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Unnormalized Graph Laplacian

• For a given graph G={V, E}
• The unnormalized graph Laplacian is a | V |X| V | 

matrix



Unnormalized Graph Laplacian example
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Properties of the Laplacian
• For every vector f in Rn, 

• L is symmetric and positive semi-definite

• The smallest eigen value of L is 0 and its corresponding eigen 
vector is all 1s

• L has n non-negative eigen values

f 0Lf � 0, 8f 2 Rn



Number of connected components and 
the multiplicity of λ=0

• Let G be an undirected graph with non-negative 
weights. 

• Then the multiplicity, k, of the eigenvalue 0  of L
equals the number of connected components in the 
graph A1 , . . . , Ak



Number of connected components and L’s 
smallest eigen value

• To see why this is true, we use the property of an eigen vector, 
consider the case of one connected component
– If f is an eigen vector of L, then Lf=λf
– For eigen value 0, Lf=0 (vector or all zeros)

• In addition we know 

• If f is an eigen vector corresponding to eigen value =0, this must be 
0

• The only way this can be 0 is if fi=fj because wij is non-zero
• This holds for all vertices connected by a path
• If all vertices are connected, then f is a vector of constants



RECAP: Spectral clustering

• Based on the graph Laplacian
• Graph Laplacian L=D-W
– D is the diagonal degree of matrix
– W is the adjacency matrix

• Obtain the k eigen vectors associated with k smallest 
eigen values of L

• Represent each node as the k-dimensional vector 
• Cluster nodes based on k-means clustering



Spectral clustering key steps
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Application of graph clustering 

• Finding higher-order Topologically Associated 
Domains from Hi-C data

• Disease module identification
• Similarity network fusion for aggregating data types 

on a genomic scale



Genome is organized into multiple 
organizational units

• Chromosomal territories 
through inter-TAD 
interactions

• Compartments and sub-
compartments

• Topologically associated 
domains (TADs) and sub-
TADs

Lierberman et al 2009, Rao et 2014, Dixon et al 2012

in this way by using principal component analysis.
For all but two chromosomes, the first principal
component (PC) clearly corresponded to the plaid
pattern (positive values defining one set, negative
values the other) (fig. S1). For chromosomes 4 and
5, the first PC corresponded to the two chromo-
some arms, but the second PC corresponded to the
plaid pattern. The entries of the PC vector reflected
the sharp transitions from compartment to com-
partment observed within the plaid heatmaps.
Moreover, the plaid patterns within each chromo-
some were consistent across chromosomes: the

labels (A and B) could be assigned on each
chromosome so that sets on different chromo-
somes carrying the same label had correlated
contact profiles, and those carrying different labels
had anticorrelated contact profiles (Fig. 3D). These
results imply that the entire genome can be par-
titioned into two spatial compartments such that
greater interaction occurswithin each compartment
rather than across compartments.

TheHi-C data imply that regions tend be closer
in space if they belong to the same compartment
(Aversus B) than if they do not. We tested this by

using 3D-FISH to probe four loci (L1, L2, L3, and
L4) on chromosome 14 that alternate between the
two compartments (L1 and L3 in compartment A;
L2 and L4 in compartment B) (Fig. 3, E and F).
3D-FISH showed that L3 tends to be closer to
L1 than to L2, despite the fact that L2 lies be-
tween L1 and L3 in the linear genome sequence
(Fig. 3E). Similarly, we found that L2 is closer to
L4 than to L3 (Fig. 3F). Comparable results were
obtained for four consecutive loci on chromosome
22 (fig. S2, A and B). Taken together, these obser-
vations confirm the spatial compartmentalization

A B C D

E F G H

Fig. 3. The nucleus is segregated into two compartments corresponding
to open and closed chromatin. (A) Map of chromosome 14 at a resolution
of 1 Mb exhibits substructure in the form of an intense diagonal and a
constellation of large blocks (three experiments combined; range from 0
to 200 reads). Tick marks appear every 10 Mb. (B) The observed/expected
matrix shows loci with either more (red) or less (blue) interactions than
would be expected, given their genomic distance (range from 0.2 to 5).
(C) Correlation matrix illustrates the correlation [range from – (blue) to
+1 (red)] between the intrachromosomal interaction profiles of every pair
of 1-Mb loci along chromosome 14. The plaid pattern indicates the
presence of two compartments within the chromosome. (D) Interchromo-
somal correlation map for chromosome 14 and chromosome 20 [range
from –0.25 (blue) to 0.25 (red)]. The unalignable region around the cen-
tromere of chromosome 20 is indicated in gray. Each compartment on
chromosome 14 has a counterpart on chromosome 20 with a very similar

genome-wide interaction pattern. (E and F) We designed probes for four
loci (L1, L2, L3, and L4) that lie consecutively along chromosome 14 but
alternate between the two compartments [L1 and L3 in (compartment A);
L2 and L4 in (compartment B)]. (E) L3 (blue) was consistently closer to L1
(green) than to L2 (red), despite the fact that L2 lies between L1 and L3
in the primary sequence of the genome. This was confirmed visually and
by plotting the cumulative distribution. (F) L2 (green) was consistently
closer to L4 (red) than to L3 (blue). (G) Correlation map of chromosome
14 at a resolution of 100 kb. The PC (eigenvector) correlates with the
distribution of genes and with features of open chromatin. (H) A 31-Mb
window from chromosome 14 is shown; the indicated region (yellow
dashes) alternates between the open and the closed compartments in
GM06990 (top, eigenvector and heatmap) but is predominantly open in
K562 (bottom, eigenvector and heatmap). The change in compartmen-
talization corresponds to a shift in chromatin state (DNAseI).
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Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb
Resolution in Human Lymphoblastoid Cells
(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-C maps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood (right). We detect at

least six subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left)

indicate the presence of small domains of condensed chromatin, whose median length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the

presence of loops (right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.
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share this feature of classical insulators. A classical boundary element
is also known to stop the spread of heterochromatin. Therefore, we
examined the distribution of the heterochromatin mark H3K9me3 in
humans and mice in relation to the topological domains12,13. Indeed,
we observe a clear segregation of H3K9me3 at the boundary regions
that occurs predominately in differentiated cells (Fig. 2d, e and
Supplementary Fig. 11). As the boundaries that we analysed in

