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ABSTRACT

Recent genome sequencing studies have shown that the somatic mutations that drive cancer
development are distributed across a large number of genes. This mutational heterogeneity
complicates efforts to distinguish functional mutations from sporadic, passenger mutations.
Since cancer mutations are hypothesized to target a relatively small number of cellular
signaling and regulatory pathways, a common practice is to assess whether known pathways
are enriched for mutated genes. We introduce an alternative approach that examines mu-
tated genes in the context of a genome-scale gene interaction network. We present a com-
putationally efficient strategy for de novo identification of subnetworks in an interaction
network that are mutated in a statistically significant number of patients. This framework
includes two major components. First, we use a diffusion process on the interaction network
to define a local neighborhood of ‘‘influence’’ for each mutated gene in the network. Second,
we derive a two-stage multiple hypothesis test to bound the false discovery rate (FDR)
associated with the identified subnetworks. We test these algorithms on a large human
protein-protein interaction network using somatic mutation data from glioblastoma and
lung adenocarcinoma samples. We successfully recover pathways that are known to be
important in these cancers and also identify additional pathways that have been implicated
in other cancers but not previously reported as mutated in these samples. We anticipate that
our approach will find increasing use as cancer genome studies increase in size and scope.
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1. INTRODUCTION

Cancer is a disease that is largely driven by somatic mutations that accumulate during the
lifetime of an individual. Decades of experimental work have identified numerous cancer-promoting

oncogenes and tumor suppressor genes that are mutated in many types of cancer. Recent cancer genome
sequencing studies have dramatically expanded our knowledge about somatic mutations in cancer. For
example, large projects such as The Cancer Genome Atlas (TCGA) (TCGA, 2008), the Tumor Sequencing
Project (TSP) (Ding et al., 2008), and the Cancer Genome Anatomy Project (Greenman et al., 2007) have
sequenced hundreds of protein coding genes in hundreds of patients with a variety of cancers. Other efforts
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have taken a global survey of approximately 20,000 genes in one to two dozen patients (Wood et al., 2007;
Jones et al., 2008; Parsons et al., 2008). These studies have shown that: tumors harbor on average approx-
imately 80 somatic mutations; two tumors rarely have the same complement of mutations; and thousands of
genes are mutated in cancer (Wood et al., 2007). This mutational heterogeneity complicates efforts to
distinguish functional driver mutations from sporadic, passenger mutations. One approach to identify genes
with driver mutations is to find genes that are mutated at significant frequency in a collection of tumors from
different patients. While some cancer genes are mutated at high frequency (e.g., well-known cancer genes
such as TP53 or KRAS), most cancer genes are mutated at much lower frequencies. Thus, the observed
frequency of mutation is an inadequate measure of the importance of a gene, particularly with the relatively
modest number of samples that are tested in current cancer studies.

It is widely accepted that cancer is a disease of pathways, and it is hypothesized that somatic mutations
target genes in a relatively small number of regulatory and signaling networks (Hahn and Weinberg, 2002;
Vogelstein and Kinzler, 2004). Thus, mutational heterogeneity is explained by the fact that there are myriad
combinations of mutations that cancer cells can employ to perturb the behavior of these key pathways. The
unifying themes of cancer are thus not solely revealed by the individual mutated genes, but by the
interactions between these genes. Standard practice in cancer sequencing studies is to assess whether genes
that are mutated at sufficiently high frequency significantly overlap known cancer pathways (TCGA, 2008;
Ding et al., 2008; Sjoblom et al., 2006; Wood et al., 2007; Parsons et al., 2008; Lin et al., 2007).

Finding significant overlap between mutated genes and genes that are members of known pathways is an
important validation of existing knowledge. However, restricting attention to these known pathways does
not allow one to detect novel group of genes that are members of less characterized pathways. Moreover, it is
well known that there is crosstalk between different pathways (Vogelstein and Kinzler, 2004; McCormick,
1999), and dividing genes into discrete pathway groupings limits the ability to detect whether this crosstalk is
itself a target of mutations. An additional source of information about gene and protein interactions is large-
scale interaction networks, such as the Human Protein Reference Database (HPRD) (Keshava Prasad et al.,
2009), STRING (Jensen et al., 2009), and others (Bader et al., 2001; Salwinski et al., 2004). These resources
incorporate both well-annotated pathways and interactions derived from high-throughput experiments, au-
tomated literature mining, cross-species comparisons, and other computational predictions. Many re-
searchers have used these interaction networks to analyze gene expression data. For example, Ideker et al.
(2002) introduced a method to discover subnetworks of differentially expressed genes, and this idea was later
extended in different directions by others (Nacu et al., 2007; Liu et al., 2007; Ulitsky et al., 2008; Karni et al.,
2009; Ma et al., 2007; Hescott et al., 2009; Chuang et al., 2007).

We propose to identify ‘‘significantly mutated subnetworks’’ (connected subnetworks whose genes have
more mutations than expected by chance) de novo in a large gene interaction network. This problem differs
from the gene expression problem of Ideker et al. (2002) in that a relatively small number of genes might be
measured, a small subset of genes in a pathway may be mutated, and a single mutated gene may be sufficient
to perturb a pathway. The naive approach to de novo identification of mutated subnetworks is to examine
mutations on all subnetworks or all subnetworks of a fixed size. This approach is problematic. First, the
enumeration of all such subnetworks is prohibitive for subnetworks of a reasonable size. Second, the ex-
tremely large number of hypotheses that are tested makes it difficult to achieve statistical significance.
Finally, biological interaction networks typically have small diameter due to the presence of ‘‘hub’’ genes of
high degree. There are reports that cancer-associated genes have more interaction partners than non-cancer
genes (Lin et al., 2007; Jonsson and Bates, 2006), and indeed highly mutated cancer genes like TP53 have
high degree in most interaction networks (e.g., the degree of TP53 in HPRD is 236). Such correlations might
lead to a large number of ‘‘uninteresting’’ subnetworks being deemed significant.

