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Abstract

There have been various attempts to reconstruct gene regulatory networks from microarray
expression data in the past. However, owing to the limited amount of independent experimental
conditions and noise inherent in the measurements, the results have been rather modest so far. For
this reason it seems advisable to include biological prior knowledge, related, for instance, to
transcription factor binding locations in promoter regions or partially known signalling pathways
from the literature. In the present paper, we consider a Bayesian approach to systematically
integrate expression data with multiple sources of prior knowledge. Each source is encoded via a
separate energy function, from which a prior distribution over network structures in the form of a
Gibbs distribution is constructed. The hyperparameters associated with the different sources of
prior knowledge, which measure the influence of the respective prior relative to the data, are
sampled from the posterior distribution with MCMC. We have evaluated the proposed scheme on
the yeast cell cycle and the Raf signalling pathway. Our findings quantify to what extent the
inclusion of independent prior knowledge improves the network reconstruction accuracy, and the
values of the hyperparameters inferred with the proposed scheme were found to be close to
optimal with respect to minimizing the reconstruction error.

KEYWORDS: gene regulatory networks, Bayesian networks, Bayesian inference, Markov chain
Monte Carlo, microarrays, gene expression data, immunoprecipitation experiments, KEGG
pathways
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1 Introduction

An important and challenging problem in systems biology is the inference of
gene regulatory networks from high-throughput microarray expression data.
Various machine learning and statistical methods have been applied to this
end, like Bayesian Networks (BNs) (Friedman et al., 2000), Relevance Net-
works (Butte and Kohane, 2003) and Graphical Gaussian Models (Schäfer
and Strimmer, 2005). An intrinsic difficulty with these approaches is that
complex interactions involving many genes have to be inferred from sparse
and noisy data. This leads to a poor reconstruction accuracy and suggests
that the inclusion of complementary information is indispensable (Husmeier,
2003). A promising approach in this direction has been proposed by Imoto
et al. (2003). The authors formulate the learning scheme in a Bayesian frame-
work. This scheme allows the systematic integration of gene expression data
with biological knowledge from other types of postgenomic data or the liter-
ature via a prior distribution over network structures. The hyperparameters
of this distribution are inferred together with the network structure in a max-
imum a posteriori sense by maximizing the joint posterior distribution with
a heuristic greedy optimization algorithm. As prior knowledge, the authors
extracted protein-DNA interactions from the Yeast Proteome Database. The
framework has subsequently been applied to a variety of different sources of bi-
ological prior knowledge, where gene regulatory networks were inferred from a
combination of gene expression data with transcription factor binding motifs in
promoter sequences (Tamada et al., 2003), protein-protein interactions (Nariai
et al., 2004), evolutionary information (Tamada et al., 2005), and pathways
from the KEGG database (Imoto et al., 2006). The objective of the present
paper is to complement this work in various respects.

First, we adopt a sampling-based approach to Bayesian inference as op-
posed to the optimization schemes applied in the work cited above. The latter
aims to find the network structure and the hyperparameters that maximize
the joint posterior distribution. This approach is appropriate for posterior dis-
tributions that are sharply peaked. However, when gene expression data are
sparse and noisy and the prior knowledge is susceptible to intrinsic uncertainty
as well, this condition is unlikely to be met. In that case, it is more appro-
priate to follow Madigan and York (1995), Giudici and Castelo (2003) and
Friedman and Koller (2003) and sample network structures from the posterior
distribution with Markov chain Monte Carlo (MCMC). We pursue the same
approach, and additionally sample the hyperparameters associated with the
prior distribution from the joint posterior distribution with MCMC.

Second, we aim to obtain a deeper understanding of the proposed mod-
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elling and inference scheme. The prior distribution proposed in Imoto et al.
(2003) takes the form of a Gibbs distribution, in which the prior knowledge is
encoded via an energy function, and an inverse temperature hyperparameter
determines the weight that is assigned to it. In our study, we have designed
a scenario in which the energy takes on a particular form such that com-
puting the marginal posterior distribution over the hyperparameter becomes
analytically tractable. This closed-form expression is compared with MCMC
simulations on simulated and real-world data for the more general scenario
in which the marginal posterior distribution is intractable, elucidating various
aspects of the modelling approach.

Third, we extend the approach of Imoto et al. (2003) to include more than
one energy function. This approach allows the simultaneous inclusion of dif-
ferent sources of prior knowledge, like promoter motifs and KEGG pathways,
each modelled by a separate energy. Each energy function is associated with
its own hyperparameter. All hyperparameters are sampled from the posterior
distribution with MCMC. In this way, the relative weights related to the dif-
ferent sources of prior knowledge are consistently inferred within the Bayesian
context, automatically trading off their relative influences in light of the data.

Fourth, we provide a set of independent evaluations of the viability of the
Bayesian inference scheme on various synthetic and real-world data, thereby
complementing the results of the studies referred to above. In particular, we
apply the proposed method to the integration of two independent sources of
transcription factor binding locations from immunoprecipitation experiments
with microarray gene expression data from the yeast cell cycle, and the integra-
tion of KEGG pathways with cytometry experiments for determining protein
interactions related to the Raf signalling pathway.

We have organized our paper as follows. In Section 2 we briefly review
the methodology of Bayesian networks and present the proposed Bayesian ap-
proach to integrating biological prior knowledge into the inference scheme. In
Section 3 we investigate the behaviour of the proposed inference scheme on an
idealized population of network structures, for which a closed-form expression
of the relevant posterior distribution can be obtained. Section 4 presents the
synthetic and real data sets that we used for evaluating the performance of
the proposed method. Finally, we present our results in Section 5, followed by
a concluding discussion in Section 6.
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2 Methodology

2.1 Bayesian networks (BNs)

Bayesian networks (BNs) have been introduced to the problem of reconstruct-
ing gene regulatory networks from expression data by Friedman et al. (2000)
and Hartemink et al. (2001). In the present section, we present a brief review
of the methodological aspects that are relevant to the work presented in our
paper. A more comprehensive overview can be obtained from one of the many
tutorials that have been written on this subject, like Heckerman (1999) or
Husmeier et al. (2005).

BNs are directed graphical models for representing probabilistic indepen-
dence relations between multiple interacting entities. Formally, a BN is defined
by a graphical structure G, a family of (conditional) probability distributions
F , and their parameters q, which together specify a joint distribution over a
set of random variables of interest. The graphical structure G of a BN consists
of a set of nodes and a set of directed edges. The nodes represent random
variables, while the edges indicate conditional dependence relations. When we
have a directed edge from node A to node B, then A is called the parent of B,
and B is called the child of A. The structure G of a BN has to be a directed
acyclic graph (DAG), that is, a network without any directed cycles. This
structure defines a unique rule for expanding the joint probability in terms of
simpler conditional probabilities. Let X1, X2, ..., XN be a set of random vari-
ables represented by the nodes i ∈ {1, ..., N} in the graph, define πi[G] to be
the parents of node i in graph G, and let Xπi[G] represent the set of random
variables associated with πi[G]. Then

P (X1, ..., XN ) =
N
∏

i=1

P (Xi|Xπi[G]) (1)

When adopting a score-based approach to inference, our objective is to sample
model structures G from the posterior distribution

P (G|D) ∝ P (D|G)P (G) (2)

where D is the data, and P (G) is the prior distribution over network structures.
The computation of the marginal likelihood P (D|G) requires a marginalization
over the parameters q:

P (D|G) =

∫

P (D|q, G)P (q|G)dq (3)

3
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in which P (D|q, G) is the likelihood, and P (q|G) is the prior distribution
of the parameters. If certain regulatory conditions, discussed in Heckerman
(1999), are satisfied and the data are complete, the integral in Equation 3 is
analytically tractable. Two function families F that satisfy these conditions
are the multinomial distribution with a Dirichlet prior (Heckerman et al., 1995)
and the linear Gaussian distribution with a normal-Wishart prior (Geiger and
Heckerman, 1994). The resulting scores P (D|G) are usually referred to as
the BDe (discretized data, multinomial distribution) and the BGe (continuous
data, linear Gaussian distribution) score. A nonlinear continuous distribution
based on heteroscedastic regression has also been proposed (Imoto et al., 2003),
although this approach only allows an approximate solution to the integral in
Equation 3, based on the Laplace method. Direct sampling from the posterior
distribution (Equation 2) is usually intractable, though. Hence, a Markov
chain Monte Carlo (MCMC) scheme is adopted (Madigan and York, 1995),
which under fairly general regularity conditions is theoretically guaranteed to
converge to the posterior distribution of Equation 2 (Hastings, 1970). Given
a network structure Gold, a new network structure Gnew is proposed from
the proposal distribution Q(Gnew|Gold), which is then accepted according to
the standard Metropolis-Hastings (Hastings, 1970) scheme with the following
acceptance probability:

A = min

{

P (D|Gnew)P (Gnew)Q(Gold|Gnew)

P (D|Gold)P (Gold)Q(Gnew|Gold)
, 1

}

(4)

The functional form of the proposal distribution Q(Gnew|Gold) depends on the
chosen type of proposal moves. In the present paper, we consider three edge-
based proposal operations: creating, deleting, or inverting an edge. The com-
putation of the Hastings factor Q(Gold|Gnew)/Q(Gnew|Gold) is, for instance,
discussed in Husmeier et al. (2005). For dynamic Bayesian networks (dis-
cussed in the next subsection) proposal moves are symmetric: Q(Gnew|Gold) =
Q(Gold|Gnew). Hence, the proposal probabilities cancel out.