Fig. 2d are present in both pluripotent cells and their differentiated
progeny, the topological domains and boundaries appear to pre-mark
the end points of heterochromatic spreading. Therefore, the domains
do not seem to be a consequence of the formation of heterochromatin.
Taken together, the above observations strongly suggest that the topo-
logical domain boundaries correlate with regions of the genome dis-
playing classical insulator and barrier element activity, thus revealing a
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Figure 1 | Topological domains in the mouse ES cell genome. a, Normalized
Hi-C interaction frequencies displayed as a two-dimensional heat map
overlayed on ChIP-seq data (from Y. Shen et al., manuscript in preparation),
directionality index (DI), HMM bias state calls, and domains. For both
directionality index and HMM state calls, downstream bias (red) and upstream
bias (green) are indicated. b, Schematic illustrating topological domains and
resulting directional bias. c, Distribution of the directionality index (absolute
value, in blue) compared to random (red). d, Mean interaction frequencies at all
genomic distances between 40 kb to 2 Mb. Above 40 kb, the intra- versus inter-
domain interaction frequencies are significantly different (P , 0.005, Wilcoxon
test). e, Box plot of all interaction frequencies at 80-kb distance. Intra-domain
interactions are enriched for high-frequency interactions. f–i, Diagram of intra-
domain (f) and inter-domain FISH probes (g) and the genomic distance
between pairs (h). i, Bar chart of the squared inter-probe distance (from ref. 6)
FISH probe pairs. mESC, mouse ES cell. Error bars indicate standard error
(n 5 100 for each probe pair).
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Figure 2 | Topological boundaries demonstrate classical insulator or
barrier element features. a, Two-dimensional heat map surrounding the Hoxa
locus and CS5 insulator in IMR90 cells. b, Enrichment of CTCF at boundary
regions. c, The portion of CTCF binding sites that are considered ‘associated’
with a boundary (within 620-kb window is used as the expected uncertainty
due to 40-kb binning). d, Heat maps of H3K9me3 at boundary sites in human
and mouse. e, UCSC Genome Browser shot showing heterochromatin
spreading in the human ES cells (hESC) and IMR90 cells. The two-dimensional
heat map shows the interaction frequency in human ES cells. f, Heat map of
LADs (from ref. 14) surrounding the boundary regions. Scale is the log2 ratio of
DNA adenosine methylation (Dam)–lamin B1 fusion over Dam alone (Dam–
laminB1/Dam).
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between convergently oriented CTCF binding sites (Fig. 2)
[18]. The lower efficiency of chromatin looping between
CTCF molecules of different orientations could suggest
that there is not much intramolecular structural flexibility
to accommodate stable long-range interactions, either in
the CTCF protein itself or in the chromatin template.
Furthermore, if CTCF binding polarity is indeed important
for looping, one might expect to find divergent CTCF sites
at TAD boundaries because they otherwise cannot capture

their two flanking domains in independent loops. In agree-
ment with this, a recent study suggested that diverging
CTCF sites represent a general signature of TAD borders
in mammals as well as in deuterostomes [71].
Cohesin is a protein complex that forms a large ring-

like structure to hold the sister chromatids together after
DNA replication. In recent years, cohesin has also been
found to bind to chromatin in post-mitotic cells [72–74].
Cohesin associates with chromatin at random locations

Fig. 1 Cell-to-cell variability in genomic neighborhoods. The upper half shows a simplified overview of chromatin behavior during the cell cycle.
Chromosome territory positioning differs between mother cell and daughter cells (but can be fairly similar between two daughter cells owing to
symmetric spindle positioning). In the lower half, the zoom view schematically shows the high levels of variation between the genomic neighborhoods
of a given topologically associating domain (TAD) of interest (indicated in blue) across the mother cell and the two daughter cells 1 and 2. TADs are
represented by colored spheres

Fig. 2 Convergent CTCF sites at topologically associated domain (TAD) boundaries. The linear distribution of CTCF binding sites and regulatory
elements across a hypothetical chromosomal segment (top) results in three-dimensional looped configurations (bottom) that will differ between
cells and change over time. CTCF-mediated loops can create TADs, within which enhancer-promoter loops are formed. Loops preferentially occur
between convergent CTCF sites, which predicts that a TAD boundary needs to have divergent CTCF sites to accommodate looping with its
neighboring boundaries. Note that not all CTCF sites form loops, even when associated with CTCF

Bouwman and de Laat Genome Biology  (2015) 16:154 Page 3 of 9
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A graph is a natural representation of a Hi-
C dataset 
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An overview of spectral clustering
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Does graph clustering help?
A B

E

Davies-Bouldin index (lower is better) Silhouette index (higher is better)
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Does graph clustering help?
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Does graph clustering help?