We propose a rigorous framework for de novo identification of significantly mutated subnetworks. Our
approach employs three strategies to overcome the difficulties described above. First, we formulate an
influencemeasure between pairs of genes in the network using a diffusion process defined on the graph. This
quantity considers one gene to influence another gene if they are both close in distance on the graph and there
are relatively few paths between them in the interaction network. We use this measure to build an influence
graph that includes only the tested genes but encodes the neighborhood information from the larger network.
Second, we identify subnetworks using either a combinatorial model that finds subnetworks mutated in large
number of samples, or an enhanced influence model in which the influence between pairs of genes is weighted
by the number of mutations observed on these genes. Finally, we derive a two-stage multiple hypothesis test
that mitigates the testing of a large number of hypotheses in subnetwork discovery. The first stage of the test
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computes the significance of the number of discovered subnetworks of a given size (rather than each
individual subnetwork), and the second stage bounds the false discovery rate (FDR) of the list of discovered
subnetworks.

We tested our approach using somatic mutation data from two recently published studies: (i) 601 genes
in 91 glioblastoma multiforme patients from The Cancer Genome Atlas (TCGA) project; (ii) 623 genes in
188 lung adenocarcinoma patients sequenced during the Tumor Sequencing Project (TSP). In both datasets,
we identify statistically significant mutated subnetworks that are enriched for genes on pathways known to
be important in these cancers. Our approach is the first, to our knowledge, to demonstrate a computationally
efficient strategy for de novo identification of statistically significant mutated subnetworks. We anticipate
that our approach will find increasing use as cancer genome studies increase in size and scope.

2. METHODS

We describe our approach for the identification of significantly mutated pathways in cancer. In Section
2.1, we define the model used for the data we consider. In Section 2.2, we define the influence graph, which
encodes the information in the interaction network and is used as input by the two methods we design. In
Section 2.3, we describe a combinatorial model to identify mutated pathways, show that the corresponding
optimization problem is NP-hard, and give an approximation algorithm for the problem. In Section 2.4, we
develop a computationally efficient enhanced influence model that combines the information in the in-
fluence graph and the mutation data to identify mutated subnetworks. Finally, in Section 2.5, we design a
statistical test to assess the significance of the networks reported by our methods.

2.1. Mathematical model

We model the interaction network by a graph G¼ (V, E), where the vertices in V represent individual
proteins (and their associated genes), and the edges in E represent (pairwise) protein-protein or protein-
DNA interactions. Let T " V be the subset of genes that have been tested, or assayed, for mutations in a set
S of samples (patients). The size of T will vary by study; for example, some recent works resequenced
hundreds of genes (TCGA, 2008; Ding et al., 2008), whereas others examine nearly all known protein-
coding genes in the human genome (Wood et al., 2007; Jones et al., 2008; Parsons et al., 2008). We assume
that each gene g is assigned one of two labels, mutated or normal, in each sample. Let Mi denote the subset
of genes in T that are mutated in the ith sample, for i¼ 1, . . . , jSj. Let Sj be the samples in which gene
gj 2 T is mutated, for j¼ 1, . . . , jT j, and let m¼SijMij be the total number of occurrences of mutated
genes observed in all samples.

We define a pathway or subnetwork to be a connected subgraph of G. This definition matches the
common biological usage of the term where pathways are not restricted to be linear chains of vertices. We
generally do not know whether more than one gene must be mutated to perturb a pathway in a sample, and
thus will assume that a pathway is mutated in a sample if any of the genes in the pathway are mutated.

2.2. Influence graph

Our goal is to identify subnetworks that are significant with respect to the set of mutated genes in the
samples. The significance of a subnetwork is derived from (i) the number of samples that have mutations in
the genes of the subnetwork, and (ii) the interactions between genes in the subnetwork in the context of the
topology of the whole network. For example, consider two possible scenarios of mutated nodes (Fig. 1). In
the first scenario, the two mutated nodes are part of a linear chain in the interaction network. In the second
scenario, the two mutated nodes are connected through a high-degree node. In the first scenario, there is a
single path joining the two mutated nodes, and thus we are more surprised by this local clustering of
mutations than in the second scenario, where the two nodes are connected by a node that is present in a
large number of possible paths.

Hubs present an extreme case of this phenomenon and result in many ‘‘uninteresting’’ subnetworks being
deemed significant. Since some highly mutated cancer genes, like TP53, also have high degree in inter-
action networks it is not advisable to ignore these genes in the analysis of cancer mutation data. These
examples show that both the number of samples that have mutations in the genes of the subnetwork and the
interactions between genes in the subnetwork in the context of the whole network must be considered to

SIGNIFICANTLY MUTATED PATHWAYS IN CANCER 509



derive the significance of a subnetwork. Considering only subnetworks of genes that are ‘‘close’’ in the
network (i.e., with small shortest path distance) is not sufficient to overcome the problems highlighted
above. Moreover, other graph mining approaches like dense subgraph identification (Feige et al., 1999) are
also not appropriate, since not all subnetworks of interest (e.g., the chain in Fig. 1) are dense in edges.

We use a diffusion process on the interaction network to define a rigorous measure of influence between
all pairs of nodes. To measure the influence of node s on all the other nodes in the graph, consider the
following process, described by Qi et al. (2008). Fluid is pumped into the source node s at a constant rate,
and fluid diffuses through the graph along the edges. Fluid is lost from each node at a constant first-order
rate g. Let f sv (t) denote the amount of fluid at node v at time t, and let fs(t)¼ [f s1 (t), . . . , f

s
n (t)]

T be the column
vector of fluid at all nodes. Let L be the Laplacian matrix of the graph,1 and let Lg¼ Lþ gI. Then the
dynamics of this continuous-time process are governed by the vector equation dfs(t)

dt ¼ $ Lcf
s(t)þ bsu(t),

where bs is the elementary unit vector with 1 at the sth place and 0 otherwise, and u(t) is the unit step
function. As t??, the system reaches the steady state. The equilibrium distribution of fluid density on the
graph is fs ¼ L$ 1

c bs (see (Qi et al., 2008). Note that this diffusion process is related to the diffusion kernel
(Kondor and Lafferty, 2002) or heat kernel (Chung, 2007), which models the diffusion of heat on a graph,
and these diffusion processes are in turn related to certain random walks on graphs (Doyle and Snell, 1984;
Lovász, 1993). Diffusion processes and their related flow problems have been used in protein function
prediction on interaction networks (Tsuda and Noble, 2004; Nabieva et al., 2005) and to define associations
between gene expression and phenotype (Ma et al., 2007).