One of the limitations of the approach presented here is the fact that sev-
eral networks with the same skeleton but different edge directions can have the
same marginal likelihood P (D|G), which implies that we cannot distinguish
between them on the basis of the data. This equivalence, which is intrin-
sic to static Bayesian networks (Chickering, 1995), loses information about
some edge directions and thus about possible causal interactions between the
genes. Moreover, the directed acyclic nature of Bayesian networks renders the
modelling of recurrent structures with feedback loops impossible. Both short-
comings can be overcome when time series data are available, which can be
analyzed with dynamic Bayesian networks.
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2.2 Dynamic Bayesian networks (DBNs)

Consider the left structure in Figure 1, where two genes interact with each
other via feedback loops. Note that this structure is not a valid Bayesian net-
work as it violates the acyclicity constraint. When we unfold the network in
the left panel of Figure 1 in time, as represented in the right panel of the same
figure, we obtain a proper DAG and hence a valid BN again, the so-called Dy-
namic Bayesian Network (DBN). For more details about DBNs, see Friedman
et al. (1998); Murphy and Milan (1999) and Husmeier (2003). We want to re-
strict the number of parameters to ensure they can be properly inferred from
the data. For this reason, we model the dynamic process as a homogeneous
Markov chain, where the transition probabilities between adjacent time slices
are time-invariant. Intra-slice edges are not allowed since they would represent
instantaneous ‘time-less’ interactions. Note that due to the direction of the
arrow of time, the symmetry of equivalence classes is broken: the reversal of
an edge would imply that an effect is preceding its cause, which is impossi-
ble. Summarizing, with DBNs we solve three shortcomings of static BNs: it is
possible to model feedback loops, the acyclicity of the graph is automatically
guaranteed by construction, and the symmetries within equivalence classes are
broken, thereby removing any intrinsic ambiguities. Note, however, that the
intrinsic assumption of DBNs is that the data have been generated from a
homogeneous Markov chain, which may not hold in practice.

When applying DBNs we need to modify Equation 1 in order to incorporate
the first order Markov assumption, which implies that a node Xi(t) at time t
has parents Xπi[G](t − 1) at time t − 1:

P (X1, ..., XN ) =
N
∏

i=1

P (Xi(t)|Xπi[G](t − 1)) (5)

where N is the total number of nodes.

2.3 Biological prior knowledge

As mentioned in the Introduction section, the objective of the present work is
to study the integration of biological prior knowledge into the inference of gene
regulatory networks. To this end, we need to define a function that measures
the agreement between a given network G and the biological prior knowledge
that we have at our disposal. We follow the approach proposed by Imoto
et al. (2003) and call this measure the energy E, borrowing the name from the
statistical physics community.

5
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A
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A A A A

B B B B
t=0 t=1 t=2 t=n

Figure 1: Dynamic Bayesian Network: The network on the left is not a proper DAG;
the two genes interact with each other via feedback loops. Considering delays between these
interactions, it is possible to imagine this network unfolded in time where interactions within
any time slice t are not permitted. The result is a proper DAG as represented by the graph
on the right.

2.3.1 The energy of a network

A network G is represented by a binary adjacency matrix, where each entry
Gij can be either 0 or 1. A zero entry, Gij = 0, indicates the absence of an
edge between nodei and nodej. Conversely if Gij = 1 there is a directed edge
from nodei to nodej. We define the biological prior knowledge matrix B to
be a matrix in which the entries Bij ∈ [0, 1] represent our knowledge about
interactions between nodes as follows:

• If entry Bij = 0.5, we do not have any prior knowledge about the presence
or absence of the directed edge between nodei and nodej.

• If 0 ≤ Bij < 0.5 we have prior evidence that there is no directed edge
between nodei and nodej. The evidence is stronger as Bij is closer to 0.

• If 0.5 < Bij ≤ 1 we have prior evidence that there is a directed edge
pointing from nodei to nodej. The evidence is stronger as Bij is closer
to 1.

Note that despite their restriction to the unit interval, the Bij are not proba-
bilities in a stochastic sense. To obtain a proper probability distribution over
networks, we have to introduce an explicit normalization procedure, as will be
discussed shortly.

6

Statistical Applications in Genetics and Molecular Biology, Vol. 6 [2007], Iss. 1, Art. 15

DOI: 10.2202/1544-6115.1282

 - 10.2202/1544-6115.1282

Downloaded from De Gruyter Online at 09/27/2016 01:42:18AM

via University of Wisconsin Madison Libraries



Having defined how to represent a network G and the biological prior knowl-
edge B, we can now define the ‘energy’ of a network:

E(G) =
N

∑

i,j=1

|Bi,j − Gi,j| (6)

where N is the total number of nodes in the studied domain. The energy E is
zero for a perfect match between the prior knowledge B and the actual network
structure G, while increasing values of E indicate an increasing mismatch
between B and G.

2.3.2 One source of biological prior knowledge

To integrate the prior knowledge expressed by Equation 6 into the inference
procedure, we follow Imoto et al. (2003) and define the prior distribution over
network structures G to take the form of a Gibbs distribution:

P (G|β) =
e−βE(G)

Z(β)
(7)

where the energy E(G) was defined in Equation 6, β is a hyperparameter that
corresponds to an inverse temperature in statistical physics, and the denom-
inator is a normalizing constant that is usually referred to as the partition
function:

Z(β) =
∑

G∈G

e−βE(G) (8)

Note that the summation extends over the set of all possible network structures
G. The hyperparameter β can be interpreted as a factor that indicates the
strength of the influence of the biological prior knowledge relative to the data.
For β → 0, the prior distribution defined in Equation 7 becomes flat and
uninformative about the network structure. Conversely, for β → ∞, the prior
distribution becomes sharply peaked at the network structure with the lowest
energy.

For DBNs we can exploit the modularity of Bayesian networks and compute
the sum in Equation 8 efficiently. Note that E(G) in Equation 6 can be
rewritten as follows:

E(G) =
N

∑

n=1

E (n, πn [G]) (9)

where πn [G] is the set of parents of node n in the graph G, and we have
defined:

E (n, πn) =
∑

i∈πn

(1 − Bin) +
∑

i/∈πn

Bin (10)

7
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Inserting Equation 9 into Equation 8 we obtain:

Z =
∑

G∈G

e−βE(G)

=
∑

π1

. . .
∑

πN

e−β(E(1,π1)+...+E(N,πN ))

=
∏

n

∑

πn

e−βE(n,πn) (11)

Here, the summation in the last equation extends over all parent configurations
πn of node n, which in the case of a fan-in restriction is subject to constraints on
their cardinality. Note that the essence of Equation 11 is a dramatic reduction
in the computational complexity. Rather than summing over the whole space
of network structures, whose cardinality increases super-exponentially with the
number of nodes N , we only need to sum over all parent configurations of each
node; the complexity of this operation is

(

N−1
m

)

(where m is the maximum
fan-in), that is, polynomial in N . The reason for this simplification is the
fact that any modification of the parent configuration of a node in a DBN
leads to a new valid DBN by construction. This convenient feature does not
apply to static BNs, though, where modifications of a parent configuration πn

may lead to directed cyclic structures, which are invalid and hence have to be
excluded from the summation in Equation 11. The detection of directed cycles
is a global operation. This destroys the modularity inherent in Equation 11,
and leads to a considerable explosion of the computational complexity. Note,
however, that Equation 11 still provides an upper bound on the true partition
function. When densely connected graphs are ruled out by a fan-in restriction,
as commonly done, the number of cyclic terms that need to be excluded from
Equation 11 can be assumed to be relatively small. We can then expect the
bound to be rather tight, as suggested by Imoto et al. (2006), and use it to
approximate the true partition function. In all our simulations we assumed
a fan-in restriction of three, as has widely been applied by different authors;
e.g. Friedman et al. (2000); Friedman and Koller (2003); Husmeier (2003). We
tested the viability of the approximation made for static Bayesian networks in
our simulations, to be discussed in Section 5; see especially Figures 16 and 17.

