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Plan for this section

Overview of network inference (Sep 18t")

Directed probabilistic graphical models
Bayesian networks (Sep 18", Sep 20t")

Gaussian graphical models (Sep 20t)
Dependency networks (Sep 25t™)

Integrating prior information for network
inference (Sep 27t", Oct 2" 4th)



Readings

* Inferring cellular networks -- a review.
nttp://dx.doi.org/10.1186/1471-2105-8-56-s5

e Using bayesian networks to analyze expression
data.

http://dx.doi.org/10.1089/106652700750050
261

* Learning module networks.

http://www.jmlr.org/papers/volume6/segal05
a/segal05a.pdf



http://dx.doi.org/10.1186/1471-2105-8-s6-s5
http://dx.doi.org/10.1089/106652700750050961
http://www.jmlr.org/papers/volume6/segal05a/segal05a.pdf

Goals for today

Background on transcriptional networks
Expression-based network inference

— Per-gene and Per-module based methods

Different types of probabilistic graphical
models

Learning Bayesian networks gene expression
data



Transcriptional regulatory networks

Transcription factors
(TF)

* Directed, signed, weighted graph

* Nodes: TFs and Target genes

* Edges: A regulates C’s expression
level

Regulatory network of E. coli.
153 TFs (green & light red), 1319 targets

Vargas and Santillan, 2008



Why do we need to computationally infer
transcriptional networks?

 Why infer transcriptional networks?
— Control which genes are expressed when and where
— Needed for accurate information processing in cells

— Many diseases are associated with changes in
transcriptional networks

* Why do so computationally?
— Experimental detection of networks is hard, expensive
— A first step towards having an in silico model of a cell

— A model can be used to make predictions that can be
tested and refine the model



Types of data for reconstructing transcriptional

networks
Samples
. Samples

* Node-specific datasets

— Genome-wide gene expression (mMRNA)
levels

— Can potentially recover genome-wide
regulatory networks

Gene expression levels

* Edge-specific datasets
— ChIP-chip and ChIP-seq

— Sequence specific motifs Gene

— Factor knockout followed by whole- = ~
transcriptome profiling ChipP motif



Experimental techniques to measure
expression

* Microarrays

— cDNA/spotted arrays

— Oligonucleotides arrays
* Sequencing

— RNA-seq



Microarrays

A microarray is a solid support, on which pieces of DNA are
arranged in a grid-like array

— Each piece is called a probe

Measures RNA abundances by exploiting complementary
hybridization

— DNA from labeled sample is called target




Spotted versus oligonucleotide array

Oligonucleotide microarray

Cells of person 1/condition 1

AN

RNA isolation

mRNA
Reverse
transcriptase
d labeling
[ _cONA_|

“Green Fluorescent” Targets

Hybridize to
microarray

Microarray with
short ssDNA
spanning the entire
genome

|

cDNA microarray

Cancer cells Normal cells

RNA isolation
v v
mRNA mRNA
Reverse
transcriptase
d labeling

v

“Green Fluorescent” Targets

“Red Fluorescent” Targets

Combine targets
Hybridize to
microarray

Microarray with §
long ¢cDNA
covering the
transcriptional
activity of the cell
type

Three key steps: Reverse transcription, labeling and hybridization

From Vermeeren and Luc Michiels 2011 DOI: 10.5772/19432



A video about DNA microarrays

&
P
&
&
&
&3
2
&3
&

999999999
999999999
299999999
999999999

From: https://www.youtube.com/watch?v= 6ZMEZK-alM.
Also see: http://www.bio.davidson.edu/courses/genomics/chip/chip.html



https://www.youtube.com/watch?v=_6ZMEZK-alM

A video about two color DNA microarrays

From: https://www.youtube.com/watch?v=VNsThMNjKhM



A typical RNA-seq pipeline

mMRNA
or —
cDNA

RNA fragments l

e 5T ibrary
l with adaptors

ATCACAGTGGGACTCCATAAATTTTTCT
CGAAGGACCAGCAGAAACGAGAGIVNVY Short sequence reads
GGACAGAGTCCCCAGCGGGCTGAAGGGG
ATGAAACATTAAAGTCAAACAATATGAA

|

ORF
Coding sequence =

Dm---- B3 .