Hierarchical Kmeans Spectral

7.5 
6 

2 

9 
10 

5 

7.5 

11.5 

15 
14 

4 

11.5 

3 
1 

13 

0 
2 
4 
6 
8 

10 
12 
14 
16 

ED 
PCC 

SCC 
Cnt 

log
2 C

nt ED 
PCC 

SCC 
Cnts

 

log
2 C

nt ED 

PCC>0
 

SCC>0
 

Cnt 

log
2 C

nt 
 

Av
g 

ra
nk

 (s
m

al
le

r i
s 

be
tte

r)
 

Spectral (graph) clustering methods tend to do better on different measures



Spectral clustering of Hi-C data of human 
ESC
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Two main types of chromatin interaction 
modules
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Topologically associated domains

share this feature of classical insulators. A classical boundary element
is also known to stop the spread of heterochromatin. Therefore, we
examined the distribution of the heterochromatin mark H3K9me3 in
humans and mice in relation to the topological domains12,13. Indeed,
we observe a clear segregation of H3K9me3 at the boundary regions
that occurs predominately in differentiated cells (Fig. 2d, e and
Supplementary Fig. 11). As the boundaries that we analysed in

Fig. 2d are present in both pluripotent cells and their differentiated
progeny, the topological domains and boundaries appear to pre-mark
the end points of heterochromatic spreading. Therefore, the domains
do not seem to be a consequence of the formation of heterochromatin.
Taken together, the above observations strongly suggest that the topo-
logical domain boundaries correlate with regions of the genome dis-
playing classical insulator and barrier element activity, thus revealing a
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Figure 1 | Topological domains in the mouse ES cell genome. a, Normalized
Hi-C interaction frequencies displayed as a two-dimensional heat map
overlayed on ChIP-seq data (from Y. Shen et al., manuscript in preparation),
directionality index (DI), HMM bias state calls, and domains. For both
directionality index and HMM state calls, downstream bias (red) and upstream
bias (green) are indicated. b, Schematic illustrating topological domains and
resulting directional bias. c, Distribution of the directionality index (absolute
value, in blue) compared to random (red). d, Mean interaction frequencies at all
genomic distances between 40 kb to 2 Mb. Above 40 kb, the intra- versus inter-
domain interaction frequencies are significantly different (P , 0.005, Wilcoxon
test). e, Box plot of all interaction frequencies at 80-kb distance. Intra-domain
interactions are enriched for high-frequency interactions. f–i, Diagram of intra-
domain (f) and inter-domain FISH probes (g) and the genomic distance
between pairs (h). i, Bar chart of the squared inter-probe distance (from ref. 6)
FISH probe pairs. mESC, mouse ES cell. Error bars indicate standard error
(n 5 100 for each probe pair).
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Figure 2 | Topological boundaries demonstrate classical insulator or
barrier element features. a, Two-dimensional heat map surrounding the Hoxa
locus and CS5 insulator in IMR90 cells. b, Enrichment of CTCF at boundary
regions. c, The portion of CTCF binding sites that are considered ‘associated’
with a boundary (within 620-kb window is used as the expected uncertainty
due to 40-kb binning). d, Heat maps of H3K9me3 at boundary sites in human
and mouse. e, UCSC Genome Browser shot showing heterochromatin
spreading in the human ES cells (hESC) and IMR90 cells. The two-dimensional
heat map shows the interaction frequency in human ES cells. f, Heat map of
LADs (from ref. 14) surrounding the boundary regions. Scale is the log2 ratio of
DNA adenosine methylation (Dam)–lamin B1 fusion over Dam alone (Dam–
laminB1/Dam).
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Graph clustering to find TADs
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Application of spectral clustering 

• Finding higher-order Topologically Associated 
Domains from Hi-C data

• Disease module identification
• Similarity network fusion for aggregating data types 

on a genomic scale



DREAM community challenge for module 
identification

• A community challenge to assess algorithms for 
module identification across diverse molecular 
networks

• Six different networks
• Sub challenge 1: predict modules within a single 

network
• Sub challenge 2: predict modules across multiple 

networks.
• Evaluation: how many modules are associated with 

GWAS traits.

Choodbar et al., 2018 Bioarxiv



Overview of the DREAM disease module 
identification challenge

 26 

Figure 1 

 

Figure 1: The Disease Module Identification DREAM Challenge.  
We launched an open-participation community challenge, where teams competed to predict groups of functionally 
related genes (i.e., modules) within diverse molecular networks.  
(A) The challenge comprised six networks, including protein-protein interaction, signaling, co-expression, cancer 
dependency, and homology-based gene networks. As the networks were all unpublished, we could anonymize them 
by removing the gene labels. This prevented participants from using existing knowledge of gene functions, thus 
enabling rigorous, blinded assessment.  
(B) The aim of the challenge was to identify disease-relevant modules within the provided networks. Teams could 
participate in either or both sub-challenges: 42 teams predicted modules for individual networks (Sub-challenge 1) and 
33 teams predicted integrated modules across multiple networks (Sub-challenge 2).  
(C) The submitted modules were tested for association with complex traits and diseases using a comprehensive 
collection of 180 GWAS datasets. The final score for each method was the number of trait-associated modules that it 
discovered. Since GWAS are based on data completely different from those used to construct the networks, they can 
provide independent support for biologically relevant modules. 
  