2.3.3 Multiple sources of biological prior knowledge

The method described in the previous section can be generalized to multiple
sources of prior knowledge. To keep the notation transparent, we restrict our
discussion to two sources of prior knowledge; an extension to more than two
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sources is straightforward and follows along the same line of argumentation
as presented here. We assume that the biological prior knowledge from each
independent source is represented by a separate prior knowledge matrix Bk,
k ∈ {1, 2}, each satisfying the requirements laid out in the previous section.
This gives us two energy functions:

E1(G) =
N

∑

i,j=1

∣∣∣

B1
i,j − Gi,j

∣∣∣

(12)

E2(G) =
N

∑

i,j=1

∣∣∣

B2
i,j − Gi,j

∣∣∣

(13)

where each energy is associated with its own hyperparameter βk. The prior
probability of a network G given the hyperparameters β1 and β2 is now defined
as:

P (G|β1, β2) =
e−{β1E1(G)+β2E2(G)}

Z(β1, β2)
(14)

where the partition function in the denominator is given by:

Z(β1, β2) =
∑

G∈G

e−{β1E1(G)+β2E2(G)} (15)

For DBNs, the partition function can again be efficiently computed in closed
form. Similarly to the discussion above Equation 11, we can rewrite Equa-
tions 12 and 13 as follows:

E1(G) =
N

∑

n=1

E1 (n, πn [G]) (16)

E2(G) =
N

∑

n=1

E2 (n, πn [G]) (17)

where πn [G] is the set of parents of node n in the graph G, and we have
defined:

E1 (n, πn) =
∑

i∈πn

(

1 − B1
in

)

+
∑

i/∈πn

B1
in (18)

E2 (n, πn) =
∑

i∈πn

(

1 − B2
in

)

+
∑

i/∈πn

B2
in (19)

(20)

9
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Figure 2: Probabilistic graphical models. The two probabilistic graphical models rep-

resent conditional independence relations between the data D, the network structure G, and

the hyperparameters of the prior on G. The left graph shows the situation of a single source

of prior knowledge, with one hyperparameter β. The graph in the right panel shows the

situation of two independent sources of prior knowledge, associated with two separate hy-

perparameters β1 and β2. The conditional independence relations can be obtained from the

graphs according to the standard rules of factorization in Bayesian networks, as discussed,

e.g., in Heckerman (1999). This leads to the following expansions. Left panel: P (D,G,β) =

P (D|G)P (G|β)P (β). Right panel: P (D,G,β1,β2) = P (D|G)P (G|β1,β2)P1(β1)P2(β2).

Inserting Equations 16 and 17 into Equation 15, we obtain:

Z =
∑

G∈G

e−{β1E1(G)+β2E2(G)}

=
∑

π1

. . .
∑

πN

e−{β1[E1(1,π1)+...+E1(N,πN )]+β2[E2(1,π1)+...+E2(N,πN )]}

=
∏

n

∑

πn

e−{β1E1(n,πn)+β2E2(n,πn)} (21)

For static BNs, this expression provides an upper bound, which can be ex-
pected to be tight for strict fan-in restrictions; see the discussion below Equa-
tion 11.

2.4 MCMC sampling scheme

Having defined the prior probability distribution over network structures, our
next objective is to extend the MCMC scheme of Equation 4 to sample both
the network structure and the hyperparameters from the posterior distribution.

10
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2.4.1 MCMC with one source of biological prior knowledge

Starting from a definition of the prior distribution on the hyperparameter β,
P (β), our aim is to sample the network structure G and the hyperparameter
β from the posterior distribution P (G, β|D). To this end, we propose a new
network structure Gnew from the proposal distribution Q(Gnew|Gold) and, ad-
ditionally, a new hyperparameter from the proposal distribution R(βnew|βold).
We then accept this move according to the standard Metropolis-Hastings up-
date rule (Hastings, 1970) with the following acceptance probability:

A = min

{

P (D,Gnew, βnew)Q(Gold|Gnew)R(βold|βnew)

P (D,Gold, βold)Q(Gnew|Gold)R(βnew|βold)
, 1

}

(22)

which owing to the conditional independence relations depicted in Figure 2
can be expanded as follows:

A = min

{

P (D|Gnew)P (Gnew|βnew)P (βnew)Q(Gold|Gnew)R(βold|βnew)

P (D|Gold)P (Gold|βold)P (βold)Q(Gnew|Gold)R(βnew|βold)
, 1

}

(23)
To increase the acceptance probability and, hence, mixing and convergence of
the Markov chain, it is advisable to break the move up into two submoves.
First, we sample a new network structure Gnew from the proposal distribution
Q(Gnew|Gold) while keeping the hyperparameter β fixed, and accept this move
with the following acceptance probability:

A(Gnew|Gold) = min

{

P (D|Gnew)P (Gnew|β)Q(Gold|Gnew)

P (D|Gold)P (Gold|β)Q(Gnew|Gold)
, 1

}

(24)

Next, we sample a new hyperparameter β from the proposal distribution
R(βnew|βold) for a fixed network structure G, and accept this move with the
following acceptance probability:

A(βnew|βold) = min

{

P (G|βnew)P (βnew)R(βold|βnew)

P (G|βold)P (βold)R(βnew|βold)
, 1

}

(25)

For a uniform prior distribution P (β) and a symmetric proposal distribution
R(βnew|βold), this expression simplifies:

A(βnew|βold) = min

{

P (G|βnew)

P (G|βold)
, 1

}

(26)

The two submoves are iterated until some convergence criterion (Cowles and
Carlin, 1996) is satisfied.
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2.4.2 MCMC with multiple sources of biological prior knowledge

The scheme presented in the previous section can be extended to multiple
sources of prior knowledge. To avoid opacity in the notation, we restrict our
discussion to two independent sources of prior knowledge. The generalization
to more than two sources is straightforward and follows the same principles as
discussed in this section. Starting from two prior distributions on the hyper-
parameters, P1(β1) and P2(β2), our objective is to sample network structures
and hyperparameters from the posterior distribution P (G, β1, β2|D). Again,
we follow the standard Metropolis-Hastings scheme (Hastings, 1970). We sam-
ple a new network structure Gnew from the proposal distribution Q(Gnew|Gold),
and new hyperparameters from the proposal distributions R1(β1new|β1old

) and
R2(β2new|β2old

). The acceptance probability of this move is:

A = min

{

P (D,Gnew, β1new , β2new)Q(Gold|Gnew)R1(β1old
|β1new)R2(β2old

|β2new)

P (D,Gold, β1old
, β2old

)Q(Gnew|Gold)R1(β1new|β1old
)R2(β2new|β2old

)
, 1

}

(27)
From the conditional independence relations depicted in Figure 2, this expres-
sion can be expanded as follows:

A = min

{

P (D|Gnew)P (Gnew|β1new , β2new)P1(β1new)P2(β2new)

P (D|Gold)P (Gold|β1old
, β2old

)P1(β1old
)P2(β2old

)
×

Q(Gold|Gnew)R1(β1old
|β1new)R2(β2old

|β2new)

Q(Gnew|Gold)R1(β1new|β1old
)R2(β2new|β2old

)
, 1

} (28)

As discussed in the previous section, it is advisable to break this move up
into three submoves:

• Sample a new network structure Gnew from the proposal distribution
Q(Gnew|Gold) for fixed hyperparameters β1 and β2.

• Sample a new hyperparameter β1new from the proposal distribution
R1(β1new |β1old

) for fixed hyperparameter β2 and fixed network structure
G.

• Sample a new hyperparameter β2new from the proposal distribution
R2(β2new |β2old

) for fixed hyperparameter β1 and fixed network structure
G.

Assuming uniform prior distributions P1(β1) and P2(β2) as well as symmetric
proposal distributions R1(β1new|β1old

) and R2(β2new|β2old
), the corresponding
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acceptance probabilities are given by the following expressions:

A(Gnew|Gold) = min

{

P (D|Gnew)P (Gnew|β1, β2)Q(Gold|Gnew)

P (D|Gold)P (Gold|β1, β2)Q(Gnew|Gold)
, 1

}

(29)

A(β1new|β1old) = min

{

P (G|β1new, β2)

P (G|β1old, β2)
, 1

}

(30)

A(β2new|β2old) = min

{

P (G|β1, β2new)

P (G|β1, β2old)
, 1

}

(31)

2.4.3 Practical issues

In our simulations, we chose the prior distribution of the hyperparameters
P (β) to be the uniform distribution over the interval [0, MAX]. The proposal
probability for the hyperparameters R(βnew|βold

) was chosen to be a uniform
distribution over a moving interval of length 2l ≪ MAX, centred on the current
value of the hyperparameter. Consider a hyperparameter βnew to be sampled
in an MCMC move given that we have the current value βold. The proposal
distribution is uniform over the interval [βold − l, βold + l] with the constraint
that βnew ∈ [0, MAX]. If the sampled value βnew happens to lie outside the
allowed interval, the value is reflected back into the interval. The respective
proposal probabilities can be shown to be symmetric and therefore to cancel
out in the acceptance probability ratio. In our simulations, we set the upper
limit of the prior distribution to be MAX = 30, and the length of the sampling
interval to be l = 3. Note that the choice of l only affects the convergence and
mixing of the Markov chain, but has theoretically no influence on the results.
While an adaptation of this parameter during burn-in could be attempted to
optimize the computational efficiency of the scheme, we found that the chosen
value of l gave already a fast convergence of the Markov chain that we did not
deem necessary to further improve.