We interpret f si as the influence of gene gs on gene gi. Computing the diffusion process for all tested
genes gives us, for each pair of genes gj, gk 2 T , the influence i(gj, gk) that gene gj has on gene gk. Note that
in general the influence is not symmetric; i.e. i(gj, gk)= i(gk, gj). We define an influence graph GI ¼ (T ,EI)
with the set of nodes corresponding to the set of tested genes, the weight of an edge (gj, gk) is given by w(gj,
gk)¼min[i(gk, gj), i(gj, gk)], for all pairs of tested genes. If n is the number of nodes in the interaction
network, then the cost of computing GI is dominated by the complexity of inverting the n · n matrix Lg.

2.3. Discovering significant subnetworks: combinatorial model

Given an influence measure between genes, the obvious first approach for discovering significant sub-
networks is to identify sets of nodes in the influence graph GI that are (1) connected through edges with
high influence; and (2) correspond to mutated genes in a significant number of samples. We fix a threshold
d and compute a reduced influence graph GI (d) of GI by removing all edges with w(gi, gj)< d, and all
nodes corresponding to genes with no mutations in the sample data. The computational problem is reduced
to identifying the connected subgraphs of GI (d) such that the corresponding sets of genes are altered in a
significant number of patients.

The size of the connected subgraphs we discover is controlled by the threshold d. We choose sufficiently
small d such that, in the null hypothesis, in which the mutations are placed on nodes corresponding to tested

FIG. 1. Mutation on chain versus star graph.

1L¼$AþD, where A is the adjacency matrix of the graph and D is a diagonal matrix with Di,i¼ degree(vi).
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genes, it is unlikely that our procedure finds connected subgraphs with similar properties. Note that the
value of d depends only on the null hypothesis and not on the observed sample data (see Section 2.5 for
details of the statistical analysis). Finding the connected subgraph of k genes that is mutated in the largest
number of samples is equivalent to the following problem, which we define as connected maximum
coverage problem.

Computational problem. Given a graph G defined on a set of n vertices V ¼ fv1, . . . , vng, a set I, a
family of subsets P¼ fP1, . . . ,Png, with Pi 2 2I associated to vi 2 V , and a value k, find the connected
subgraph C% ¼ fvi, . . . , vikg with k nodes in G that maximize j [kj¼ 1 Pij j.

In our case, we have G¼GI (d), V is the subset of genes in T mutated in at least one sample, and for each
gi 2 V the associated set is Si. The connected maximum coverage problem is related to the maximum
coverage problem (Hochbaum, 1997), where, given a set I of elements, a family of subsets F& 2I, and a
value k, one needs to find a collection of k sets in F that covers the maximum number of elements in I. This
problem is NP-hard as set cover is reducible to it.

If the graph G is a complete graph, the connected maximum coverage problem is the same as the
maximum coverage problem. Thus, the connected maximum coverage problem is NP-hard for a general
graph. Moreover, we prove that the problem is still hard even on simple graphs such as the star graph.
(Shuai and Hu, 2006, give a similar result for the connected set cover problem.)

Theorem 1. The connected maximum coverage problem on star graphs is NP-hard.

The proof is in the appendix. Since the connected maximum coverage problem is NP-hard even for
simple graphs, we turn to approximate solutions. It is not hard to construct a polynomial time 1$ 1

e
approximation algorithm for spider graphs (analogous to the result in Shuai and Hu [2006] for the con-
nected set cover problem). Since this algorithm cannot be applied to the network here, we construct an
alternative polynomial time algorithm that gives O (1/r) approximation when the radius of the optimal
solution C% is r. The pseudocode is shown in Figure 2.

Our algorithm obtains a solution Cv (thus, a connected subgraph) starting from each node v 2 V , and then
returns the best solution found. To obtain Cv, our algorithm executes an exploration phase, i.e., for each
node u 2 V it finds a shortest path pv(u) from v to u. Let ‘v(u) be the set of nodes in pv(u), and Pv(u) the
elements of I that they cover. After this exploration phase, the algorithm builds a connected subgraph Cv
starting from v. At the beginning we have Cv ¼ fvg: PCv is the set of elements covered by the current
connected subgraph Cv. Then, while jCvj5 k, the algorithm chooses the node u 62 Cv such that:
u¼ argmaxu2V

jPv(u)nPCv j
j‘v(u)nCvj

n o
and j‘v(u) [ Cvj ' k; the new solution is then ‘v(u) [ Cv. The main computa-

tional cost of our algorithm is due to the exploration phase, that can be performed in polynomial time. We
have the following (proof in the Appendix):

Theorem 2. The combinatorial algorithm gives a 1
cr-approximation for the connected maximum cov-

erage problem on G, where c¼ 2e$ 1
e$ 1 and r is the radius of optimal solution in G.

FIG. 2. Pseudocode of the algorithm
for the combinatorial model.

Combinatorial Algorithm

Input: Influence graph GI and parameters d and k
Output: Connected subgraph C of GI(d) with k vertices

1 Construct GI (d) by removing from GI all edges with weight< d;
2 C  ;;
3 for each node v 2 V do
4 Cv  fvg;
5 for each u 2 Vnfvg do pv (u)/ shortest path from v to u in GI (d);
6 while jCvj5 k do

//‘v(u)¼ set of nodes in pv (u); Pv(u)¼ elements of I covered by
‘v(u); PCv ¼ elements covered by Cv;PC ¼ elements covered by C

7 u argmaxu2VnCv:j‘v(u)[ Cv j'k
jPv(u)nPCv j
j‘v(u)nCvj

! "
;

8 Cv  ‘v(u) [ Cv;
9 if jPCv j4 jPCj then C  Cv;
10 return C;
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For our experiments, we implemented a variation of this algorithm that for each pair of nodes (u, v)
considers all the shortest paths between u and v, and then keeps the one that maximizes jPv(u)j

j‘v(u)j to build the
solution Cv. With this modification, the algorithm is not guaranteed to run in polynomial time in the worst-
case, but ran efficiently for all our experiments.