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/265553doi: bioRxiv preprint first posted online Feb. 15, 2018; 



Challenge organization

• Challenge was executed on Synapse
• Submissions accepted over a 2 month period where 

submitters could use benchmark data to assess and 
improve their predictions

• Final submissions were done on a separate GWAS 
dataset



Evaluation pipeline

• Six networks which were anonymized and given to 
challenge participants

• Consider modules of size 3-100 genes
• Assess modules based on GWAS association



Methods used

• 42 different methods from the following categories

 27 

Figure 2 

 
Figure 2: Assessment of module identification methods.  
(A) Main types of module identification approaches used in the challenge: kernel clustering methods transform and 
cluster the network adjacency matrix; modularity optimization methods rely on search algorithms to find modular 
decompositions that maximize a structural quality metric; random-walk-based methods take inspiration from diffusion 
processes over the network; local methods use agglomerative processes to grow modules from seed nodes; and 
ensemble methods merge alternative clusterings sampled either from stochastic runs of a given method or from a set 
of different methods. In addition, hybrid methods employ more than one of the above approaches and then pick the 
best modules according to a quality metric. See also Table 1. 
(B) Final scores of the 42 module identification methods applied in Sub-challenge 1 for each of the six networks, as 
well as the overall score summarizing performance across networks (same method identifiers as in Table 1). Scores 
correspond to the number of unique trait-associated modules identified by a given method in a network (evaluated 
using the hold-out GWAS set at 5% FDR, see Methods). Ranks are indicated for the top ten methods. The last two 
rows show the performance of consensus predictions derived from the challenge submissions and randomly 
generated modules, respectively.  
(C) Robustness of the overall ranking was evaluated by subsampling the GWAS set used for evaluation 1,000 times. 
For each method, the resulting distribution of ranks is shown as a boxplot. The rankings of method K1 are substantially 
better than those of the remaining teams (Bayes factor < 3, see Methods). 
(D) Number of trait-associated modules per network. Boxplots show the number of trait-associated modules across 
methods, normalized by the size of the respective network. See also Fig. S1B.  
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Top performing method

• Use diffusion state distance (DSD) for each pair of 
vertices

• Convert into a similarity by passing it through the 
Gaussian kernel

• Apply spectral clustering



Other takeaways from disease module 
identification

• Co-expression and Protein-protein interaction 
network based modules were most informative

• Top methods covered different categories
– But spectral clustering based methods worked best.

• Determining the right resolution can impact the 
results



Application of spectral clustering 

• Finding higher-order Topologically Associated 
Domains from Hi-C data

• Disease module identification
• Similarity network fusion for aggregating data types 

on a genomic scale



Similarity network fusion for aggregating 
data types on a genomic scale

• This paper had two goals:
– Integrate different types of data using a network-based 

approach
– Identify groups of samples representing integrated data types

• Recent high throughput technologies have made it 
possible to collect many different types of genomic data 
for individual patients

• How do we combine patient data to describe a disease?
• This is challenging because of the following issues:

– Noisy samples
– Small number of samples than variables
– Complimentary nature of the data



Similarity Network Fusion 

• Given N different types of measurements for 
different individuals

• Do
– Construct a similarity matrix of individuals for each data 

type
– Integrate the networks using a single similarity matrix 

using an iterative algorithm
– Cluster the network into a groups of individuals



Similarity network fusion with two data 
types

Similarity network fusion (Nodes are patients, edges 
represent similarities).



Defining a similarity graph over patient 
samples

• For each data type, create a weighted graph, with 
vertices corresponding to patients

• Let xi and xj denote the measurements of patients i
and j

• Edge weights, W(i,j) correspond to how similar 
patient i is to patient j based on xi and xj

W (i, j) = exp(�⇢2(xi, xj)

µ✏i,j
)

Euclidean distance

Hyper-parameter Scaling term (average of the 
distance between each node and 
its neighborhood)



Creating a fused matrix

• Define two matrices for each data type
• A full matrix: normalized weight matrix

• A sparse matrix (based on k nearest neighbors or 
each node) doi:10.1038/nmeth.2810NATURE METHODS

ONLINE METHODS
Experimental details. We used data from five different  
cancer types available from the TCGA website: GBM, BIC, 
LSCC, KRCCC and COAD. For each of these tumor types, we 
downloaded TCGA-curated level 3 data sets containing gene 
expression, miRNA expression and DNA methylation informa-
tion. TCGA repository contains multiple platforms for each data 
type. We always chose the platform corresponding to the largest 
number of available individuals and describing both tumor sam-
ples and controls whenever possible. For expression data, we used 
the Broad Institute HT-HG-U133A platform in GBM and LSCC, 
the UNC-Agilent-G4502A-07 platform in BIC and COAD and the 
UNC-Illumina-Hiseq-RNASeq platform in KRCCC. For miRNA 
expression data, we used the BCGSC-Illumina-Hiseq-miRNAseq  
platform in BIC, the UNC-miRNA-8X15K platform in GBM 
and the BCGSC-Illumina-GA-miRNAseq in LSCC, KRCCC  
and COAD. Finally, for the methylation data we used the  
JHU-USC-Illumina-DNA-Methylation platform in GBM, 
the JHU-USC-Human-Methylation-27 platform for BIC, 
LSCC, KRCCC and COAD. For all these tumor types, we also  
downloaded patients’ clinical information including the overall 
survival data.

We also used METABRIC data set to evaluate the effectiveness 
of survival prediction with network regularization. METABRIC 
data set consists of two cohorts: discovery (997 patients) and 
validation (995 patients). For each of these patients, matched 
DNA and RNA were extracted from each primary tumor speci-
men and subjected to copy-number and genotype analysis on 
the Affymetrix SNP 6.0 platform and transcriptional profiling  
on the Illumina HT-12 v3 platform (Illumina-Human-WG-v3).  
We used the normalized data available from the European 
Genome-Phenome Archive (EGA, http://www.ebi.ac.uk/ega/). 
High-quality follow up clinical data including information on 
disease-free survival were also available for both cohorts. As a 
preprocessing step, we mapped copy-number variations to genes 
using the PennCNV package20.