To test for convergence of the MCMC simulations, various methods have
been developed; see Cowles and Carlin (1996) for a review. In our work, we
applied the simple scheme used in Friedman and Koller (2003): each MCMC
run was repeated from independent initializations, and consistency in the mar-
ginal posterior probabilities of the edges was taken as indication of sufficient
convergence. For the applications reported in Section 5, this led to the decision
to run the MCMC simulations for a total number of 5 × 105 steps, of which
the first half were discarded as the burn-in phase.
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3 Simulations

The objective of this section is to explore the posterior probability landscape in
the space of hyperparameters. This will help us to better interpret the values of
the hyperparameters sampled with MCMC in real applications, and to assess
whether these values are plausible. We pursue this objective with two different
approaches. In the first approach, we design a hypothetical population of net-
work structures for which we can analytically derive a closed-form expression
of the partition function and, hence, the marginal posterior probability of the
hyperparameters. These results will be presented in Subsections 3.1 and 3.3
for one and multiple sources of prior knowledge, respectively. In the second
approach, we focus on a small network with a limited number of nodes. Al-
though we cannot derive a closed-form expression for the partition function in
this case, we can compute the partition function numerically via an exhaustive
enumeration of all possible network structures; this again allows us to com-
pute the marginal posterior probability of the hyperparameters. The resulting
posterior probability landscapes will be presented in Subsections 3.2 and 3.4,
again for one and multiple sources of prior knowledge, respectively. We com-
pare these results with the values of hyperparameters sampled from an MCMC
simulation; this approximate numerical procedure is the only approach that is
viable in real-world applications with many interacting nodes.

3.1 Idealized derivation for one source of biological
prior knowledge

Consider the partition of a hypothetical space of network structures, depicted
in Figure 3. This Venn diagram consists of four mutually exclusive subsets,
which represent networks that are characterized by different compatibilities
with respect to the data and the prior knowledge. We make the idealizing
assumption that the networks either completely succeed or fail in modelling
the data. The networks are also assumed to be either completely consistent
or inconsistent with the assumed prior knowledge. The different sizes of the
subsets are related to the relative proportions of the networks they contain,
which are described by the following quantities:

• TD: Proportion of networks that are in agreement with the data only.

• TD1: Proportion of networks that are in agreement with the data and
with the prior.

• T1: Proportion of networks that are in agreement with the prior only.
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Graph in agreement with: Result
Data Prior P(D|G) E Proportion
no no a 1 F
no yes a 0 T1
yes no A 1 TD
yes yes A 0 TD1

Table 1: Idealized scenario for one source of prior. This table summarizes the
definitions for the idealized population of network structures when considering one source
of biological prior knowledge, corresponding to the Venn diagram of Figure 3.

• F: Proportion of networks that are neither in agreement with the data
nor with the prior.

We define that networks that are in agreement with the data have marginal
likelihood P (D|G) = A, while those in disagreement with the data have the
lower marginal likelihood P (D|G) = a, with a < A. In our experiments dis-
cussed below, we set A = 10 and a = 1. A network that is in accordance with
the biological prior knowledge has zero energy E = 0; otherwise, the network
is penalized with a higher energy of E = 1. Table 1 presents a summary of
these definitions. We want to find the posterior distribution P (β|D):

P (β|D) =
1

P (D)

∑

G

P (D,G, β) (32)

The conditional independence relations, represented by the graphical model in
the left panel of Figure 2, imply that

P (D,G, β) = P (D|G)P (G|β)P (β) (33)

Assuming a uniform prior over β, we thus obtain

P (β|D) ∝
∑

G

P (D|G)P (G|β) (34)

Inserting the expression for the prior distribution, Equations 7-8, into this
sum, we get:

∑

G

P (D|G)P (G|β) =

∑

G P (D|G)e−βE(G)

∑

G e−βE(G)
(35)

Using the definitions from Table 1, we thus obtain the following expression for
the posterior distribution P (β|D):

P (β|D) ∝
a × T1 + A × TD1 + e−β(a × F + A × TD)

TD1 + T1 + e−β(F + TD)
(36)
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Figure 3: Venn diagram for an idealized population of network structures and

one source of prior knowledge. The Venn diagram shows a hypothetical population of

network structures. We make the idealizing assumption that the networks either completely

succeed or fail in modelling the data. The networks are also assumed to be either completely

consistent or inconsistent with the assumed prior knowledge. TD is the proportion of graphs

that agree with the data. TD1 is the proportion of graphs that agree with the data and the

biological prior knowledge. T1 is the proportion of graphs that agree with the biological

prior knowledge only. F is the proportion of graphs that are neither in agreement with the

data nor with the biological prior knowledge. A summary of this scenario is provided in

Table 1.

where we refer to the expression on the right as the unnormalized posterior
distribution. A plot of this distribution is shown in the left panel of Figure 6.

3.2 Simulation results for one source of prior knowledge

The objective of this subsection is to compare the closed form of the posterior
distribution P (β|D) from Equation 36 with that obtained from a synthetic
study using real Bayesian networks. To this end, we consider a Bayesian net-
work with a small number of nodes such that a complete enumeration of all
possible network structures is possible. This allows the partition function in
Equation 8 and hence the posterior distribution P (β|D) to be computed ex-
actly, the latter via Equations 7 and 34. We consider the two extreme scenarios
of completely correct and completely wrong prior knowledge. For the idealized
network population, the situation of completely correct prior knowledge is de-
picted in the Venn diagram on the left of Figure 4: all networks that accord
with the prior also accord with the data, while networks not according with
the prior also fail to accord with the data. The Venn diagram on the right of

16

Statistical Applications in Genetics and Molecular Biology, Vol. 6 [2007], Iss. 1, Art. 15

DOI: 10.2202/1544-6115.1282

 - 10.2202/1544-6115.1282

Downloaded from De Gruyter Online at 09/27/2016 01:42:18AM

via University of Wisconsin Madison Libraries







Figure 4: Venn diagrams for a completely correct and a completely wrong

source of biological prior knowledge. The two Venn diagrams show special scenarios

of the hypothetical network population depicted in Figure 3. The left panel represents the

situation of completely correct prior knowledge. All networks that are consistent with the

data also accord with the prior, and all networks that are in accordance with the prior

also agree with the data. Hence T1 = TD = 0. The right panel shows the situation of a

completely wrong source of prior knowledge. Networks that are consistent with the data are

not supported by the prior, while networks that are in agreement with the prior contradict

the findings in the data. Hence TD1 = 0. (For a definition of the symbols, see Table 1 and

the caption of Figure 3).

Figure 5: HUB network. This figure shows the network structure from which we gener-

ated data for the synthetic inference study.
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Figure 6: Results of the simulation study for a single source of prior knowledge.

The top row shows the results when including the correct prior knowledge. The bottom row

shows the results when the prior knowledge is wrong. The left column shows the unnor-

malized posterior probability of the hyperparameter β for the idealized network population

depicted in Figure 4, computed from Equation 36 and plotted against β. The values of

the network population proportions, defined in Table 1 and Figure 3, were set as follows.

Correct prior (corresponding to the left panel in Figure 4): TD = T1 = 0, TD1 = 0.2.

Wrong prior (corresponding to the right panel in Figure 4): TD = T1 = 0.2, TD1 = 0.

The centre column shows the unnormalized posterior probability of β for the synthetic toy

problem, plotted against β. For comparison, the right column shows the marginal posterior

probability densities of β, estimated from the MCMC trajectories with a Parzen estimator,

using a Gaussian kernel whose standard deviation was set automatically by the MATLAB

function ksdensity.m. The MCMC scheme was discussed in Section 2.4.
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Figure 4 depicts the opposite scenario of completely wrong prior knowledge:
networks that accord with the data never accord with the prior while, con-
versely, networks that accord with the prior never accord with the data. For
the synthetic toy problem, the completely correct prior corresponds to a prior
knowledge matrix B that is identical to the true adjacency matrix G of the
network (see Section 2.3 for a reminder of this terminology). On the contrary,
completely wrong prior knowledge corresponds to a prior knowledge matrix
B that is the complete complement of the network adjacency matrix G, that
is, has entries indicating edges where there are none in the true network and,
conversely, has zero entries for the locations of the true edges in the network.

The network that we used for the synthetic toy problem is shown in Fig-
ure 5. We treated it as a DBN and generated a time series of 100 exemplars
from it, as described in Section 4.1. The results are shown in Figure 6, where
the top row corresponds to the true prior, and the bottom row to the wrong
prior. The left and centre columns show plots of the (unnormalized) posterior
distribution of the hyperparameter β for the idealized network population and
the synthetic toy problem, respectively. The graphs are similar, as expected.
In both cases, when the prior is correct, P (β|D) monotonically increases until
it reaches a plateau. When the prior is wrong, P (β|D) peaks at zero, and
monotonically decreases for increasing values of β. For comparison, the right
column shows the marginal posterior probability densities of β estimated from
the MCMC trajectories. The MCMC scheme was discussed in Section 2.4. All
results are consistent in indicating that for the true prior, high values of β are
encouraged, while for the wrong prior, high values of β are suppressed. Since
β represents the weight that is assigned to the prior, our finding confirms that
the proposed methodology is working as expected. It also lays the founda-
tions for investigating the more complex scenario of multiple sources of prior
knowledge, to be discussed next.