2.4. Discovering significant subnetworks: the enhanced influence model

We developed an alternative, computationally efficient, approach for identifying subnetworks that are
significant with respect to the gene mutation data. The Enhanced Influence Model is based on the idea of
enhancing the influence measure between genes by the number of mutations observed in each of these
genes, and then decomposing an associated enhanced influence graph into connected components.

We define the enhanced influence graph H. The set VH of vertices of H is given by all genes gj with at
least one mutation in the data. The weight of edge (gj, gk) in H is given by the enhanced influence

h(gj, gk)¼w(gj, gk) · max jSjj, jSkj
# $

, (1)

for each pair of genes gj, gk 2 VH . Recall that Sj is the set of samples in which gj is altered, and h is thus
defined by the observed mutation data. Thus, the strength of connection between two nodes in the enhanced
influence graph is a function of both the influence between the nodes in the interaction network and the
number of mutations observed in their corresponding genes. Next we remove all edges with weight smaller
than a threshold d to obtain a graph H(d). We return the connected components in H(d) as the significant
subnetworks with respect to the mutation data and the threshold d. The pseudocode is shown in Figure 3.

The computational cost is the complexity of computing all connected components in a graph with S
nodes, where S is the number of mutated genes, which is linear in the size of the graph. The significance of
the discovered subnetworks depends on the choice of d. We choose sufficiently small d such that in the null
hypothesis, in which the mutations are randomly placed in nodes corresponding to tested genes according
to an appropriate null distribution, it is unlikely that our procedure finds connected components of similar
size (see Section 2.5).

2.5. Statistical analysis

In this section, we describe a statistical test to assess the significance of our discoveries. The test we
design can be used to assess the significance with respect to any null hypothesis on the distributions of
mutations among the genes. In particular, we consider null hypothesis distributions in which the mutated
genes are randomly allocated in the network, i.e., when the occurrence of mutations are independent of the
network topology. Other distributions in which the occurrence of mutations are not independent of the
network topology could be considered. For example, it has been previously reported that there is a
correlation between the degree of a gene in a interaction network and its number of mutations (Cui et al.,
2007). The data we analyze below did not display such a strong correlation, and so we do not consider this
type of distribution in our experiments.

We employ two null hypothesis distributions: in Hsample
0 a total of m¼SijMij mutations are placed

uniformly at random in the nodes corresponding to the jT j tested genes. While easier to analyze, this model
does not account for the fact that in the observed data a large number of mutations are concentrated in a few
genes (e.g., TP53). Thus, we also use a second null hypothesis distribution, Hgene

0 , generated by permuting
the identities of the tested genes in the network. That is, we select a random permutation s of the set

FIG. 3. Pseudocode of the algorithm for the enhanced influence
model.

Enhanced Influence Algorithm

Input: Influence graph GI and parameter d
Output: Connected components of H(d)

1 VH  fgj : Sj 6¼ ;g;
2 E fgj, gk : gj, gk 2 VH , gj 6¼ gkg;
3 H/ (VH, E, h);
4 E(d) f(gj, gk) 2 E : h(gj, gk) ( dg;
5 H(d)/ (VH, E(d));
6 return connected components of H(d);
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f1, . . . , jT jg, and we assign gene gj, which was mutated in the set of samples Sj " S, to the location of
gene gs(j) in the original network. Note that, in a random mutation dataset, the set Sj of samples in which
gene gj is altered is given by the null hypothesis distribution when computing the enhanced influence (1) or
the combinatorial model. In contrast, the influence graph is fixed and given by the interaction network and
the set of tested genes.

2.5.1. A two-stage multi-hypothesis test. A major difficulty in assessing the statistical significance
of the discovered subnetworks is that we test simultaneously for a large number of hypotheses; each con-
nected subnetwork in the interaction graph with at least one tested gene is a possible significant subnetwork
and thus an hypothesis. The strict measure of significance level in multi-hypothesis testing is the Family Wise
Error Rate (FWER), the probability of incurring at least one Type I error in any of the individual tests. An
alternative, less conservative approach to control errors in multiple tests is the the False Discovery Rate
(FDR) (Benjamini and Hochberg, 1995). Let V be the number of Type I errors in the individual tests, and let R
be the total number of null hypotheses rejected by the multiple test. We define FDR¼E[V/R] to be the
expected ratio of erroneous rejections among all rejections (with V/R¼ 0 when R¼ 0). Let t be the total
number of hypothesis tested. Applying either measure to our problem, a discovery would be flagged as
statistically significant only if its p-value is O (1/t), which is impractical in the size of our problem. Instead,
building on an idea presented in Kirsch et al. (2009), we develop a two-stage test for our problem that allows
us to flag a number of subnetworks in our data as statistically significant with small FDR values.

We demonstrate our method through the analysis of the Enhanced Influence model. A similar technique
was applied to the Combinatorial model. Let C1, . . . ,C‘ be the set of connected components found in the
enhanced influence graph H(d). Testing for the significance of these discoveries is equivalent to simulta-
neously testing for 2jT j hypotheses. To reduce the number of hypotheses, we focus on an alternative
statistic: the number of discoveries of a given size. Let ~rrs be the number of connected components of
size( s found in the graph H(d), and let rs be the corresponding random variable under the null hypoth-
esis (Hsample

0 or Hgene
0 ). We are testing now for just up to K¼ jT j simple hypotheses, for

s¼ 1, . . . ,K : Es )‘‘~rrs conforms with the distribution of rs’’. Testing each hypothesis with confidence level
a=K, the first stage of our test identifies the smallest size s such that with confidence level a we can reject
the null hypothesis that ~rrs conforms with the distribution of rs.

The fact that the number of connected components of size at least s is statistically significant does not
imply necessarily that each of the connected components is significant. We now add a second condition to
the test that guarantees an upper bound on the FDR:

Theorem 3. Fix b1,b2, . . . , bK such that
PK

i¼ 1 bi ¼ b. Let s* be the first s such that ~rrs ( E[rs]
bs

. If we
return as significant all connected components of size( s*, then the FDR of the test is bounded by b.

The proof is in the Appendix. In our tests, we have used bi ¼ b
2i for the ith largest s tested (with

bs¼ b$
P

ibi for the smallest s), since we are more interested in finding large connected components.