Before applying our SNF, we performed three steps of prepro-
cessing: outlier removal, missing-data imputation and normali-
zation. If a patient had more than 20% missing data in a certain 
data type, we did not consider this patient. Similarly, if a certain 
biological feature (for example, mRNA expression) had more than 
20% of missing values across patients, we filtered out this feature. 
Also, for missing data, we used K nearest neighbor (KNN) impu-
tation21, where the number of neighbors is the same with K value 
used in our method (see below); therefore we do not have any 
free parameters. Last, before constructing the patient network, 
we performed the following normalization:
  �f

f E f
f

�

 ( )

( )Var
, 

where f is any biological feature, �f  is the corresponding feature 
after normalization, E(f) and Var(f) represent the empirical mean 
and variance of f, respectively.

Evaluation metrics. We used several metrics for evaluation  
and comparison of our method to existing approaches. In the  
real-cancer data, we use three metrics, as ground truth was not 
known. First, we use silhouette15 to measure the homogeneity of 
the subtypes. For each patient i, let a(i) denote the average dis-
similarity to all other patients within the same subtype and b(i) 

denote the lowest average dissimilarity to all other patients in dif-
ferent subtypes. The value of silhouette for patient i was defined 
as s(i) = (b(i) – a(i))/(max a(i), b(i)). The mean value of silhouette 
for all the patients was then used as a measure of how tightly 
grouped all the data in the cluster are. If silhouette value was close 
to 1, then it means the data were appropriately clustered.

We also used P value for log-rank test of survival separation 
in Cox regression model14. P value measures the significance in 
the difference of survival profiles between subtypes. In our test, 
we set 0.05 to be the threshold of the significance. The lower the 
P value was, the less likely it was that such differential survival 
was observed by chance, i.e., the more significantly different the 
survival profiles was between subtypes. For most cancers, we 
used days to the last follow-up and the vital status to perform the  
log-rank test for survival analysis. However, for COAD, we used 
the consensus of the days to last known alive together with the 
last follow-up as a proxy because there were a lot of missing values 
in the data for days to last follow up. We used running time (in 
minutes) to compare the scalability of each method.

Similarity network fusion. Suppose we have n samples (for  
example, patients) and m measurements (for example, mRNA 
gene expression). We will use the patient network example 
throughout this section for clarity though the method has broad 
applicability as discussed above. A patient similarity network is 
represented as a graph G = (V, E). The vertices V correspond to 
the patients {x1, x2, ^, xn} and the edges E are weighted by how 
similar the patients are. Edge weights are represented by an n 
× n similarity matrix W with W(i, j) indicating the similarity 
between patients xi and xj and are computed as follows. We denote  
R(xi, xj) as the Euclidean distance between patients xi and xj. 
We then use a scaled exponential similarity kernel to determine  
the weight of the edge:
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where M is a hyperparameter that can be empirically set and 
E i,j is used to eliminate the scaling problem. Here we define 
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where mean (R(xi Ni)) is the average value of the distances between 
xi and each of its neighbors. We recommend setting M in the range 
of [0.3, 0.8]. Note that while this distance measure is suitable 
for continuous variables, we propose to use chi-squared distance 
for discrete variables and agreement-based measure for binary 
variables.

To compute the fused matrix from multiple types of measure-
ments, we define a full and sparse kernel on the vertex set V.  
The full kernel is a normalized weight matrix P = D−1W, where 
D is the diagonal matrix whose entries D(i, i) = 3jW(i, j), so that 
3jP(i, j) = 1. However, this normalization may suffer from numer-
ical instability since it involves self-similarities on the diagonal  
entries of W. One way to perform a better normalization is  
as follows: 
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This normalization will be free of the scale of self-similarity in 
the diagonal entries and 3jP(i, j) = 1 still holds.

Let Ni represent a set of xi’s neighbors including xi in G. Given 
a graph, G, we use K nearest neighbors (KNN) to measure local 
affinity as: 
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This operation sets the similarities between non-neighboring  
points (in terms of the pairwise similarity values) to zero. 
Essentially we make the assumption that local similarities (high 
values) are more reliable than remote ones; and we thus assign 
similarities to non-neighbors through graph diffusion on the  
network. This is a mild assumption widely adopted by other 
manifold learning algorithms. Note that P carries the full  
information about the similarity of each patient to all others  
whereas S only encodes the similarity to the K most similar 
patients for each patient. Our algorithm always starts from 
P as the initial state using S as the kernel matrix in the fusion  
process for both capacity of capturing local structure of graphs 
and computational efficiency.

Given m different data types, we can construct similarity  
matrices W(N) using equation (1) for the Nth view, N = 1,2,

^
, 

m. P(N) and S(N) are obtained from equations (2) and (3), respectively.  
Below we introduce our network fusion process given a set  
of networks.

Let us first consider the case when we have two data types,  
i.e., m = 2. We calculate the status matrices P(1) and P(2) as in 
equation (2) from two input similarity matrices; then the kernel 
matrices S(1) and S(2) are obtained as in equation (3).

Let P Pt � �0
1 1( ) ( )  and P Pt � �0

2 2( ) ( )  represent the initial two status 
matrices at t = 0. The key step of SNF is to iteratively update simi-
larity matrix corresponding to each of the data types as follows:  

 P S P St t
T

� � r r1
1 1 2 1( ) ( ) ( ) ( )( )  (4)

 P S P St t
T

� � r r1
2 2 1 2( ) ( ) ( ) ( )( )  (5)

   
where Pt � 1

1( )   is the status matrix of the first data type after t  
iterations.  Pt � 1

2( )  is the similarity matrix for the second data type. 
This procedure updates the status matrices each time generating 
two parallel interchanging diffusion processes. After t steps, the 
overall status matrix is computed as
  

P
P P( )
( ) ( )

c t t�
�1 2

2
.
 

Since S is a KNN graph of P, which can reduce some noise between 
instances, our SNF is robust to the noise in similarity measures.