3.3 Idealized derivation for two sources of biological
prior knowledge

Next, we generalize the scenario of Subsection 3.1 to two independent sources
of prior knowledge. Again, consider a hypothetical space of network struc-
tures, which is assumed to be partitioned into distinct regions, as depicted
by the Venn diagram of Figure 7. The symbols in this diagram indicate the
proportions of networks that fall into the respective regions:

• TD is the proportion of graphs that are in agreement with the data only.
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• TD1 is the proportion of graphs that are in agreement with the data
and with the first source of prior knowledge.

• T1 is the proportion of graphs that are in agreement with the first source
of prior knowledge only.

• T2 is the proportion of graphs that are in agreement with the second
source of prior knowledge only.

• TD2 is the proportion of graphs that are in agreement with the data
and with the second source of prior knowledge.

• TD12 is the proportion of graphs that are in agreement with the data
and with both sources of prior knowledge.

• T12 is the proportion of graphs that are in agreement with both sources
of prior knowledge, but not the data.

• F is the proportion of graphs that are neither in agreement with the
data, nor with any prior.

We define that networks that are in agreement with the data have marginal
likelihood P (D|G) = A, while networks not in agreement with the data have
the lower marginal likelihood P (D|G) = a, with a < A. In our experiments we
set A = 10 and a = 1. Networks that are in accordance with the first source of
prior knowledge have energy E1 = 0, otherwise the energy is E1 = 1. Networks
that are in accordance with the second source of prior knowledge have energy
E2 = 0, otherwise the energy is E2 = 1. Table 2 presents a summary of these
definitions. Generalizing the derivation presented in Subsection 3.1, we now
want to find the posterior distribution of both hyperparameters P (β1, β2|D):

P (β1, β2|D) =
1

P (D)

∑

G

P (β1, β2, D,G) (37)

From the conditional independence relations depicted by the graphical model
in the right panel of Figure 2, we get:

P (D,G, β1, β2) = P (D|G)P (G|β1, β2)P1(β1)P2(β2) (38)

Assuming uniform priors over the two hyperparameters β1 and β2, we obtain:

P (β1, β2|D) ∝
∑

G

P (D|G)P (G|β1, β2) (39)
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Graph in agreement with: Result
Data Prior 1 Prior 2 P(D|G) E1 E2 Proportion
no no no a 1 1 F
no no yes a 1 0 T2
no yes no a 0 1 T1
no yes yes a 0 0 T12
yes no no A 1 1 TD
yes no yes A 1 0 TD2
yes yes no A 0 1 TD1
yes yes yes A 0 0 TD12

Table 2: Idealized scenario for two independent sources of prior knowledge.
This table summarizes the definitions for the idealized population of network structures
with two sources of prior knowledge, corresponding to Figure 7.

Inserting the expression for the prior, Equations 14-15, into this sum, we get:

∑

G

P (D|G)P (G|β1, β2) =

∑

G P (D|G)e[−β1E1(G)−β2E2(G)]

∑

G e[−β1E1(G)−β2E2(G)]
(40)

Using the definitions from Table 2, this yields:

P (β1, β2|D) ∝ (41)

e−β2 (a[T1] + A[TD1]) + e−β1 (a[T2] + A[TD2]) + e(−β1−β2)(a[F ] + A[TD]) + a[T12] + A[TD12]

e−β2 (T1 + TD1) + e−β1 (T2 + TD2) + e(−β1−β2)(TD + F ) + TD12 + T12

where, again, we refer to the expression on the right as the unnormalized
posterior distribution of the hyperparameters. A plot of this distribution is
shown in the top left panel of Figure 9.

3.4 Simulation results for two sources of prior knowl-
edge

We revisit the simulations discussed in Subsection 3.2, where we have con-
sidered two sources of prior knowledge, one being correct and the other being
completely wrong. Rather than studying the effects of these priors in isolation,
we now combine them and integrate them simultaneously into the inference
scheme. For the idealized population of network structures, the situation is
illustrated in Figure 8. The posterior probability distribution of the two hyper-
parameters is computed from Equation 41, using the parameter setting stated
in the captions of Figures 8 and 9. For the synthetic toy problem, the prior
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Figure 7: Venn diagram for an idealized population of network structures and

multiple sources of prior knowledge. This Venn diagram is a generalization of Figure 3

for two independent sources of prior knowledge. TD is the proportion of networks that agree

with the data. TD1 is the proportion of networks that agree with the data and prior 1. T1 is

the proportion of networks that agree with prior 1 only. TD2 is the proportion of networks

that agree with the data and prior 2. T2 is the proportion of networks that agree with prior

2 only. TD12 is the proportion of networks that agree with the data and with both priors.

T12 is the proportion of networks that agree with both priors but not the data. F is the

proportion of networks that are neither in agreement with the data nor the biological prior

knowledge. A summary of this scenario can be found in Table 2.

probability distribution over network structures is computed from Equation 14,
obtaining the partition function of Equation 15 from a complete enumeration
of all possible network structures. The posterior distribution of the hyperpa-
rameters is then computed from Equation 39, again resorting to a complete
enumeration of network structures. For comparison, we also sampled the hy-
perparameters from the posterior distribution numerically, using the MCMC
scheme described in Section 2.4.2. The results are shown in Figure 9. The
bottom left panel shows the trace plots from the MCMC simulation. The
values of β2, the hyperparameter associated with the wrong prior, are always
below those of β1, the hyperparameter associated with the true prior. This
confirms our expectation that the inference scheme succeeds in distinguishing
between the different priors and automatically associates a higher weight with
the correct prior. Somewhat counterintuitively, though, the value of β2 does
not decay to zero, suggesting that the second prior, despite the worst-case
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Figure 8: Venn diagram for a completely correct and a completely wrong source

of biological prior knowledge. This Venn diagram shows a special case of Figure 7 where

one source of biological prior knowledge is in complete agreement with the data while the

other source of prior knowledge is completely wrong. All networks that are consistent with

the data also accord with the first prior, and all networks that are in accordance with the

first prior also agree with the data. Hence T1 = TD = 0. Networks that are consistent

with the data are not supported by the second prior, while networks that are in agreement

with the second prior contradict the findings in the data. Hence TD2 = TD12 = 0. The

priors are also mutually exclusive: T12 = 0. Note that the scenario depicted here effectively

combines the two scenarios of Figure 4. See Table 2 and the caption of Figure 7 for a

definition of the symbols.

scenario of it being completely wrong, is never ‘switched off’ completely. This
seemingly strange behaviour was also consistently found in our MCMC simu-
lations on the real data – see the discussion in Section 5.2.2 – and provided the
motivation for the synthetic simulation study discussed in the present section.
An elucidation of this behaviour is obtained from the plots of the posterior
distribution P (β1, β2|D) in the left and right top panels of Figure 9. Both
graphs indicate that P (β1, β2|D) contains a ridge parallel to the line β1 = β2,
dropping to zero for β1 < β2, and reaching a plateau for β1 > β2. This plateau
explains the results found in our MCMC simulations. When β1 is sufficiently
larger than β2, corresponding to a configuration on the plateau well over the
ridge, there is no effective force pushing β2 down to zero. The intuitive expla-
nation is that for β1 sufficiently larger than β2, the effect of the second (wrong)
prior is already negligible, so that it becomes obsolete to completely switch it
off.
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Figure 9: Results of the simulation study for multiple sources of prior knowl-

edge. This figure shows the inference results for two independent sources of prior knowl-

edge, associated with separate hyperparameters β1 and β2. The top left panel shows a

plot of the unnormalized posterior probability distribution of β1 and β2 for the ideal-

ized population of network structures depicted in Figure 8. The expression was computed

from Equation 41 with the following parameter settings: TD1 = 0.5, T2 = 0.2, F = 0.3,

TD = TD2 = TD12 = T1 = T12 = 0 (see the caption of Figure 8 for an explanation

of why the parameters were chosen in that way). The top right panel shows a plot of the

unnormalized posterior distribution of β1 and β2 for the synthetic toy problem. The bottom

left panel shows two trace plots obtained when sampling the two hyperparameters from the

posterior distribution with the MCMC scheme discussed in Section 2.4.2. The horizontal

axis represents the MCMC step while the vertical axis shows the sampled values of the

hyperparameters. The bottom right panel shows the marginal posterior probability densi-

ties of β1 and β2, estimated from the MCMC trajectories with a Parzen estimator, using a

Gaussian kernel whose standard deviation was set automatically by the MATLAB function

ksdensity.m. The blue graph corresponds to β1, the hyperparameter associated with the

true prior. The red graph corresponds to β2, the hyperparameter associated with the wrong

prior.
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4 Data and priors

4.1 Simulated data

The data generated for the synthetic simulations described in Section 3 were
obtained from a DBN with a linear Gaussian distribution. The random vari-
able Xi(t + 1) denoting the expression of node i at time t + 1 is distributed
according to

Xi(t + 1) ∼ N(
∑

k
wikxk(t),σ

2) (42)

where N(.) denotes the Normal distribution, the sum extends over all parents
of node i, and xk(t) represents the value of node k at time t. We set the
standard deviation to σ = 0.1, and the interaction strengths to wik = 1.
The structure of the network from which we generated data is represented in
Figure 5.