2.5.2. Estimating the distribution of the null hypothesis. The null hypothesis distributions can be
estimated by either a Monte-Carlo simulation (‘‘permutation test’’) or through analytical bounds.

Using Monte-Carlo simulation, two features of our method significantly reduce the cost of the estimates.
First, the Influence Graph GI is created without observing the sample data. The mutation data and GI are
then combined to create the sample dependent graphs GI (d) and H(d). Thus, the Monte Carlo simulation
needs to run on the graph GI, which is significantly smaller than the original interaction network (in our
data the original interaction network had 18796 nodes while the influence graph had only about 600 nodes).
Second, our statistical test does not use the p-values of individual connected subgraphs/components but the
p-value of the distribution of the number of connected subgraphs/components of a given size. Thus, for this
test it is sufficient to estimate p-values that are a magnitude larger, and therefore require significantly fewer
rounds of simulations. These features allowed us to compute the null distributions through Monte-Carlo
simulations for the size of our data with no significant computational cost.

For a larger number of tested genes, we can estimate the null hypothesis through analytical bounds.
Consider for example the Enhanced Influence model, and assume that the jT j tested genes are randomly
permuted among the jT j nodes of the graph GI to generate a random graph !HH(d). Let M be the number of
genes with observed mutations, and let smax be the maximum number of mutations of any gene. Since we
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are interested in d that partitions the graph into a number of connected components, we choose the
maximum d such that for any node gi in GI no more than aM=jT j of the adjacent edges have weights that
satisfy smaxw(gi, gj)( d, for some fixed a< 1. For this choice of d, the expected number of connected
components of size k in !HH(d) is bounded by jT j

k

% &
kk$ 2ak$ 1 ' M

k2 a
k$ 1. Since connected components are

disjoint, their occurrences are negatively correlated, and we can stochastically bound the distribution of rs
with a binomial distribution with the above expectation. A similar bound can be computed for the other
models and null hypothesis distributions, and for (somewhat) less restrictive conditions on d.

3. EXPERIMENTAL RESULTS

We applied our approach to analyze somatic mutation data from two recent studies. The first dataset is a
collection of 453 validated nonsynonymous somatic mutations identified in 601 tested genes from 91
glioblastoma multiforme (GBM) samples from The Cancer Genome Atlas (TCGA, 2008). In total, 223
genes were reported mutated in at least one sample. The second dataset is a collection of 1013 validated
nonsynonymous somatic mutations identified in 623 tested genes from 188 lung adenocarcinoma samples
from the Tumor Sequencing Project (Ding et al., 2008). In total, 356 genes were reported mutated in at least
one sample. For the Enhanced Influence model, we also considered simulated data.

We use the protein interaction network from the Human Protein Reference Database ( June 2008 version)
(Keshava Prasad et al., 2009), which consists of 18796 vertices and 37107 edges. We derive the influence
graph for each dataset by directly computing the inverse2 of Lg. The results presented below are obtained by
fixing the parameter g¼ 8, which is approximately the average degree of a node in HPRD (after the
removal of disconnected nodes). Similar results were obtained with g¼ 1 or g¼ 30.

The resulting influence graphs have weights i(gj, gk)= 0 for almost all pairs (gj, gk) of tested genes: less
than 2% of the weights are zero in the GBM graph, while all weights in the lung adenocarcinoma graph are
positive.

3.1. Combinatorial model

We used the combinatorial model to extract a subnetwork of k mutated genes that is mutated in the
highest number of samples from GBM and lung adenocarcinoma, for k¼ 10 and k¼ 20. For both datasets,
we used the procedure described in Section 2.3 to derive the threshold d¼ 10$4 for the reduced influence
graph GI (d). Table 1 shows that we find statistically significant subnetworks under both the Hgene

0 and
Hsample

0 null hypotheses ( p-values for Hsample
0 are computed without Monte-Carlo simulation). The genes in

each subnetwork are reported in Table 2.
To assess the biological significance of our findings in GBM, we compared the genes in each subnetwork

to the genes in pathways that were previously implicated in GBM and used as a benchmark in the TCGA

Table 1. Results of the Combinatorial Model

p-value Pathway enrichment p-value

Dataset k Samples Hsample
0 Hgene

0 All RTK/RAS/PI(3)K p53

GBM 10 67 <10$10 4· 10$3 3 · 10$4 8 · 10$4 0.19
20 78 <10$10 <10$3 10$5 8 · 10$5 0.05

Lung 10 140 <10$10 0.02 8 · 10$6 /
20 151 <10$10 0.03 3 · 10$3 /

k is the number of genes in the subnetwork. Samples is the number of samples in which the subnetwork is mutated. p-value is the

probability of observing a connected subgraph of size k mutated in a number of samples( samples under the random model Hsample
0 or

Hgene
0 . enrichment p-value is the p-value of the hypergeometric test for overlap between genes in the identified subgraph and genes

reported significant pathways in TCGA (2008) or Ding et al. (2008). For GBM, enrichment p-value is the p-value of the

hypergeometric test for RTK/RAS/PI(3)K and p53 pathways.

2In contrast, Qi et al. (2008) derive a power series approximation to L$ 1
c whose convergence depends on the choice

of g.
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publication (TCGA, 2008) (Fig. 4a). We find that our subnetworks are enriched for genes in the RTK/RAS/
PI(3)K pathway and to a lesser extent, the p53 pathway. For the lung adenocarcinoma samples, we find that
the subnetworks share significant overlap with the pathways reported in the original publication (Ding
et al., 2008). These results demonstrate that the combinatorial model is effective in recovering genes known
to be important in each of these cancers.