Another way to think of the updating rule (4) is 
 

P S S Pt ti j i k j l k l
k Ni l N j

� � r r
� �
£ £1

1 1 1 2( ) ( ) ( ) ( )( , ) ( , ) ( , ) ( , )  (6)

(the same for Pt � 1
2( )  ). Note Ni represents the neighborhood  

of xi. We can see that similarity information is only propagated 
through the common neighborhood. This renders SNF robust 
to noise. An important observation is that if xi and xj have com-
mon neighbors in both similarity matrices, it is highly possible 
that they belong to the same cluster. Another essential fact our 
method benefits from is that even if xi and xj are not very similar 

in one data type, their similarity can be expressed in another data 
type and this similarity information can be propagated through 
the fusion process.

After each iteration, we performed normalization on Pt � 1
1( )  

and Pt � 1
2( )   as in equation (2). By performing the normalization, 

we (i) ensure that throughout SNF iterations a patient is always  
most similar to himself than to other patients; (ii) ensure that 
our final network is full rank, important for the classification 
and clustering applications of the final network. Finally, we  
have found that the use of such normalization leads to quicker 
convergence of SNF.

Finally, an extension to the case m > 2 follows equations (4) and (5):
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The input to our algorithm can be feature vectors, pairwise  
distances, or pairwise similarities. The learned status matrix P(c) 
can then be used for retrieval, clustering and classification; in this 
work, we focus mostly on clustering and prediction.

SNF is inspired by the theoretical multiview learning 
framework developed for the computer vision and image 
processing applications22 that is not directly applicable to 
biological data. SNF constructs networks of samples (for 
example, patients) by comparing samples’ molecular (or phe-
notypic) profiles; fused networks are used for subtyping and 
label prediction distinguishing SNF from all the previously 
published research.

Network clustering (for example, for disease subtyping). Given 
n samples and m measurements we want to identify C clusters of 
samples, each of which corresponds to a (known or new) subtype. 
We associate each sample xi with a label indicator vector yi � {0,1}C 
such that yi(k) = 1 if sample xi belongs to the kth cluster (subtype), 
otherwise yi(k) = 0. So a partition matrix Y = ; ; ...;1 2y y yT T

n
T� 	 is used 

to represent a clustering scheme.
Given the fused graph, in this work we used spectral clustering 

to obtain network clusters. Traditional state-of-the-art spectral 
methods23, aim to minimize RatioCut24, an objective function 
that effectively combines MinCut and equipartitioning, by solving 
the following optimization problem:  

 min ( )

. .
Q

T

T

n C�
�

r

�
R Trace

s t

Q L Q

Q Q I
 (8)

where Q = Y(YTY)−1/2 is a scaled partition matrix, L+ denotes  
the normalized Laplacian matrix L I D WD� 
 
� 
 1 2 1 2/ /  given the 
similarity matrix W). Matrix D is a network degree matrix, with 
degrees of each node on the diagonal and off-diagonal elements  
set to 0). Spectral clustering is effective in capturing global  
structure of the graph25.

Network-based survival risk prediction. With the fused network, 
we can perform tasks beyond disease subtyping. An example  
in this paper is survival prediction with network regularization. 
Cox model has been successfully applied to perform survival/risk 
prediction of given new patients. Given all the feature matrix X, 
the risk of an event (death) at time t for the i-th patient is given 
by h(t|X) = h0(t) exp(XTz), where z is a vector of regression coef-
ficients and h0(t) is the baseline hazard function. This regression 

This makes the assumption that the local similarities are the most reliable



Iterate for fusion

• Input m data types
• Construct W(v) for each data type v
• Construct dense matrix P(v) and sparse matrix S(v) 

• At each iteration, update the dense similarity matrix 
of one data type using the similarity matrix of the 
other data type



Iteration with m=2 data types
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This normalization will be free of the scale of self-similarity in 
the diagonal entries and 3jP(i, j) = 1 still holds.

Let Ni represent a set of xi’s neighbors including xi in G. Given 
a graph, G, we use K nearest neighbors (KNN) to measure local 
affinity as: 
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This operation sets the similarities between non-neighboring  
points (in terms of the pairwise similarity values) to zero. 
Essentially we make the assumption that local similarities (high 
values) are more reliable than remote ones; and we thus assign 
similarities to non-neighbors through graph diffusion on the  
network. This is a mild assumption widely adopted by other 
manifold learning algorithms. Note that P carries the full  
information about the similarity of each patient to all others  
whereas S only encodes the similarity to the K most similar 
patients for each patient. Our algorithm always starts from 
P as the initial state using S as the kernel matrix in the fusion  
process for both capacity of capturing local structure of graphs 
and computational efficiency.

Given m different data types, we can construct similarity  
matrices W(N) using equation (1) for the Nth view, N = 1,2,
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m. P(N) and S(N) are obtained from equations (2) and (3), respectively.  
Below we introduce our network fusion process given a set  
of networks.

Let us first consider the case when we have two data types,  
i.e., m = 2. We calculate the status matrices P(1) and P(2) as in 
equation (2) from two input similarity matrices; then the kernel 
matrices S(1) and S(2) are obtained as in equation (3).

Let P Pt � �0
1 1( ) ( )  and P Pt � �0

2 2( ) ( )  represent the initial two status 
matrices at t = 0. The key step of SNF is to iteratively update simi-
larity matrix corresponding to each of the data types as follows:  
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1( )   is the status matrix of the first data type after t  
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This procedure updates the status matrices each time generating 
two parallel interchanging diffusion processes. After t steps, the 
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of xi. We can see that similarity information is only propagated 
through the common neighborhood. This renders SNF robust 
to noise. An important observation is that if xi and xj have com-
mon neighbors in both similarity matrices, it is highly possible 
that they belong to the same cluster. Another essential fact our 
method benefits from is that even if xi and xj are not very similar 

in one data type, their similarity can be expressed in another data 
type and this similarity information can be propagated through 
the fusion process.