4.2 Yeast cell cycle

For the evaluation of the proposed inference method, we were guided by the
study of Bernard and Hartemink (2005). The authors aimed to infer regula-
tory networks involving 25 genes of yeast (Saccharomyces cerevisiae), of which
10 genes encode known transcription factors (TFs). The inference was based
on gene expression data, combined with prior knowledge about transcription
factor binding locations. The gene expression data were obtained from Spell-
man et al. (1998); this data set contains 73 time points collected over 8 cycles
of the yeast cell cycle using four different synchronization protocols. The prior
knowledge about transcription factor binding locations was obtained from the
chromatin immunoprecipitation (ChIP-on-chip) assays of Lee et al. (2002).

In our study, we followed the approach of Bernard and Hartemink (2005),
but complemented their evaluation by the inclusion of additional gene expres-
sion data and a separate source of prior knowledge. As further gene expression
data we included the results of microarray experiments carried out by Tu et al.
(2005); this data set contains 36 time points of gene expression data in yeast,
collected over three consecutive metabolic cycles in intervals of 25 minutes.
As additional prior knowledge, we included the TF binding locations obtained
from an independent chromatin immunoprecipitation assay, reported in Har-
bison et al. (2004). In order to include these binding locations in the proposed
inference scheme, we transformed the p-values obtained from the immuno-
precipitation assays into probabilities, using the transformation proposed by
Bernard and Hartemink (2005). These probabilities formed the entries Bij of
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Figure 10: Raf signalling pathway. The graph shows the currently accepted Raf

signalling network, taken from Sachs et al. (2005). Nodes represent proteins, edges represent

interactions, and arrows indicate the direction of signal transduction.

our biological prior knowledge matrix. However, only 10 of the 25 studied genes
are known to be TFs. For the remaining genes, no information about binding
locations is available. The respective entries in the prior knowledge matrix
were thus set to Bij = 0.5, corresponding to the absence of prior information
(see the discussion in Section 2.3).

Summarizing, we evaluated the performance of the proposed inference
scheme on two sets of gene expression data and two sets of TF binding lo-
cation indications. An overview is given in Table 3.

4.3 Raf signalling pathway

Sachs et al. (2005) have applied intracellular multicolour flow cytometry exper-
iments to quantitatively measure protein concentrations. Data were collected
after a series of stimulatory cues and inhibitory interventions targeting spe-
cific proteins in the Raf pathway. Raf is a critical signalling protein involved
in regulating cellular proliferation in human immune system cells. The dereg-
ulation of the Raf pathway can lead to carcinogenesis, and this pathway has
therefore been extensively studied in the literature (e.g. Sachs et al. (2005);
Dougherty et al. (2005)); see Figure 10 for a representation of the currently ac-
cepted gold-standard network. In our experiments we used 5 data sets with 100
measurements each, obtained by randomly sampling subsets from the original
observational data of Sachs et al. (2005). Details about how we standardized
the data can be found in Werhli et al. (2006).

We extracted biological prior knowledge from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways database (Kanehisa, 1997; Kanehisa
and Goto, 2000; Kanehisa et al., 2006). KEGG pathways represent cur-
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Expression Data 1st source of Prior 2nd source of Prior
1 Spellman Lee Harbison
2 Tu Lee Harbison
3 Spellman Lee MCMC Tu
4 Tu Lee MCMC Spellman

Table 3: Yeast evaluation settings. This table summarizes the evaluation procedures

we used on the yeast data. The table shows the name of the first author of the data sets that

we used. Gene expression data: Spellman et al. (1998) and Tu et al. (2005). TF binding

location assays: Lee et al. (2002) and Harbison et al. (2004). The entries MCMC Spellman

and MCMC Tu indicate that the prior knowledge matrix was composed of the marginal

posterior probabilities of directed pairwise gene interactions (edges) obtained from running

MCMC simulations without prior knowledge on the respective expression data set.

rent knowledge of the molecular interaction and reaction networks related to
metabolism, other cellular processes, and human diseases. As KEGG contains
different pathways for different diseases, molecular interactions and types of
metabolism, it is possible to find the same pair of genes1 in more than one
pathway. We therefore extracted all pathways from KEGG that contained at
least one pair of the 11 proteins/phospholipids included in the Raf pathway.
We found 20 pathways that satisfied this condition. From these pathways, we
computed the prior knowledge matrix, introduced in Section 2.3, as follows.
Define by Mij the total number of times a pair of genes i and j appears in a
pathway, and by mij the number of times the genes are connected by a (di-
rected) edge in the KEGG pathway. The elements Bij of the prior knowledge
matrix are then defined by

Bij =
mij

Mij
(43)

If a pair of genes is not found in any of the KEGG pathways, we set the
respective prior association to Bij = 0.5, implying that we have no information
about this relationship.

1We use the term “gene” generically for all interacting nodes in the network. This may
include proteins encoded by the respective genes.
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Figure 11: Inferring hyperparameters associated with TF binding locations from

gene expression data of yeast. The top row (a,b) shows the hyperparameter trajectories

for two different sources of prior knowledge, sampled from the posterior distribution with the

MCMC scheme discussed in Section 2.4.2. The bottom row (c,d) shows the corresponding

marginal posterior probability densities, estimated from the MCMC trajectories with a

Parzen estimator, using a Gaussian kernel whose standard deviation was set automatically

by the MATLAB function ksdensity.m. The blue line represents the hyperparameter

associated with the TF binding locations of Lee et al. (2002). The red line shows the

hyperparameter associated with the TF binding locations of Harbison et al. (2004). The

two columns are related to different yeast microarray data. Left column: Spellman et al.

(1998). Right column: Tu et al. (2005). The two experiments correspond to the first two

rows of Table 3.
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Lee et al 2002

Prior Probabilites from p−values

Harbison et al 2004

Figure 12: Transcription factor (TF) binding locations. The two Hinton diagrams

provide a qualitative display of the TF binding location assays of Lee et al. (2002) (left

panel) and Harbison et al. (2004) (right panel). The columns of the two matrices represent

10 known TFs. The rows represent 25 genes that are putatively regulated by the TFs. The

size of a white square represents the probability that a TF binds to the promoter of the

respective gene, with a larger square indicating a value closer to 1. These probabilities were

obtained by subjecting the p-values from the original immunopreciptation experiments of

Lee et al. (2002) and Harbison et al. (2004) to the transformation proposed by Bernard and

Hartemink (2005).

5 Results

5.1 Yeast cell cycle

For evaluating the performance of the proposed Bayesian inference scheme
on the yeast cell cycle data, we followed Bernard and Hartemink (2005) with
the extension described in Section 4.2. We associated the edges of the BN
with conditional probabilities of the multinomial distribution family. In this
case, the marginal likelihood P (D|G) of Equation 3 is given by the so-called
BDe score; see Heckerman (1999) for details. The chosen form of conditional
probabilities requires a discretization of the data. Like Bernard and Hartemink
(2005), we discretized the gene expression data into three levels using the infor-
mation bottleneck algorithm, proposed by Hartemink (2001). We represented
information about the cell cycle phase with a separate node, which was forced
to be a root node connected to all the nodes in the domain. In all our MCMC
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Figure 13: Inferring hyperparameters associated with priors of different nature.

The graphs are similar to those of Figure 11, but were obtained for different sources of prior

knowledge. The blue lines show the MCMC trace plots (top row) and estimated marginal

posterior probability distributions (bottom row) of the hyperparameter associated with the

TF binding locations from Lee et al. (2002). The red lines correspond to the hyperparameter

associated with prior knowledge obtained from an independent microarray experiment in the

way described in Section 5.1. The left column shows the results obtained from the experiment

corresponding to the third row of Table 3. The right column shows the results obtained from

the experiment corresponding to the fourth row of Table 3. For an explanation of the graphs,

see the caption of Figure 11.
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simulations, we combined gene expression data with two independent sources
of prior knowledge, and sampled networks and hyperparameters from the con-
ditional probability distribution according to the MCMC scheme described in
Section 2.4.2.

Table 3 presents a summary of the simulation settings we used. In our
first application, corresponding to the first row of Table 3, the gene expression
data were taken from Spellman et al. (1998). In our second application, corre-
sponding to the second row of Table 3, the gene expression data came from Tu
et al. (2005). In both applications, we used the same two independent sources
of prior knowledge in the form of transcription factor (TF) binding locations
(Lee et al., 2002; Harbison et al., 2004), as described in Section 4.2.

The MCMC trajectories of the hyperparameters associated with the two
sources of biological prior knowledge are presented in Figure 11. The figure
also shows the estimated marginal posterior probability distributions of the
two hyperparameters. These distributions, as well as the MCMC trace plots,
do not appear to be very different, which suggests that the two priors are
similar. A closer inspection of the results from the two TF binding assays,
shown in Figure 12, reveals that the indications of putative TF binding loca-
tions obtained independently by Lee et al. (2002) and Harbison et al. (2004)
are, in fact, very similar. This finding confirms that the results obtained with
the proposed Bayesian inference scheme are consistent and in accordance with
our expectation. From Figure 11 we also note that the sampled values of
the hyperparameters are rather small, and that the estimated marginal poste-
rior distributions – compared to those presented in the next section – are quite
close to zero. This suggests that the prior information included is not in strong
agreement with the data. There are two possible explanations for this effect.
First, the TF activities might be controlled by post-translational modifica-
tions, which implies that the gene expression data obtained from microarray
experiments might not contain sufficient information for inferring regulatory
interactions between TFs and the genes they regulate. Second, there might be
relevant regulatory interactions between genes that do not belong to the set of
a priori known TFs, which are hence inherently undetectable by the binding
assays.