3.2. Enhanced influence model

Simulated data. We tested the ability of our enhanced influence model to recover significantly mutated
pathways in simulated data. We extracted a well-curated network of 258 genes called ‘‘Pathways in cancer
(hsa05200)’’ from the KEGG database (Kanehisa and Goto, 2000). We augmented this network with
additional random edges so that 20% of the edges of the resulting network were random. We assigned
mutations to a well-known cancer signaling pathway, PKC–RAF–MEK–ERK, a linear chain P of 4 genes,

Table 2. Results of Combinatorial Model

Dataset k Samples Genes

GBM 10 67 INSR BCR TP53 PTEN EGFR
ERBB2 DST PIK3R1 PIK3CA SERPINA3

20 78 MDM2 FGFR1 BRCA2 CHEK1 COL1A2
ITGB3 TNK2 INSR BCR TP53
PTEN EGFR ERBB2 DST PIK3R1
PIK3CA NF1 SPARC PDGFRA SERPINA3

Lung 10 140 CDC25A CHEK1 TP53 STK11 HRAS
KRAS ERBB4 EGFR NF1 PTEN

20 150 MAPK8 PRKDC TP53 STK11 HRAS
KRAS EGFR PRKD1 NF1 ABL1
ERBB4 PTEN HD PRKCE SMAD2
TGFBR1 BAX RAPGEF1 PIK3CG ACVR1B

Genes in the connected component of size k that covers the maximum number of samples in GBM and lung adenocarcinoma, as

reported by our combinatorial algorithin.

FIG. 4. (a) Overlap between subnetworks found by the enhanced influence model and significant pathways reported in
TCGA (2008). Each circle is a gene; other shapes represent protein families or complexes, or small molecules. For each
protein family and complex, tested genes are shown. ‘‘Dashed’’ nodes are tested genes that were not mutated in GBM, and
thus cannot be returned as significant. Light gray nodes are found in the c.c. of size 22, dark gray nodes in the c.c. of size
18, and the black node (RB1) in a c.c. of size 2. (b) Pathway corresponding to one of the connected components extracted
with enhanced influence model in lung. (c) Notch signaling pathway identified in the lung dataset.
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so that at least one gene is mutated in x% of samples, for different x. We then randomly assigned mutations
to all the genes in the network matching the observed values (e.g., number of samples, ratio between
number of tested genes, and number of genes in the network) in GBM. We correctly identify P as
significantly mutated (P< 10$2, FDR< 10$2) even when each gene in P is altered in '5% of the samples,
but P is altered in 17% of the samples. Note that genes mutated in 5% of the samples were not reported as
significantly mutated in TCGA (2008), demonstrating that our method correctly identifies a mutated path
even when the individual genes in the path are not mutated in a significant number of samples. Moreover, P
is the only significant pathway reported by our method. To verify that our influence measure takes into
account the topology of the network, we added a number of edges to the RAF gene in P, giving it high
degree in the network. As expected, P is no longer identified as significant in the modified network.

Cancer data. We applied the enhanced influence model to the GBM and lung adenocarcinoma datasets.
Following the procedure described in Section 2.4, we first computed the enhanced influence graph, using a
threshold of d¼ 0.003 for the GBM data and d¼ 0.01 for the lung adenocarcinoma data. Table 3 shows
the number and sizes of the connected components identified in the GBM data, and the associated p-values,
the latter obtained using the method described in Section 2.5. Table 4 reports the genes in the connected
components of size >3.

We identify two significant connected components with more than 19 genes (FDR '0.14). We find
significant overlap (P< 10$2 by hypergeometric test) between the 68 genes in our connected components
and the set of all mutated genes in the same RTK/RAS/PI(3)K, p53, and RB pathways examined in the
TCGA study (TCGA, 2008). The second largest connected component with 19 genes has significant
overlap to the p53 pathway, while the largest connected component with 22 genes has significant overlap
with the RTK/RAS/PI(3)K signaling pathway. In contrast to the combinatorial model, the enhanced in-
fluence model separates these two pathways into different connected components. Figure 4a illustrates the
overlap between the mutated genes in connected components returned by our method and genes in the
pathways reported in TCGA (2008).

For the lung data, Table 5 shows the sizes of connected components returned by the enhanced influ-
ence model and the p-values associated with each. Table 6 lists the genes in each connected component of
size >5.

Table 3. Results of the Enhanced Influence Model on GBM Samples

Hsample
0 Hgene

0 Enrichment p-value

s No. of c.c.( s m p-Value m p-value RTK/RAS/PI(3)K p53

2 15 22.18 0.97 13.63 0.38 / /
3 3 6.37 0.98 4.38 0.6 / /
19 2 <10$3 <10$3 0.07 <10$3 0.9 4· 10$3

22 1 <10$3 <10$3 0.05 0.05 4 · 10$6 —

s is the size of connected components (c.c.) found with our method. No. of c.c.( s is the number of c.c. with at least s nodes. m is the

expected number of c.c. with( s nodes under random models Hgene
0 , Hsample

0 . p-value is the probability of observing at least No. of

c.c.( s with at least s nodes in a random dataset. The last two columns show, for c.c. with s> 3, the result of the hypergeometric test
for enrichment for RTK/RAS/PI(3)K, and p53 pathways, respectively.

Table 4. Genes in Connected Components Obtained for GBM
the Diffusion Model with d¼ 0.003

Size Genes

22 MSH2 ATM MSH6 PRKDC ATR BCR KLF6 GLI3 KLF4
PML MAPK9 CHEK1 BRCA2 ING4 MDM2 MDM4 TP53 TOP1
PTEN KPNA2 STK36 GLI1

19 ANXA1 TNK2 ERBB3 SERPINA3 SOCS1 TNC PIK3C2B PDGFRB
ERBB2 NRAS VAV2 EGFR EPHA2 MET ADAM12 PIK3R1
PIK3CA CENTG1 AXL
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The 88 genes in the union of the connected components derived by our method overlap significantly
(P< 7 · 10$9 by the hypergeometric test) with the mutated pathways reported in the network in the TSP
publication (Fig. 6 in Ding et al., 2008). We identify four connected components of size (7 (FDR '0.56).
The first connected component of size 10 contains genes in the p53 pathway, and the second one is enriched
(P< 10$2) for the MAPK pathway (Fig. 4b). The third component is the ephrin receptor gene family, a
large family of membrane-bound receptor tyrosine kinases that were reported as mutated in breast and
colorectal cancers (Sjoblom et al., 2006). Notably, only one of the genes in this component, EPHA3, is
mentioned as significantly mutated in Ding et al. (2008). Finally, the connected component of size 7
consists exclusively of members of the Notch signaling pathway (Fig. 4c). The mutated genes include the
Notch receptor (NOTCH2/3/4); Jagged ( JAG1/2), the ligand of Notch; and Mastermind (MAML1/2), a
transcriptional co-activator of Notch target genes. The Notch signaling pathway is a major developmental
pathway that has been implicated in a variety of cancers (Axelson, 2004), including lung cancer (Collins
et al., 2004). Mutations in this pathway were not noted in the original TSP publication (Ding et al., 2008),
probably because no single gene in this pathway is mutated in more than three samples. Because our
method exploits both mutation frequency and network topology, we are able to identify these more subtle
mutated pathways, and in this case identify an entire signaling pathway.

