical axis). Different initial
conditions were used for each run, with identical network, expres-
sion data, and annealing parameters to those described for Figure 1.
Greyscale intensity is proportional to the number of runs achieving a
particular score; the bounding lines indicate the maximum and min-
imum values of each distribution. Scrambled data were generated by
shuffling the mapping between genes and z-scores, thus preserving
the score distribution over all genes but removing any correlation
between gene expression and network location.

Taken together, the five subnetworks contained 41 out of
77 genes in the network with significant changes in expres-
sion (p < 10−5; z > 4.27). In each case, the subnetwork
gives clues as to how gene expression is transmitted from
one gene to another. For instance, the top-scoring subnet-
work included GAL80, the gene that was knocked out to
produce the observed expression changes. It neighbours
GAL4 (immediately right of GAL80 in Figure 1), a hub
with protein→DNA interactions to seven other genes in
the subnetwork. Therefore, one hypothesis is that GAL80
influences expression of these genes by a path through
GAL4‡‡.

The subnetworks contain many examples of genes with
low z-score that were required to connect together several
high-scoring genes. For example, subnetwork 3 (lower
left corner of Figure 1) consists of four genes connected
to a central transcription factor through protein→DNA
interactions. As is typical for regulatory networks, the
transcription factor shows only modest expression change
compared to the four genes it regulates. Our search identi-
fies this subnetwork because its total level of significance
remains relatively high.

‡‡As described below in the Discussion, this hypothesis is well supported by
the literature (Lohr et al., 1995).
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Large network with multiple perturbations
Having characterized our methods on a small network, we
wished to explore their performance on larger networks
containing nearly all catalogued molecular interactions in
yeast. We also wished to investigate how searching for
active subnetworks was impacted by multiple conditions.
To construct a large molecular interaction network for
yeast, we included all 7145 protein–protein interactions
in the BIND database (Bader et al., 2001) and all
317 protein→DNA interactions present in TRANSFAC
(Wingender et al., 2001) as of September 2001. To find
active subnetworks, we screened this network against
a complete data set of 20 mRNA expression profiles
gathered in response to different perturbations to genes
in the GAL pathway (Ideker et al., 2001) (the GAL80
deletion was one of these). As before, all measurements
were converted into z-scores representing the likelihood
of differential expression for each gene and perturbation.

For this larger network, we optimized the performance
of our annealing algorithm by evaluating a range of
annealing parameters over multiple runs. As shown in
Table 1, increasing N from 103 to 107 led to a more than
five-fold increase in top score [rows a]; tracking fewer than
10 subnetworks negatively impacted score [b]; the optimal
value for dmin was approximately 100 [c]; and temperature
did not have a dramatic effect for the parameter sets we
surveyed [d]. Using the near-optimal parameters (N =
1 × 107, Tstart = 2, Tend = 0.01, M = 20, dmin =
100), we identified seven subnetworks whose scores were
significantly higher than expected in randomized data (by
an analysis similar to that shown in Figure 4 for the small
network). These subnetworks are shown in Figure 5, while
Figure 6 shows the particular conditions used to maximize
the score of each subnetwork, i.e., the conditions under
which each subnetwork was active.

These results demonstrate that our approach can pro-
duce active subnetworks that are extremely large—340
genes in the case of the highest-scoring subnetwork! Al-
though this entire structure is statistically significant, it is
cumbersome to inspect visually or for use in formulating
biological hypotheses. However, we may apply our search
algorithm recursively to identify substructures that are
particularly significant, i.e., scoring higher than would
be expected at random within the 340-node subnetwork.
By reducing the population of genes to those in the
subnetwork, we change the distribution used to compute
the correction factors µk and σ k in eqn. (2) and thus
the scores sA. Here, a second simulated annealing run
performed on subnetwork 1 against all 20 perturbation
conditions (N = 1×106, Tstart = 1, M = 5, dmin = 1000)
identified five substructures of sizes (28, 13, 3, 7, 9); these
are labelled #1a through #1e in Figures 5 and 6.

Table 1. Annealing parameter optimization. Each row summarizes results
from ten annealing runs starting from different random states of Gw . N
is the number of iterations, Tstart is the starting annealing temperature
(Tend = 0.01 for all runs), M is the number of subnetworks to find, and dmin
is the minimum node degree required to invoke the hubfinding extension (see
text). The shaded parameter set was used for further analysis; each annealing
run with these parameters required approximately 3 hours of computation
time on a Pentium IV