One might therefore assume that prior knowledge obtained on the basis of
a preceding microarray experiment might be more informative about a subse-
quent second microarray experiment than TF binding locations. To test this
conjecture, we took one of the two gene expression data sets, assumed a uni-
form prior on network structures (subject to the usual fan-in restriction), and
sampled networks from the posterior distribution with MCMC. From this sam-
ple, we obtained the marginal posterior probabilities of all edges, and used the
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resulting matrix as a source of prior knowledge for the subsequent microarray
experiment. We proceeded with the settings shown in the third and fourth row
of Table 3. First, we combined the results obtained from the gene expression
data of Spellman et al. (1998) with the binding locations from Lee et al. (2002)
and applied these two sources of prior knowledge to the gene expression data
from Tu et al. (2005). Second, we combined the results obtained from the gene
expression data of Tu et al. (2005) with the binding locations from Lee et al.
(2002) and applied these two sources of prior knowledge to the gene expression
data from Spellman et al. (1998). The resulting hyperparameter trajectories
are presented in Figure 13 together with their estimated probability densities.
Compared with the previous results of Figure 11, there is now a much clearer
separation between the two distributions. The sampled values of the hyper-
parameter associated with the second, independent source of microarray data
significantly exceed those of the hyperparameter associated with the binding
data. This suggests that prior knowledge that is more consistent with the data
is given a stronger weight by the Bayesian inference scheme, in confirmation
of our conjecture.

The critical question to ask next is: by how much does the accuracy of
network reconstruction improve as a consequence of integrating prior knowl-
edge into the inference scheme? Unfortunately, this evaluation cannot be done
for yeast owing to our lack of knowledge about the true gene regulatory in-
teractions and the absence of a proper gold-standard network. To answer this
question, we therefore turn to a second application, for which more biological
knowledge about the true regulatory processes exists.

5.2 Raf signalling pathway

5.2.1 Motivation

As described in Section 4.3, the Raf pathway has been extensively studied in
the literature. We therefore have a sufficiently reliable gold-standard network
for evaluating the results of our inference procedure, as depicted in Figure 10.
Additionally, recent work by Sachs et al. (2005) provides us with an abundance
of protein concentration data from cytometry experiments, and the authors
have also demonstrated the viability of learning the regulatory network from
these data with Bayesian networks. However, the abundance of cytometry data
substantially exceeds that of currently available gene expression data from mi-
croarrays. We therefore pursued the approach taken in Werhli et al. (2006)
and downsampled the data to a sample size representative of current microar-
ray experiments (100 exemplars). As described in Section 4.3, the objective of
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Figure 14: Inferring hyperparameters from the cytometry data of the Raf path-

way. The left panel (a) shows the hyperparameter trajectories for two different sources of

prior knowledge, sampled from the posterior distribution with the MCMC scheme discussed

in Section 2.4.2. The right panel (b) shows the corresponding posterior probability densities,

estimated from the MCMC trajectories with a Parzen estimator, using a Gaussian kernel

whose standard deviation was set automatically by the MATLAB function ksdensity.m.

The blue lines refer to the hyperparameter associated with the prior knowledge extracted

from the KEGG pathways. The red lines refer to completely random and hence vacuous

prior knowledge. The data, on which the inference was based, consisted of 100 concentra-

tions of the 11 proteins in the Raf pathway, subsampled from the observational cytometry

data of Sachs et al. (2005).
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Figure 15: Reconstruction of the Raf signalling pathway with different machine

learning methods. The figure evaluates the accuracy of inferring the Raf signalling path-

way from cytometry data and prior information from KEGG. Two evaluation criteria were

used. The left panel shows the results in terms of the area under the ROC curve (AUC

scores), while the right panel shows the number of predicted true positive (TP) edges for a

fixed number of 5 spurious edges. Each evaluation was carried out twice: with and with-

out taking the edge direction into consideration (UGE: undirected graph evaluation, DGE:

directed graph evaluation). Four machine learning methods were compared: Bayesian net-

works without prior knowledge (BNs), Graphical Gaussian Models without prior knowledge

(GGMs), Bayesian networks with prior knowledge from KEGG (BN-Prior), and prior knowl-

edge from KEGG only (Only Prior). In the latter case, the elements of the prior knowledge

matrix (introduced in Section 2.3) were computed from Equation 43. The histogram bars

represent the mean values obtained by averaging the results over five data sets of 100 protein

concentrations each, independently sampled from the observational cytometry data of Sachs

et al. (2005). The error bars show the respective standard deviations.
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Figure 16: Learning the hyperparameter associated with the prior knowledge

from KEGG. The horizontal axis represents the value of β1, the hyperparameter associated

with the prior knowledge from KEGG. The vertical axis represents the area under the ROC

curve (AUC). The blue line shows the mean AUC score for fixed values of β1, obtained by

sampling network structures from the posterior distribution with MCMC. The results were

averaged over five data sets of 100 protein concentrations each, independently sampled from

the observational cytometry data of Sachs et al. (2005). The error bars show the respective

standard deviations. The vertical red lines show trace plots of β1 obtained with the MCMC

scheme described in Section 2.4.2, where networks and hyperparameters are sampled from

the posterior distribution. Each evaluation was carried out twice, with and without taking

the edge direction into consideration. Right panel: undirected graph evaluation (UGE). Left

panel: directed graph evaluation (DGE). The bottom row presents a magnified view of the

left-most part of the graph.
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our study is to assess the viability of the proposed Bayesian inference scheme
and to estimate by how much the network reconstruction results improve as
a consequence of combining the (down-sampled) cytometry data with prior
knowledge from the KEGG pathway database. To this end, we compared the
results obtained with the methodology described in Section 2 with our earlier
results from Werhli et al. (2006), where we had evaluated the performance of
Bayesian networks (BNs) and Graphical Gaussian models (GGMs) without the
inclusion of prior knowledge. We applied GGMs as described in Schäfer and
Strimmer (2005). For comparability with Werhli et al. (2006), we used BNs
with the family of linear Gaussian distributions, for which the marginal likeli-
hood P (D|G) of Equation 3 is given by the so-called BGe score; see Geiger and
Heckerman (1994) for details. Note that the cytometry data of Sachs et al.
(2005) are not taken from a time course; hence, BNs were treated as static
rather than dynamic models.

5.2.2 Discriminating between different priors

We wanted to test whether the proposed Bayesian inference method can dis-
criminate between different sources of prior knowledge and automatically as-
sess their relative merits. To this end, we complemented the prior from the
KEGG pathway database with a second prior, for which the entries in the prior
knowledge matrix B were chosen completely at random. Hence, this second
source of prior knowledge is vacuous and does not include any useful informa-
tion for reconstructing the regulatory network. Figure 14 presents the MCMC
trajectories of the hyperparameters β1 and β2 together with their respective
estimated probability distributions. The hyperparameter associated with the
KEGG prior, β1, takes on substantially larger values than the hyperparameter
associated with the vacuous prior, β2. The estimated posterior distribution of
β1 covers considerably larger values than the estimated posterior distribution
of β2. This suggests that the proposed method successfully discriminates be-
tween the two priors and effectively suppresses the influence of the vacuous
prior. Note that the vacuous prior is not completely ‘switched off’, though,
and that the sampled values of β2 are still substantially larger than zero. This
seemingly counterintuitive behaviour is not a failure of the method, but rather
an intrinsic feature of the posterior probability landscape; see Figure 9 and
the discussion in Section 3.4.
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5.2.3 Reconstructing the regulatory network

While the true network is a directed graph, our reconstruction methods may
lead to undirected, directed, or partially directed graphs2. To assess the perfor-
mance of these methods, we applied two different criteria. The first approach,
referred to as the undirected graph evaluation (UGE), discards the information
about the edge directions altogether. To this end, the original and learned
networks are replaced by their skeletons, where the skeleton is defined as the
network in which two nodes are connected by an undirected edge whenever
they are connected by any type of edge. The second approach, referred to
as the directed graph evaluation (DGE), compares the predicted network with
the original directed graph. A predicted undirected edge is interpreted as the
superposition of two directed edges, pointing in opposite directions. The ap-
plication of any of the machine learning methods considered in our study leads
to a matrix of scores associated with the edges in a network. For BNs sampled
from the posterior distribution with MCMC, these scores are the marginal
posterior probabilities of the edges. For GGMs, these are partial correlation
coefficients. Both scores define a ranking of the edges. This ranking defines
a receiver operator characteristics (ROC) curve, where the relative number of
true positive (TP) edges is plotted against the relative number of false positive
(FP) edges. Ideally, we would like to evaluate the methods on the basis of the
whole ROC curves. Unfortunately, this approach would not allow us to con-
cisely summarize the results. We therefore pursued two different approaches.
The first approach is based on integrating the ROC curve so as to obtain the
area under the curve (AUC), with larger areas indicating, overall, a better
performance. The second approach is based on the selection of an arbitrary
threshold on the edge scores, from which a specific network prediction is ob-
tained. Following our earlier study (Werhli et al., 2006), we set the threshold
such that it led to a fixed count of 5 FPs. From the predicted network, we
determined the number of correctly predicted (TP) edges, and took this score
as our second figure of merit.