3.3. Naive approach

To demonstrate the impact of the influence graph on the results, we implemented a naive approach that
examines all paths in the original HPRD network that connect two tested genes and contain at most three
nodes. We extracted all paths that were altered in a significant number of samples with FDR '0.01 using
the standard Benjamini-Yekutieli method (Benjamini and Yekutieli, 2001). More than 1700 paths in GBM
and >2200 in lung adenocarcinoma are marked as significant with this method. A major reason for this
large number of paths is the presence of highly mutated genes that are also high-degree nodes in the HPRD
network (e.g., TP53). Each path through these high degree nodes is marked as significant. One possible
solution is to remove any path that contains a subpath that is significant. Table 7 shows the results of this
filtering on GBM data for Hsample

0 . Table 8 shows the analogous table for lung adenocarcinoma.
Note that these filtered paths include none through important, highly mutated, and high degree genes like

TP53. Since our influence graph uses both mutation frequency and local topology of the network, we are
able to recover subnetworks containing these genes without also reporting an extremely large number of

Table 5. Results of the Enhanced Influence Model on Lung Adenocarcinoma Samples

Hsample
0 Hgene

0

s No. of c.c.( s m p-value m p-value Enrichment p-value

2 24 23.4 0.7 17.67 0.4 /
3 11 6.51 0.13 7.27 0.2 /
4 7 3.21 0.07 4.98 0.13 /
5 5 2.09 0.01 2.18 0.01 /
7 4 0.54 0.01 0.56 0.01 —
10 3 <10$3 <10$3 0.4 0.02 0.34; 10$5; 9 · 10$8

Columns are as described in Table 3. Last column shows, for each c.c. with s (7, the result of the hypergeometric test for

enrichment for all genes reported in significant pathways in Ding et al. (2008) (the three values correspond to 3 c.c. of size 10).

Table 6. Connected Components of Size (7 for Lung Adenocarcinoma
Using the Diffusion Model with d¼ 0.01

Size Genes

10 WT1 CDKN2A TP53 CCNG1 KLF6 ATR CDKN2C TP73L TFDP1 CHEK1
10 RAP2B PIK3CA HRAS RASSF2 NRAS MRAS PIK3CG BRAF NF1 RHOB
10 EPHB1 EPHB6 EPHA7 EPHA6 EPHA5 EPHA4 EPHA3 EPHA2 EPHA1 FGFR4
7 MAML2 MAML1 NOTCH4 NOTCH2 NOTCH3 JAG2 JAG1
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other extraneous subnetworks. Finally, we note that finding larger, statistically significant subnetworks
(e.g., those with 10 or 20 nodes) with the naive approach is impossible in the GBM and lung datasets
because of the severe multiple hypotheses correction for the large number of subnetworks tested; e.g., the
number of connected components with 10 tested genes in the HPRD network is >1010. For the same reason,
the enumeration of all the paths or connected components of reasonable size is impossible.

4. CONCLUSION

We present an approach to identify significantly mutated pathways in a large, unannotated interaction
network. The subnetworks derived by our method share significant overlap with known cancer pathways.
Remarkably, we automatically extracted a large fraction of these pathways with a modest number (100–200)
of samples (Fig. 4). Our approach has two key advantages over the common strategy of testing the overlap
between mutated genes and genes from known pathways, using a hypergeometric or similar test. First, we
incorporate biological information that is not presently represented in existing well-characterized pathways,
while accounting for the uncertainty in large gene interaction networks. Second, we are able to assign
significance to genes that are altered at low frequency but are part of a larger subnetwork that is altered at
significant frequency. The latter advantage was demonstrated in the lung adenocarcinoma dataset where we
identify the Notch signaling pathway as significant, even though the individual genes were not mutated at
significant frequency.

There are numerous ways to extend the model presented here. First, additional data types may be con-
sidered, such as copy number aberrations, genome rearrangements, gene expression changes, or epigenetic
alterations. Second, a different null model could be used. Nearly any null model used for single-gene tests of
significance could be adapted to the network context. For example, one could employ a null model where
mutations in gene occur at a fixed ‘‘background’’ rate, meaning that longer genes would be more likely to
harbor mutations. Using such a model on the GBM and lung adenocarcinoma data produced results extremely
close to those presented here (data not shown). Finally, the network model could be expanded to include

Table 7. Statistically Significant Mutated Paths (FDR¼ 0.01) Using the HPRD
Network (Keshava Prasad et al., 2009) and the Glioblastoma

Mutations Dataset (TCGA, 2008)

Genes No. of mutated samples p-value

PDGFRB, PIK3CA 8 10$4

PIK3CA, PRKCD, EP300 10 6· 10$5

PIK3CA, IRS4, PRKCZ 8 10$4

For each significant path, the genes in the path, the number of samples with at least one mutation in the
path, and the (non-corrected) p-value are shown.

Table 8. Statistically Significant Mutated Paths (FDR¼ 0.001) Using the HPRD
Network (Keshava Prasad et al., 2009) and the Lung Adenocarcinoma

Mutation Dataset (Ding et al., 2008)

Genes No. of mutated samples p-value

CDKN2A, E4F1, RB1 15 10$6

CDKN2A, WRN, PRKDC 15 10$6

EPHA7, EFNA1, EPHA3 15 10$6

PRKDC, HSP90AA1, KDR 15 10$6

EPHA3, EFNA2, EPHA5 15 10$6

NTRK3, DYNLL1, NTRK1 14 6 · 10$6

NTRK1, CAV1, KDR 14 6 · 10$6

KDR, ITGB3, PDGFRA 14 6 · 10$6

For each significant path, the genes in the path, the number of samples with at least one mutation in the path,
and the (non-corrected) p-value are shown.
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additional interaction types (e.g., regulatory or miRNA), directed interactions or weighted interactions. The
later can be included naturally in our diffusion model by adding weights, or reliabilities, on the edges.

