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Goals for today

* Bayesian networks

* Learning Bayesian networks gene expression
data

— Sparse candidate (per-gene)
— Module networks (per-module)



RECAP

Expression-based network inference aims to infer
regulatory networks from expression data

Per-gene and per-module based methods

Probabilistic graphical models are powerful
representations of regulatory networks

— Different PGMs encode different types of statistical
dependencies

Bayesian networks: DAG, CPD, Joint probability
distribution



An example Bayesian network
P(C=f) P(C=t)
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Adapted from Kevin Murphy: Intro to Graphical models and Bayes networks:
http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html



Compute probabilities using a Bayesian

network
Whatis P(C=f,R=t,5=f,W =1)

P(C=f) P(C=t)

Bayes net allows us to write C | P(S=f) P(S=t)
P(WI|S, R)P(S|C)P(R|C)P(C) f| 05 05
t 0.9 0.1

Plugging in the assignments for the variables:
PW=t|S=f,R=t)P(S=f|C=f)
P(R=1|C = f)P(C = f)

Looking up in the CPD
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Learning problems in Bayesian networks

Given a Bayesian network B={G, O}

Parameter learning
— Known graph structure G

— Given a set of joint assignments of the random
variables, estimate O, the parameters of the CPDs

Structure learning

— Given a set of joint assignments of the random
variables, estimate the graph structure, G and
parameters O

Structure learning subsumes parameter learning



Bayes rule

B|A)P(A)

pAlB) = L BB



Estimating CPD from data

Supposed we had the following structure And these observations for each variable

C | P(R=f) P(R=t) C S R 1%

» |t f t t

» |t t f t

Dt t f t

P(R=f|C=t)? L L L
f f t f

=2/3 f t f f

f f t f

Parameters estimated in this way would be called the Maximum Likelihood (ML)
parameters.

But we could put priors on the parameters and estimate a more robust set of
parameters.



Estimating CPD from data

Supposed we had the following structure And these observations for each variable
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Structure learning

* Given a candidate graph how “good” is it?

— Define a score of a graph

 What are possible candidate graphs?

— Search over the space of possible graphs



Structure learning using score-based search

B = {G, O} A Bayesian network

Score(B) Describes how well B describes the data




Scoring a Bayesian network

e Maximum likelihood score

Scorepsr, (G : D) = logP(D|G, Onmy,)

* Bayesian score
Scorepayes(G 1 D) = logP(G|D)
P(DIG)P(G
1o P(PIG)P(G)

P(D)
We typically ignore the denominator/,

as it is the same for all models




Greedy hill climbing to search Bayesian
network space

Input: Data D, An initial Bayesian network, By,={G,,
0O}
Output: By

Loop for r=1, 2.. until convergence:
— {B,, .., B,™} = Neighbors(B,) by making local changes to B,
— B, ;: arg max;(Score(B,)))

Termination:

_ Bbest= Br



Local changes to B,

Current network ° Br

Add an edy @ QOVG an edge

BrgD/ @ B ()

r Check for cycles




Goals for today

* Learning Bayesian networks gene expression
data
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Bayesian network representation of a
regulatory network
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Expression data matrix

N Experiments/Time points etc

A
| 1

m—

Observations of
variable X;in all N
experiments

. —

p Genes
A

Observations (expression levels) of all
variables in sample i, x(V



Challenges with applying Bayesian network to
genome-scale data

* Number of variables, p is in thousands

* Number of samples, N is in hundreds



Bayesian network-based methods to handle
genome-scale networks

* Sparse candidate algorithm OEOIONO

— Friedman, Nachman, Pe’er. 1999

— Friedman, Linial, Nachman, Pe’er.
2000.

Per-gene

e Module networks

— Segal, Pe’er, Regev, Koller, Friedman. 2 g

2005 T =]

_______________

Module (Cluster) Per-module



The Sparse candidate algorithm for structure
learning in Bayesian networks

A fast Bayesian network learning algorithm

Key idea: Identify &k “promising” candidate parents
for each X;

— k<<p, p: number of random variables
— Candidates define a “skeleton graph” H

Restrict graph structure to select parents from H
Early choices in H might exclude other good parents

— Resolve using an iterative algorithm



Sparse candidate algorithm

Input:
— AdatasetD
— An initial Bayes net B,
— A parameter k: max number of parents per variable

Output:
— Final B,
Loop for r=1,2.. until convergence

— Restrict
* Based on D and B, ; select candidate parents C/ for X;
* This defines a skeleton directed network H,

— Maximize
* Find network B, that maximizes the score Score(B,) among networks
satisfyin r r
ving Pa"(X;) C C"

Termination: Return B,



Information theory for measuring dependence

I[(X;Y) is the mutual information between two
variables

— Knowing X, how much information do we have for Y

P(Z) is the probability distribution of Z

[XGY) = Sayexrplo g (550

 Measures the difference between the two
distributions: joint and product of marginals




Selecting candidate parents in the Restrict Step

 Mutual information is used only in the first step
* Disc: A good parent for X, is one with strong statistical
dependence with X,

— This is called a “Disc”repancy heuristic because it measures the
discrepancy between P’(X,Y) as described by the Bayesian
network and P(X,Y) estimated by the data.