Top score
N Tstart M dmin Mean Stdev

103 2 20 100 5.35 0.96
104 2 20 100 8.79 2.67

(a) 105 2 20 100 23.51 2.59
106 2 20 100 25.76 0.77
107 2 20 100 28.92 0.39

105 2 1 100 9.33 4.97
105 2 5 100 17.22 3.61

(b) 105 2 10 100 21.82 4.41
105 2 100 100 21.50 3.30

105 1 20 5 17.15 1.15
105 1 20 10 19.31 2.37

(c) 105 1 20 100 20.88 2.20
105 1 20 1000 8.92 0.92

105 0 20 100 23.34 0.93
105 2 20 100 23.51 2.59

(d) 105 10 20 100 21.87 1.83
105 100 20 100 20.01 1.71

DISCUSSION
Subnetworks are consistent with known regulatory
circuits
Many of the subnetworks resulting from our analyses
have striking overlap with well-known regulatory and
signalling pathways described in the yeast literature. For
example, the path GAL3—GAL80—GAL4→GAL1,7,10
contained in subnetwork 1b (Figures 5 and 6b) forms
the core of the known galactose-induction circuit (Lohr
et al., 1995). Briefly, GAL4p is a transcription factor
that induces the expression of the enzymes GAL1,7,10
though protein→DNA interactions, but in the absence
of galactose, GAL80p inhibits this activity through a
protein–protein interaction. In the presence of galactose,
GAL3p associates with GAL80p via another protein–
protein interaction, allowing GAL4p to transcribe the
enzymes at a high level.

As a second example, subnetwork 1d contains interac-
tions known to regulate genes involved in both the mating
response (e.g., STE2, MFA2, BAR1) and cell cycle arrest
(CLB1, FAR1). However, even without expert knowledge
from yeast biology, visual inspection of these subnetworks
provides us with ready hypotheses for why their genes are
differentially expressed. On the strength of these known
cases, it will be extremely interesting to examine subnet-
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Fig. 5. Performance on a large interaction network using multiple conditions. The seven highest-scoring subnetworks screened from the
large network are shown in decreasing order of score. Subnet 1, containing 340 nodes, was subjected to a second application of simulated
annealing to produce five smaller subnets 1a–1e. Subnetworks are represented as in Figure 1, but with protein→DNA interactions denoted
by yellow edges and protein–protein interactions denoted by blue edges.

Fig. 6. Perturbations affecting each subnetwork. Panel [a]: Red
blocks indicate the particular perturbations (columns) maximizing
the score of each subnetwork (rows) shown in Fig. 5. Panel
[b]: Changes in expression level are shown using a red/green
colorimetric scale for the genes and perturbations associated with
subnet #1b. Note that inversely correlated genes (e.g., GAL1 and
HXT6) may appear in the same subnet, and that genes without
large changes in expression (e.g., GAL4) are nevertheless included
because they connect several genes with dramatic changes (e.g.,
GAL10 and GAL7).

works containing genes whose functions and/or regulatory
mechanisms are not already well understood.

Subnetworks versus gene-expression clusters
It is instructive to compare existing methods for clustering
genes by expression, e.g., (Eisen et al., 1998; Tamayo et
al., 1999), to those introduced here. Although all of these
methods form groups of genes (clusters versus subnets),
our method differs from established clustering techniques
in at least four major ways. First, and most importantly,
our approach groups genes subject to the constraints of
the molecular interaction network. A striking consequence
of this constraint is that subnetworks may contain genes
without large expression changes so long as they are
required to connect other, differentially expressed genes.
Second, subnetworks are scored over only a subset of
conditions; thus, genes are not required to be co-regulated
over all conditions in order to group together. Third, while
most clustering methods group genes by both magnitude
and direction of change, we consider only the significance
of change. Thus, we may connect strongly repressed and
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induced genes to build subnets that represent complete
signalling or regulatory pathways (see Figure 6b). Finally,
our method leaves some genes unaffiliated with any
subnetwork, unlike typical clustering methods which
assign every gene to a distinct cluster.

Future work
In the near future, the most pressing task is to investigate
our identified subnetworks in the laboratory. Because large
interaction networks are suspected to contain many false-
positives, an initial experiment would be to verify that
the interactions in each subnetwork are reproducible and
present under the subnet’s particular set of conditions. We
also wish to investigate a number of extensions to our
approach, including:

• annotating each interaction with its directionality
and/or the specific conditions and compartments in
which it has been observed, constraining subnetworks
to plausible causal chains.

• accommodating new types of interaction data such as
interactions between proteins and small molecules,
and new types of biological state measurements such
as changes in protein abundances, protein modifica-
tions, or concentrations of intracellular metabolites.

• potentially correcting for local network topology. In
random expression data, some subnets are much more
likely than others to have the highest score; it may be
desirable to correct for this bias by computing a prior
probability over the population of subnetworks.

As the core algorithms are developed further, we expect
this approach to have immense impact in elucidating
the underlying molecular mechanisms of a variety of
organisms. Ultimately, we envision that biologists will
perform routine network screens to define novel modes of
regulation, to identify evolutionarily conserved pathways,
or to interrogate regulatory circuits responding to the
entire spectrum of drugs and human diseases.
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