We anticipate that our method will become even more useful as larger datasets become available.
Several recent studies (Wood et al., 2007; Jones et al., 2008; Parsons et al., 2008) have surveyed a much
larger number of genes than considered here (approximately 20,000), but in a relatively small number of
samples (one to two dozen per cancer type). Continuing decline in DNA sequencing costs and the de-
velopment of targeted exon-capture techniques (Hodges et al., 2007) will soon enable global surveys of all
protein-coding genes in hundreds to thousands of cancer samples.

5. APPENDIX

A. Proofs

In this Appendix, we report the proofs of the theorems stated in the article.

Theorem 1. The connected maximum coverage problem on star graphs is NP-hard.

Proof. The proof is by reduction from the maximum coverage problem. Given an instance of the
maximum coverage problem, consisting of I, F, and k, we build an instance of the connected maximum
coverage problem. We define I0¼ I [ fv0g, with v0 62 I; and F0¼F [ fv0g. Moreover, we build the graph
G¼ (V, E) where V¼F0 and E¼ f(v0, s)js 2 Fg. It is easy to verify that G is a star graph, and then each
non-trivial (i.e., with more than 1 vertex) subgraph of G will contain the vertex v0. The solution X to the
connected maximum coverage problem on the graph G is then of the form X¼ Y [ fv0g, where Y " F. It is
easy to verify that X is a connected maximum coverage of size kþ 1> 1 if and only if Y is maximum
coverage of size k >0. &

Theorem 2. The combinatorial algorithm gives a 1
cr-approximation for the connected maximum cov-

erage problem on G, where c¼ 2e$ 1
e$ 1 and r is the radius of optimal solution in G.

Proof. We first analyze the solution obtained assuming the nodes in the solution are inserted one at
the time (i.e., j‘v(u)nCvj¼ 1 for each node u inserted in the solution). We will then show that, when the
nodes are not inserted one at the time, the solution obtained cannot have a worse value.

Let z*(v) be the value of the best solution OPT(v) that can be found starting at node v. For 1' i' rv,
define OPTi(v)¼ fvj 2 OPT(v) : d(vj, v)¼ rv $ iþ 1g, and

z%i (v)¼
[

gj2OPTi(v)
Pj $

[

‘5 i

[

gj2OPT‘(v)
Pj

0

@

1

A

8
<

:

9
=

;

''''''

''''''
,

thus, OPT(v)¼ [rvi¼ 1 OPTi(v), where rv is the maximum distance between v and a node in OPT(v), and
z%(v)¼

Prv
i¼ 1 z

%
i (v). We divide the execution of our algorithm in r v phases: in phase i our algorithm inserts

jOPTi(v)j new nodes in the solution. Note that in phase i, our algorithm always has the possibility to reach
each node in OPTi(v). Thus, in phase i, the algorithm above is equivalent to the greedy algorithm for the
maximum coverage problem where the sets that can be chosen are all the sets at distance at most rv$ iþ 1,
and then all the sets in OPTi(v) can be chosen by the greedy algorithm. Let Ai(v) be the increment in the
value of the solution found by our algorithm between the end of phase i and the end of phase i$ 1. The

value of the solution of our algorithm starting from node v is then A(v)¼
Xrv

i¼ 1

Ai(v). Since the approxi-

mation factor for the maximum coverage is 1$ 1/e and each element in OPTi(v) is seen with weight
reduced of a factor 1/(rv$ iþ 1) (since it is at distance rv$ iþ 1), in phase i our algorithm improves the
current solution of a factor

Ai(v)(
1

rv
1$ 1

e

( )
(z%i (v)$

Xi$ 1

j¼ 1

Aj(v)):

Summing the terms above for all i, 1' i' rv we obtain:
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We then obtain

2e$ 1

e
A(v)( 1

rv

e$ 1

e

( )
z%(v)

that is

A(v)( 1

rv

e$ 1

2e$ 1

( )
z%(v):

Now, let v* be such that (i) v% ¼ argmaxvfz%(v)g (i.e., z*(v*)¼ z*), and (ii) rv*¼ r.
Then

A¼ max
v

A(v) ( A(v%) ( 1

rv%

e$ 1

2e$ 1

( )
z%(v%)¼ 1

r

e$ 1

2e$ 1

( )
z%:

Now consider the case j‘v(u)nCvj4 1: this means that we insert a path whose weight, divided by
j‘v(u)nCvj, is higher than the weight of any other node (currently) reachable from v. Then we have that the
value of the solution found by our algorithm can only improve, since we are inserting j‘v(u)nCvj nodes such
that the average value of the inserted nodes is greater than the maximum value of any (currently) reachable
node in OPT(v) divided by its distance (that is, at most rv). &

Theorem 3. b1,b2, . . . ,bK such that
PK

i¼ 1 bi ¼ b. Let s* be the first s such that ~rrs ( E[rs]
bs

. If we return
as significant all connected components of size( s*, then the FDR of the test is bounded by b.

Proof. Let Vs be the number of erroneous rejections of connected components of size s, i.e., the number
of connected components of size s that were flagged erroneously as significant. Note that E[Vs]'E[rs],
since if these hypothesis were erroneously rejected they were generated by the null distribution. Let
Es ) ‘‘~rrs conforms with the distribution of rs’’, and !EEs be the complementary event.

FDR¼
XjKj

s¼ 1

E
Vs

~rrs

* +
Pr ( !EEs,Es$ 1, . . . ,E1)

'
XjKj

s¼ 1

bsE[rs j !EEsEs$ 1, . . . ,E1]

E[rs]
Pr ( !EEs,Es$ 1, . . . ,E1)

¼
XjKj

s¼ 1

bs
P

j j Pr (rs ¼ j, !EEs,Es$ 1, . . . ,E1)

E[rs]

'
XjKj

s¼ 1

bsE[rs]
E[rs]

' b:

&
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