* Shield: A good parent for X, is one that captures most of
the information of X;
— How much information do we gain if we add X; to Pa(X;)

* Score: A good parent for X; has the highest score
improvement when added to Pa(X;)



Sparse candidate learns good networks faster

than hill-climbing
Greedy hill climbing takes much

longer to reach a high scoring
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Some comments about choosing candidates

How to select k in the sparse candidate
algorithm?
Should k be the same for all X, ?

Estimate an undirected dependency network

— Learn a Bayesian network constrained on the
dependency network structure

Regularized regression approaches can be used to
estimate the structure of an undirected graph
— Schmidt, Niculescu-Mizil, Murphy 2007



Typically we will not learn one network

o

Final inferred

\_ network /
Output

Expresion data

Bootstrap or stability selection to get edge confidence

26
Slide credit: Alireza Fotuhi Siahpirani



Goals for today

* Learning Bayesian networks gene expression
data

— Module networks (per-module)



Bayesian network-based methods to handle
genome-scale networks

e Module networks

— Segal, Pe’er, Regey, Koller, Q g
Foo Ao Module (Cluster)
E X, Xs —

Friedman. 2005

_______________

Per-module



Per-module methods

_______________

* Find regulators for an entire module

— Assume genes in the same module have the same
regulators

 Module Networks (Segal et al. 2005)
* Stochastic LeMoNe (Joshi et al. 2008)



Module Networks

* Motivation:
— Most complex systems have too many variables
— Not enough data to robustly learn networks
— Large networks are hard to interpret

* Key idea: Group similarly behaving variables into
“modules” and learn the same parents and
parameters for each module

* Relevance to gene regulatory networks

— Genes that are co-expressed are likely regulated in
similar ways

Segal et al 2005, JMLR



Definition of a module

e Statistical definition (specific to module
networks by Segal 2005)

— A set of random variables that share a statistical
model

* Biological definition of a module

— Set of genes that are co-expressed and co-
regulated



Bayesian network vs Module network

e Bayesian network
— Different CPD per random variable

— Learning only requires to search for parents

e Module network
— CPD per module
e Same CPD for all random variables in the same module

— Learning requires parent search and module
membership assignment



Bayesian network vs Module network

Module 1 @
CPD 4 \ @ ’
P(INTL)
/ \

-

Module 3

(b) Module network

(a) Bayesian network

Each variable takes three values: UP, DOWN, SAME



Some notation for a Module Network

N random variables X = {X;,--- , Xn}
Set of module variables M,;.. M

Module assignments A that specifies the
module (1-to-K) for each X,

CPD per module P(M;/Pa,,;), Pa,,; are parents
of module M,

— Each variable X; in M; has the same conditional
distribution



Learning a Module Network

* Given training dataset D = {x!,... ,x™}, fixed
number of modules, K
* Learn

— Module assignments A of each variable to a
module

— The parents of each module to give structure S



Score of a module network

* Module network makes use of a Bayesian
score
P(S,A| D) x P(A)P(S | A)P(D ]S, A)
Priors Data likelihood

score (5,4 : D) =
logP(A4)+1logP(S|A)+1ogP(D|S5,A4).

Marginal likelihood
Priors



Score of a module network continued

Integrate parameters out
1ogp(z>\s A) = log/ P(D|S. A, 0)P(0]S, A)do
Decomposes over each module

05 T [ E5(U.X bra, 10 D)P(0r, [U) b, o

71=1
Decomposes over each module

Zlog [ £5(0.X. b, 10 D) PO, [U) b o
U: Set of parents defined by S

X: Set of variables.

For computing each L, term we would need only the
variables and parents associated with module j



Defining the likelihood

X7 = {X; € X|A(X;) = j}

Likelihood of modulej  Lij(Paps;, X7,0; : D)

D
= [ 1] Plmllpay,ml,6))
m=1 X,eXJ

K: number of modules, X/: j# module Pa,,; Parents of module M;



Module network learning algorithm

Input:
D // Data set
K // Number of modules
Output:
M // A module network
Learn-Module-Network
Ay = cluster X into K modules
So = empty structure
Loopt=1,2,... until convergence
St = Greedy-Structure-Search(A4;_1,.5-1)
A, = Sequential-Update(A4;_1,.5);
Return M = (4, %)



Genes

Initial modules identified by expression

clustering
Experiments e
e | - ™
_ Cluster _ M2
.