St Exonic reads
D----- 0 — — ——
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Base-resolution expression profile

RNA expression level

Nucleotide position

Wang et al, Nature Genetics 2009;



Gene expression profiling experiments produce

expression matrices

Biological samples

: o o i o rh 2 iy vee
2000

ENSMUSG00000028180 | 882 | 9.09 | 6.43 | 811 | 7.13 | 7.55 | 9.18

2000 ENSMUSG00000053211 0.0 0.15 | 0.07 0.0 0.08 0.0 0.0
ENSMUSG00000028182 0.0 0.0 0.0 0.0 0.1 0.08 | 0.26

o ENSMUSG00000002017 | 2.83 192 | 233 | 0.86 | 217 | 253 | 3.19

5000 8 ENSMUSG00000028184 2.0 132 | 1.13 | 0.72 1.25 117 | 2.27
5 © ENSMUSG00000028187 | 12.41 | 10.72 | 10.23 | 859 | 8.08 | 892 | 11.61

Oso0o ENSMUSG00000028186 | 0.02 | 0.68 | 00 | 00 | 00 | 00 | 00
ENSMUSG00000028189 [ 069 | 095 | 1.09 | 0.97 | 071 | 0.44 | 0.76

10000 ENSMUSG00000028188 | 0.11 0.22 | 0.12 0.21 0.24 0.2 0.43

100 200 300 400 500 600 700




Goals for today

* Expression-based network inference
— Per-gene and Per-module based methods



What do we want a model for a regulatory
network to capture?

HSP12 ON HSP12 OFF
Hot1 Sko1
B B Hsri2 m

AN

HSP12’s expression is dependent upon Hotl and Sko1 binding to HSP12’s promoter

BOOLEAN
LINEAR

X3=I/J(X1,X2) DIFF. EQNS

Hotl regulates HSP12

HSP12 is a target of Hot1

PROBABILISTIC

4

HSP12 @

Structure Function

Who are the regulators? How they determine expression levels?




Mathematical representations of the “how”
guestion
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Expression-based regulatory network inference

e GGiven

— A set of measured mRNA levels across multiple
biological samples

* Do
— Infer the regulators of genes

— Infer how regulators specify the expression of a
gene

Algorithms for network reconstruction vary
based on their meaning of interaction



Expression-based network inference

X3

Structure
{3 X, %,

Expression-based

Biological samples

Genes

network inference

X;3=A(X1,X>)

Expression level of gene i in experiment j X;

Function



Regulatory gene modules

A regulatory module: set of genes with similar regulatory state

Experimental conditions

O
>
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Modules

Genes {
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High Low

Gasch & Eisen, 2002 expression expression




Two classes of expression-based network
inference methods

* Per-gene/direct methods
e Module based methods

----- -, Module (Cluster)

r
1

_______________



A non-exhaustive list of expression-based
network inference method

Method Name Per-module Per-gene Model type
Sparse candidate v Bayesian network
CLR v Information theoretic
ARACNE v Information theoretic
TIGRESS v Dependency network
Inferelator v Dependency network
GENIE3 v Dependency network
ModuleNetworks v Bayesian network
LemonTree v Dependency network
WGCNA v Correlation




Per-gene methods

Key idea: find the regulators that “best explain” expression
level of a gene

Probabilistic graphical methods

— Bayesian network
e Sparse Candidates
— Dependency networks
* GENIE3, TIGRESS

Information theoretic methods

— Context Likelihood of relatedness
— ARACNE



Per-module methods

_______________

* Find regulators for an entire module

— Assume genes in the same module have the same
regulators

 Module Networks (Segal et al. 2005)
* Stochastic LeMoNe (Joshi et al. 2008)



Goals for today

e Different types of probabilistic graphical
models



Probabilistic graphical models (PGMs)

A marriage between probability and graph theory
Nodes on the graph represent random variables

Graph structure specifies statistical dependency
structure

Graph parameters specify the nature of the
dependency

PGMs can be directed or undirected

Examples of PGMs: Bayesian networks,
Dependency networks, Markov networks, Factor
graphs



Different types of probabilistic graphs

In each graph type we can assert different
conditional independencies

Correlation networks
Gaussian Graphical models
Dependency networks
Bayesian networks



Correlational networks

* An undirected graph

* Edges represent high correlation
— Need to determine what “high” is

* Edge weights denote different values of correlation

e Cannot discriminate between direct and indirect
correlations

A measure of
statistical correlation

. @ @ (e.g. Pearson’s
Random variables correlation)
represent gene Wi3 Wos__ D
expression levels . @ @

‘ @ An undirected weighted graph.




Popular examples of correlational networks

* Weighted Gene Co-expression Network
Analysis (WGCNA)
— Zhang and Horvath 2005

* Relevance Networks

— Butte & Kohane, 2000 Pacific symposium of
biocomputing



Limitations of correlational networks

* Correlational networks cannot distinguish between direct and indirect dependencies
* This makes them less interpretable than other PGMs

Coexpression Regulatory network

Y Y Y H

A ® i o o o—— @ e o o
¢ Z: X Z X V4 X Y Z

For any co-expression network, there are several possible regulatory networks that can
explain these correlations.