After each iteration, we performed normalization on Pt � 1
1( )  

and Pt � 1
2( )   as in equation (2). By performing the normalization, 

we (i) ensure that throughout SNF iterations a patient is always  
most similar to himself than to other patients; (ii) ensure that 
our final network is full rank, important for the classification 
and clustering applications of the final network. Finally, we  
have found that the use of such normalization leads to quicker 
convergence of SNF.
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The input to our algorithm can be feature vectors, pairwise  
distances, or pairwise similarities. The learned status matrix P(c) 
can then be used for retrieval, clustering and classification; in this 
work, we focus mostly on clustering and prediction.

SNF is inspired by the theoretical multiview learning 
framework developed for the computer vision and image 
processing applications22 that is not directly applicable to 
biological data. SNF constructs networks of samples (for 
example, patients) by comparing samples’ molecular (or phe-
notypic) profiles; fused networks are used for subtyping and 
label prediction distinguishing SNF from all the previously 
published research.

Network clustering (for example, for disease subtyping). Given 
n samples and m measurements we want to identify C clusters of 
samples, each of which corresponds to a (known or new) subtype. 
We associate each sample xi with a label indicator vector yi � {0,1}C 
such that yi(k) = 1 if sample xi belongs to the kth cluster (subtype), 
otherwise yi(k) = 0. So a partition matrix Y = ; ; ...;1 2y y yT T

n
T� 	 is used 

to represent a clustering scheme.
Given the fused graph, in this work we used spectral clustering 

to obtain network clusters. Traditional state-of-the-art spectral 
methods23, aim to minimize RatioCut24, an objective function 
that effectively combines MinCut and equipartitioning, by solving 
the following optimization problem:  
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where Q = Y(YTY)−1/2 is a scaled partition matrix, L+ denotes  
the normalized Laplacian matrix L I D WD� 
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 1 2 1 2/ /  given the 
similarity matrix W). Matrix D is a network degree matrix, with 
degrees of each node on the diagonal and off-diagonal elements  
set to 0). Spectral clustering is effective in capturing global  
structure of the graph25.

Network-based survival risk prediction. With the fused network, 
we can perform tasks beyond disease subtyping. An example  
in this paper is survival prediction with network regularization. 
Cox model has been successfully applied to perform survival/risk 
prediction of given new patients. Given all the feature matrix X, 
the risk of an event (death) at time t for the i-th patient is given 
by h(t|X) = h0(t) exp(XTz), where z is a vector of regression coef-
ficients and h0(t) is the baseline hazard function. This regression 

For iteration t+1

Update similarity matrix of data type 1 using weight matrix 
from data type 2 and vice-versa

Update similarity matrix of data type 1

Update similarity matrix of data type 2



What is going on in the iteration step
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the diagonal entries and 3jP(i, j) = 1 still holds.

Let Ni represent a set of xi’s neighbors including xi in G. Given 
a graph, G, we use K nearest neighbors (KNN) to measure local 
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This operation sets the similarities between non-neighboring  
points (in terms of the pairwise similarity values) to zero. 
Essentially we make the assumption that local similarities (high 
values) are more reliable than remote ones; and we thus assign 
similarities to non-neighbors through graph diffusion on the  
network. This is a mild assumption widely adopted by other 
manifold learning algorithms. Note that P carries the full  
information about the similarity of each patient to all others  
whereas S only encodes the similarity to the K most similar 
patients for each patient. Our algorithm always starts from 
P as the initial state using S as the kernel matrix in the fusion  
process for both capacity of capturing local structure of graphs 
and computational efficiency.

Given m different data types, we can construct similarity  
matrices W(N) using equation (1) for the Nth view, N = 1,2,
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m. P(N) and S(N) are obtained from equations (2) and (3), respectively.  
Below we introduce our network fusion process given a set  
of networks.

Let us first consider the case when we have two data types,  
i.e., m = 2. We calculate the status matrices P(1) and P(2) as in 
equation (2) from two input similarity matrices; then the kernel 
matrices S(1) and S(2) are obtained as in equation (3).

Let P Pt � �0
1 1( ) ( )  and P Pt � �0

2 2( ) ( )  represent the initial two status 
matrices at t = 0. The key step of SNF is to iteratively update simi-
larity matrix corresponding to each of the data types as follows:  
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1( )   is the status matrix of the first data type after t  
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This procedure updates the status matrices each time generating 
two parallel interchanging diffusion processes. After t steps, the 
overall status matrix is computed as
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Since S is a KNN graph of P, which can reduce some noise between 
instances, our SNF is robust to the noise in similarity measures.

Another way to think of the updating rule (4) is 
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(the same for Pt � 1
2( )  ). Note Ni represents the neighborhood  

of xi. We can see that similarity information is only propagated 
through the common neighborhood. This renders SNF robust 
to noise. An important observation is that if xi and xj have com-
mon neighbors in both similarity matrices, it is highly possible 
that they belong to the same cluster. Another essential fact our 
method benefits from is that even if xi and xj are not very similar 

in one data type, their similarity can be expressed in another data 
type and this similarity information can be propagated through 
the fusion process.

After each iteration, we performed normalization on Pt � 1
1( )  

and Pt � 1
2( )   as in equation (2). By performing the normalization, 

we (i) ensure that throughout SNF iterations a patient is always  
most similar to himself than to other patients; (ii) ensure that 
our final network is full rank, important for the classification 
and clustering applications of the final network. Finally, we  
have found that the use of such normalization leads to quicker 
convergence of SNF.