Iterations in learning Module Networks

Learn Revisit th dul
regulators/CPD evisit the modules
per module

X1 X5 M, ’Xs X1 X

Xa X3 | M Xa X3

Module M; and
’ Q% ’ @ M; get updated
X7 Xg X5 Xg X7 Xs Xe

3




Module re-assighment

* Must preserve the acyclic graph structure
* Must improve score

* Module re-assignment happens using a
sequential update procedure:

— Update only one variable at a time

— The change in score of moving a variable from one
module to another while keeping the other
variables fixed



Module re-assignment via sequential update

Input:

D // Data set

Ay // Initial assignment function

S // Given dependency structure
Output:

A // improved assignment function
Sequential-Update

A= A
Loop
Fori=1ton
For j=1t0K

A" = A except that 4'(X;) = j
If (Gar, A') is cyclic, continue
If score($,4" : D) > score(S,4 : D)
4=242
Until no reassignments to any of Xi,...X,
Return 4



Modeling questions in Module Networks

* How to model the CPD between parent and
children?

— Regression Tree
* Applicable to continuous variables
e Captures non-linear dependencies
* Captures context-specific dependencies



Modeling the relationship between regulators and
targets

d Transcript d
—»> level Activator? \
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e suppose we have a set of (8) genes that all have in their
upstream regions the same activator/repressor binding

sites Segal et al., Nature Genetics 2003



A regression tree

A rooted binary tree T

Each node in the tree is either an interior
node or a leaf node

Interior nodes are labeled with a binary test
X.<u, u is a real number observed in the data

Leaf nodes are associated with univariate
distributions of the child



An example regression tree for a Module
network

/ P(M, | AMAT, INTL)\
AMAT<S%

_6A 5 0
N(1.4,0.8) N(0.1,1.6) N(-Z,W

Module 3 values are modeled using Gaussians at each leaf node



Assessing the value of using Module Networks

e Using simulated data
— Generate data from a known module network
— Known module network was in turn learned from real data
* 10 modules, 500 variables

— Evaluate using
* Test data likelihood

* Recovery of true parent-child relationships are recovered in
learned module network

* Using gene expression data

— External validation of modules (Gene ontology, motif
enrichment)

— Cross-check with literature



Test data likelihood
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Recovery of graph structure
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Application of Module networks to yeast
expression data

Regulator -

Pre-processing | selection

Data selection

Candidate regulators Expression data

""""""""""""""""""" i Clustering o ——1.
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Segal et al, Regev, Pe’er, Gasch, Nature Genetics 2003



The Respiration and Carbon Module

Regression
tree

representing
rules of
regulation
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Application of Module networks to
mammalian data

* Module networks have been Le
applied to mammalian systems —
as well —

 We will look at a case-study in =T
the human blood cell lineage "

* Dataset

— Genome-wide expression levels
in 38 hematopoietic cell types
(211 samples)

— 523 candidate regulators ERE
(Transcription factors)

Human hematopoetic lineage

Novershtern et al., Cell 2011
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An HSCs, MEPs, and Early Erythroid-Induced
Module

PBX1, SOX4 need to be high and MNDA
need to be low for the highest expression

of these genes

Module genes

ool R

L



Other key points from this analysis

* Many novel regulators associated with the
hematopoietic lineage

* Several regulators were validated based on
shRNA and ChlP-seq analysis



Extensions to module networks

* Physical module networks
— Novershtern et al., Bioinformatics 2011

* Integrating sequence variants with expression
modules
— Lee et al., PLOS Genetics 2009

 Combining module networks with per-gene
methods
— Roy et al., PLOS computational biology 2013



Limitations with Bayesian networks

* Cannot model cyclic dependencies
* |n practice have not been shown to be better
than dependency networks

— However, most of the evaluation has been done
on structure not parameters

* Directionality is often not associated with
causality

— Too many hidden variables in biological systems



Take away points

 Network inference from expression provides a
promising approach to identify cellular networks

e Graphical models are one representation of networks
that have a probabilistic and graphical component

— Network inference naturally translates to learning
problems in these models

e Bayesian networks were among the first type of PGMs
for representing networks

* Applying Bayesian networks to expression data
required several additional considerations

— Too few samples: Sparse candidates, Module networks
— Too many parents: Sparse candidates
— Imposing modularity: Module networks



Plan for next lectures

* Gaussian graphical models

* Dependency networks
— GENIE3
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