What we would like is to be able to discriminate between direct and indirect
dependencies

Here we need to review conditional independencies



Conditional independencies in PGMs

e The different classes of models we will see are based

on a general notion of specifying statistical
independence

* Suppose we have two genes X and Y. We add an
edge between X and Y if X and Y are not
independent given a third set Z.

* Depending upon Z we will have a family of different
PGMs



Conditional independence and PGMs

Correlational networks

— Zis the empty set

Markov networks

— X and Y are not independent given all other variables

— Gaussian Graphical models are a special case (later lectures)
Dependency networks

— Approximate Markov networks

— May not be associated with a valid joint distribution (later lectures)
First-order conditional independence models

— Explain the correlation between two variables by a third variable
Bayesian networks

— Generalize first-order conditional independence models



Goals for today

* Bayesian networks



Bayesian networks (BN)

A special type of probabilistic graphical model

Has two parts:

— A graph which is directed and acyclic
— A set of conditional distributions

Directed Acyclic Graph (DAG)

— The nodes denote random variables X;... X},
— The edges

* encode statistical dependencies between the random variables
» establish parent child relationships

Each node X, has a conditional probability distribution
(CPD) representing P(X. | Pa(X,)); Pa: Parents

Provides a tractable way to represent large joint
distributions



Key questions in Bayesian networks

e What do the CPDs look like?

* What independence assertions can be made
in Bayesian networks?



An

C | P(S=F) P(S=T)

example Bayesian network
P(C=F) P(C=T)
0.5 0.5

n

0.5 0.5
T|] 09 01

P(R=F) P(R=T)

C
e :
C o) ¢

S R |P(W=F) P(W=T)
FF| 1 0

TF|] 01 0.9
FT| 01 0.9
TT| 001 099

Adapted from Kevin Murphy: Intro to Graphical models and Bayes networks:
http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

0.8 0.2
0.2 0.8



Notation

B={G, O} A Bayesian network
X.: it random variable

If there are few random variables, we will just
use upper case letters. E.g. A, B, C..

X={X,,.., Xp}: set of p random variables
xX: An assignment of X:in the k”* sample
Pa(X,) : Parents of random variable X

D={x!,.. xm}: Dataset of m observations/samples
of X

I(X;;X;/X,,X;): Conditional independence
notation: X; is independent of X; given X, and X



Bayesian networks compactly represent joint
distributions

p

H P(X;|Pa(X;))

1=1

~
I

&
||



Example Bayesian network of 5 variables

PARENTS

CHILD @ @

@ Assume X; is binary

. . Needs 2> measurements
No independence assertions \

P(X) — P(X17X27X37X47X5)

Independence assertions Needs 23 measurements

P(X) = P(X,)P(X2)P(X1)P(X3| X1, Xo)P(Xs| X3, X2)



Conditional independencies in BN

* Avariable X is independent of its nhon-
descendants given its parents

* I(X;;X/X,,X)): X;isindependent of X; given X
and X,

D I(A; E)
I(B;D|A, F)
oRO I(D;E,B,C|A)
I(C;E,A,D|B)
() I(E;A, D)

Consider the example Bayesian network. What are the set of
conditional independencies in this graph? Friedman et al., 2000



CPD in Bayesian networks

The CPD P(X;/Pa(X;)) specifies a distribution over
values of X; for each combination of values of Pa(X,)

CPD P(X,/Pa(X;)) can be parameterized in different
ways
X; are discrete random variables
— Conditional probability table or tree
X; are continuous random variables

— CPD can be linear Gaussians, conditional Gaussians or
regression trees



Representing CPDs as tables

* Consider four binary variables X;, X,, X;, X,

P( X, | X;, X,, X;) as a table

Xy
X, X, X t f
t t t 0.9 0.1
@ @ @ ¢ t f | 09 0.1
t f t 0.9 0.1
@ ¢ f i | 09 0.1
f t t 0.8 0.2
Pa(Xy): X, X, X3 f t f 0.5 0.5
f f t 0.5 0.5
; f f ] 05 05




Estimating CPD table from data

Assume we observe the following assignments for

X] ’ XZ} XS’ X4
X X X5 X,
T F T T
T T F T
T T F T
=7 T F T T
T F T F
T F T F
F F T F

For each joint assignment to X;, X,, Xj,
estimate the probabilities for each
value of X,

For example, consider X;=T, X,=F, X3=T

P(X,=TIX,=T, X,=F, X;=T)=2/4
P(X,=FIX,=T, X,=F, X;=T)=2/4



Gaussians distribution for CPD

* For every joint assignment of the parent set,
we have a Gaussian distribution on the child
variable.