The results are shown in Figure 15. The proposed Bayesian inference
scheme clearly outperforms the methods that do not include the prior knowl-
edge from the KEGG database (BNs and GGMs). It also clearly outperforms
the prediction that is solely based on the KEGG pathways alone without tak-
ing account of the cytometry data. The improvement is significant for all
four evaluation criteria: AUC and TP scores for both directed (DGE) and

2GGMs are undirected graphs. While BNs are, in principle, directed graphs, partially
directed graphs may result as a consequence of equivalence classes, which were briefly dis-
cussed at the end of Section 2.1.
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undirected (UGE) graph evaluations. This suggests that the network recon-
struction accuracy can be substantially improved by systematically integrating
expression data with prior knowledge about pathways, as extracted from the
literature or databases like KEGG.

5.2.4 Learning the hyperparameters

While the study described in Section 5.2.2 suggests that the proposed Bayesian
inference scheme succeeds in suppressing irrelevant prior knowledge, we were
curious to see whether the hyperparameter associated with the relevant prior
(from KEGG) was optimally inferred. To this end, we chose a large set of fixed
values for β1, while keeping the hyperparameter associated with the vacuous
prior fixed at zero: β2 = 0. For each fixed value of β1, we sampled BNs from the
posterior distribution with MCMC, and evaluated the network reconstruction
accuracy using the evaluation criteria described in Section 5.2.3. We com-
pared these results with the proposed Bayesian inference scheme, where both
hyperparameters and networks are simultaneously sampled from the posterior
distribution with the MCMC scheme discussed in Section 2.4.2. The results
are shown in Figure 16. The blue lines show plots of the various prediction
criteria obtained for fixed hyperparameters, plotted against β1. Plotted along
the vertical direction, the red lines show MCMC trace plots for the sampled
values of β1. These results suggest that the inferred values of β1 are close to
those that achieve the best network reconstruction accuracy. However, there is
a small yet significant bias: the sampled values of β1 lie systematically below
those that optimize the reconstruction performance. There are two possible
explanations for this effect. First, recall that for static BNs as considered here,
the partition function of Equation 15 is only approximated by Equation 21,
which could lead to a systematic bias in the inference scheme. Second, it has
to be noted that the gold-standard Raf pathway reported in the literature is
not guaranteed to be the true biological regulatory network. Interestingly, a
recent study (Dougherty et al., 2005) reports evidence for a negative feedback
involving Raf, which is not included in the assumed gold standard network
taken from Sachs et al. (2005). The existence of a hidden feedback loop act-
ing on a putative feedforward path may lead to some systematic error in the
edge directions, as static BNs are intrinsically restricted to the modelling of di-
rected acyclic graphs. To shed further light on this issue, we therefore decided
to carry out an additional synthetic study.
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Figure 17: Learning the hyperparameter from synthetic data. The graphs corre-

spond to those of Figure 16, but were obtained from five independently generated synthetic

data sets. These data were generated from the gold-standard Raf signalling pathway re-

ported in Sachs et al. (2005), as described in Section 5.3. The prior knowledge was set to a

corrupted version of the gold-standard network, in which 6 (out of the 20) true edges had

been removed and replaced by wrong edges. For an explanation of the graphs and symbols,

see the caption of Figure 16.
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5.3 Comparison with simulated data

We simulated synthetic data from the Raf signalling network, depicted in Fig-
ure 10, as follows. Let Xi(t) denote a random variable that represents the
hypothetical protein concentration of node i. We generated data from a linear
Gaussian distribution

Xi ∼ N(
∑

k

wikxk,σ
2) (44)

where the sum extends over all parents of node i (that is, those nodes with an
edge pointing to node i), and xk represents the value that node k takes on. We
took the set of parents from the Raf signalling network, depicted in Figure 10,
always initiating the process described by Equation 44 at the root, that is, node
pip3. We set the standard deviation to σ = 0.1, and the interaction strengths
to wik = 1. To mimic the situation described in the previous section, we
generated 5 independent data sets with 100 samples each. As prior knowledge,
we used a corrupted version of the true network, in which 6 (out of the 20)
true edges had been removed and replaced by wrong edges. We then proceeded
with the inference in the same way as described in Section 5.2. The results
are shown in Figure 17, which corresponds to Figure 16 for the real cytometry
data. From a comparison of these two figures, we note that the small bias in
the inference of the hyperparameter has disappeared, and that values of the
hyperparameter are sampled in the range where the reconstruction accuracy is
optimized. This suggests that the small bias observed in Figure 16 might not
be caused by the approximation of the partition function in Equation 21, but
seems more likely to be a consequence of the other two effects discussed at the
end of Section 5.2 (errors in the gold-standard network and putative feedback
loops).

6 Discussion

The work presented here is based on pioneering work by Imoto et al. (2003)
on learning gene regulatory networks from expression data and biological prior
knowledge, which has recently found a variety of applications (Tamada et al.,
2003; Nariai et al., 2004; Tamada et al., 2005; Imoto et al., 2006). The idea is
to express the available prior knowledge in terms of an energy function, from
which a prior distribution over network structures is obtained in the form of
a Gibbs distribution. The hyperparameter of this distribution, which corre-
sponds to an inverse temperature in statistical physics, represents the weight
associated with the prior knowledge relative to the data. Our work comple-
ments the work of Imoto et al. (2003) in various respects. We have extended
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the framework to multiple sources of prior knowledge; we have derived and
tested an MCMC scheme for sampling networks and hyperparameters simul-
taneously from the posterior distribution; we have elucidated intrinsic features
of this scheme from an idealized network population amenable to a closed-form
derivation of the posterior distribution; and we have assessed the viability of
the proposed Bayesian inference approach on various synthetic and real-world
data.

Our findings can be summarized as follows. When including two sources
of prior knowledge of similar nature, the marginal posterior distributions of
the associated hyperparameters are similar (Figure 11). When the two sources
of prior knowledge are different, higher weight is assigned to the prior that
is more consistent with the data (Figure 13). When including an irrelevant
prior with vacuous information, its influence will be automatically suppressed
(Figure 14) in that the marginal posterior distribution of the corresponding
hyperparameter is shifted towards zero. The irrelevant prior is not completely
switched off, though. This would correspond to a delta distribution sitting
at zero, which is never observed, not even for the worst-case scenario of prior
knowledge that is in complete contradiction to the true network and the data
(Figures 9c and d). To elucidate this unexpected behaviour, we carried out
two types of analysis. In the first case, we considered an idealized popula-
tion of network structures for which the prior distribution could be computed
in closed form (Equation 41). In the second case, we considered networks
composed of a small number of nodes (Figure 5), for which the partition func-
tion of Equation 15, and hence the prior distribution over networks structures
(Equation 14), could be numerically computed by exhaustive enumeration of
all possible structures. Both types of analysis reveal that the posterior dis-
tribution over hyperparameters contains a flat plateau (Figure 9a-b), which
accounts for our seemingly counter-intuitive observations.

We evaluated the accuracy of reconstructing the Raf protein signalling
network, which has been extensively studied in the literature. To this end,
we combined protein concentrations from cytometry experiments with prior
knowledge from the KEGG pathway database. The findings of our study
clearly demonstrate that the proposed Bayesian inference scheme outperforms
various alternative methods that either take only the cytometry data or only
the prior knowledge from KEGG into account (Figure 15). We inspected the
values of the sampled hyperparameters. Encouragingly, we found that their
range was close to the optimal value that maximizes the network reconstruc-
tion accuracy (Figure 16). A small systematic deviation would be expected
owing to the approximation we have made for computing the partition func-
tion of the prior (Equations 11 and 21). Interestingly, a comparison between

41

Werhli and Husmeier: Learning Gene Regulatory Networks with Prior Knowledge

 - 10.2202/1544-6115.1282

Downloaded from De Gruyter Online at 09/27/2016 01:42:18AM

via University of Wisconsin Madison Libraries





real and simulated cytometry data – Figure 16 versus Figure 17 – revealed
that the small bias only occurred in the former case. This suggests that other
confounding factors, like errors in the gold-standard network and as yet unac-
counted feedback loops, might have a stronger effect than the approximation
made for computing the partition function.

A certain shortcoming of the proposed method is the intrinsic asymmetry
between prior knowledge and data, which manifests itself in the fact that the
hyperparameters of the prior are inferred from the data. Ultimately, the prior
knowledge is obtained from some data also; for instance, prior knowledge about
TF binding sites is obtained from immunoprecipitation data. A challenging
topic for future research, hence, is to treat both prior and data on a more
equal footing, and to develop more systematic methods of postgenomic data
integration.
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