Finally, an extension to the case m > 2 follows equations (4) and (5):
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The input to our algorithm can be feature vectors, pairwise  
distances, or pairwise similarities. The learned status matrix P(c) 
can then be used for retrieval, clustering and classification; in this 
work, we focus mostly on clustering and prediction.

SNF is inspired by the theoretical multiview learning 
framework developed for the computer vision and image 
processing applications22 that is not directly applicable to 
biological data. SNF constructs networks of samples (for 
example, patients) by comparing samples’ molecular (or phe-
notypic) profiles; fused networks are used for subtyping and 
label prediction distinguishing SNF from all the previously 
published research.

Network clustering (for example, for disease subtyping). Given 
n samples and m measurements we want to identify C clusters of 
samples, each of which corresponds to a (known or new) subtype. 
We associate each sample xi with a label indicator vector yi � {0,1}C 
such that yi(k) = 1 if sample xi belongs to the kth cluster (subtype), 
otherwise yi(k) = 0. So a partition matrix Y = ; ; ...;1 2y y yT T

n
T� 	 is used 

to represent a clustering scheme.
Given the fused graph, in this work we used spectral clustering 

to obtain network clusters. Traditional state-of-the-art spectral 
methods23, aim to minimize RatioCut24, an objective function 
that effectively combines MinCut and equipartitioning, by solving 
the following optimization problem:  
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where Q = Y(YTY)−1/2 is a scaled partition matrix, L+ denotes  
the normalized Laplacian matrix L I D WD� 
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similarity matrix W). Matrix D is a network degree matrix, with 
degrees of each node on the diagonal and off-diagonal elements  
set to 0). Spectral clustering is effective in capturing global  
structure of the graph25.

Network-based survival risk prediction. With the fused network, 
we can perform tasks beyond disease subtyping. An example  
in this paper is survival prediction with network regularization. 
Cox model has been successfully applied to perform survival/risk 
prediction of given new patients. Given all the feature matrix X, 
the risk of an event (death) at time t for the i-th patient is given 
by h(t|X) = h0(t) exp(XTz), where z is a vector of regression coef-
ficients and h0(t) is the baseline hazard function. This regression 

We are updating the similarity matrix using the most confident common neighbors 
of i and j

Neighbors of i

Neighbors of j



Extending to m>2 data types

doi:10.1038/nmeth.2810 NATURE METHODS

This normalization will be free of the scale of self-similarity in 
the diagonal entries and 3jP(i, j) = 1 still holds.

Let Ni represent a set of xi’s neighbors including xi in G. Given 
a graph, G, we use K nearest neighbors (KNN) to measure local 
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This operation sets the similarities between non-neighboring  
points (in terms of the pairwise similarity values) to zero. 
Essentially we make the assumption that local similarities (high 
values) are more reliable than remote ones; and we thus assign 
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and computational efficiency.
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^
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The input to our algorithm can be feature vectors, pairwise  
distances, or pairwise similarities. The learned status matrix P(c) 
can then be used for retrieval, clustering and classification; in this 
work, we focus mostly on clustering and prediction.

SNF is inspired by the theoretical multiview learning 
framework developed for the computer vision and image 
processing applications22 that is not directly applicable to 
biological data. SNF constructs networks of samples (for 
example, patients) by comparing samples’ molecular (or phe-
notypic) profiles; fused networks are used for subtyping and 
label prediction distinguishing SNF from all the previously 
published research.

Network clustering (for example, for disease subtyping). Given 
n samples and m measurements we want to identify C clusters of 
samples, each of which corresponds to a (known or new) subtype. 
We associate each sample xi with a label indicator vector yi � {0,1}C 
such that yi(k) = 1 if sample xi belongs to the kth cluster (subtype), 
otherwise yi(k) = 0. So a partition matrix Y = ; ; ...;1 2y y yT T
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T� 	 is used 

to represent a clustering scheme.
Given the fused graph, in this work we used spectral clustering 

to obtain network clusters. Traditional state-of-the-art spectral 
methods23, aim to minimize RatioCut24, an objective function 
that effectively combines MinCut and equipartitioning, by solving 
the following optimization problem:  
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similarity matrix W). Matrix D is a network degree matrix, with 
degrees of each node on the diagonal and off-diagonal elements  
set to 0). Spectral clustering is effective in capturing global  
structure of the graph25.

Network-based survival risk prediction. With the fused network, 
we can perform tasks beyond disease subtyping. An example  
in this paper is survival prediction with network regularization. 
Cox model has been successfully applied to perform survival/risk 
prediction of given new patients. Given all the feature matrix X, 
the risk of an event (death) at time t for the i-th patient is given 
by h(t|X) = h0(t) exp(XTz), where z is a vector of regression coef-
ficients and h0(t) is the baseline hazard function. This regression 

Just average over all other data types



SNF termination

• After repeating the iterative updates for t steps, final 
similarity matrix is

• This is then clustered using spectral clustering

P =
1

m

mX

k=1

Pk
t



Application of SNF to Glioblastoma
• Contradicting information about subtypes 

depending upon the type of data used
• Glioblastoma dataset
• Three data types among 215 patients

• DNA methylation (1491 genes)
• mRNA (12,042 genes)
• miRNA (534 miRNAs)



SNF application to GBM identifies 3 subtypes

DNA methylation

mRNA expression

miRNA expression



Validation of SNF identified subtypes 

Subtypes are associated with 
patient populations of 
different survival.
Blue curve (subtype 3) are 
patients with more favorable 
prognosis

Red: treated
Black: untreated.



Key points of graph clustering algorithms

• Flat or hierarchical clustering 
• Algorithms differ in 
– how they define the similarity/distance measure

• Local topology measures
• Global measures

– Whether the algorithm takes as input the number of 
clusters or the goodness of clusters (e.g. the approximate 
cluster algorithm)
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