P(X3|X1:$1,X2:£E2):
(X5 N(ao—l—alxl —|—CZ2£C2,0')



A regression tree to capture a CPD p(x;| X, X,)

e;, e, are values seen in the data

YES

Leaf \

X3 ~ N(us1,031) X3 ~ N(ps2,032) X3 ~ N (33,033

Expression of gene represented by X; modeled using Gaussians at each leaf node



A regression tree captures non-linear

dependencies

H1,01




Compute probabilities using a Bayesian
network
What is the probability of P(C=F) P(C=T)
P(C=F,R=T,S=FW =T)

05 0.5

C [P(R=F) P(R=T)

F| 08 0.2
0.2 0.8

Bayes net allows us to write C | P(S=F) P(S=T)
P(WI|S, R)P(S|C)P(R|C)P(C) F| 05 05
T 0.9 0.1

Plugging in the assignments for the variables:
P(W :T|S= F,R:T)P(S: F|C: F)
P(R=T|C = F)P(C = F)

Looking up in the CPD

0.9*0.5*%0.2*0.5
R |P(W=F) P(W=T)
FF| 1 0
=0.045 TF| 01 0.9
FT| 01 0.9
TT| 0.01 099




Learning problems in Bayesian networks

* Parameter learning on known graph structure

— Given a set of joint assignments of the random
variables, estimate the parameters of the model

e Structure learning

— Given a set of joint assignments of the random
variables, estimate the structure and parameters
of the model

— Structure learning subsumes parameter learning



Structure learning using score-based search

Score(B) Describes how well B describes the data

o o © & o6 O ® ©
6 o OO & 0 @ o
® 0O O coe ‘b"
Score(By)  Score(Bs)  Score(Bs) Score(B;,)

Exhaustive search is not computationally tractable



Scoring a Bayesian network

e Maximum likelihood score

Scoreprr, (G : D) = maxe P(D|G, ©)

* Bayesian score
D|G)P(G)

Scorepayes(G : D) = P(G|D) = P( (D)
S

We typically ignore the denominator
as it is the same for all models



Greedy hill climbing to search Bayesian
network space

Input: Data D, An initial Bayesian network, By,={G,,
0O}
Output: By

Loop for r=1, 2.. until convergence:
— {B,, .., B,™} = Neighbors(B,) by making local changes to B,
— B, ;: arg max;(Score(B,)))

Termination:

_ Bbest= Br



Local changes to B,

G

Current network

add an edge /

@ "

Check for cycles

O
g



Goals for today

* Learning Bayesian networks gene expression
data



Hotl1:

Sko1:

Hsp12:

Bayesian network representation of a
regulatory network

Hot1 Sko1

Inside the cell

HSP12

v

PO

. Random variables

0006

REGULATORS (PARENTS)

P(X;) P(X>)

P(X5/X;,X5)

TARGET (CHILD) @

Bayesian network



Expression data matrix

N Experiments/Time points etc

A
| 1

m—

Observations of
variable X;in all N
experiments

. i

p Genes
A

Observations (expression levels) of all
variables in sample i, x(V



Challenges with applying Bayesian network to
genome-scale data

* Number of variables, p is in thousands

* Number of samples, N is in hundreds



Bayesian network-based methods to handle
genome-scale networks

* Sparse candidate algorithm OEOIONO

— Friedman, Nachman, Pe’er. 1999

— Friedman, Linial, Nachman, Pe’er.
2000.

Per-gene

e Module networks

— Segal, Pe’er, Regev, Koller, Friedman. 2 g

2005 T =]

_______________

Module (Cluster) Per-module



The Sparse candidate Structure learning in
Bayesian networks

A fast Bayesian network learning algorithm

Key idea: Identify &k “promising” candidate parents
for each X;

— k<<p, p: number of random variables
— Candidates define a “skeleton graph” H

Restrict graph structure to select parents from H
Early choices in H might exclude other good parents

— Resolve using an iterative algorithm



Sparse candidate algorithm

Input:
— AdatasetD
— An initial Bayes net B,
— A parameter k: max number of parents per variable

Output:
— Final B,
Loop for r=1,2.. until convergence

— Restrict
* Based on D and B, ; select candidate parents C/ for X;
* This defines a skeleton directed network H,

— Maximize
* Find network B, that maximizes the score Score(B,) among networks
satisfyin r r
ving Pa"(X;) C C"

Termination: Return B,



Information theory for measuring dependence

I[(X;Y) is the mutual information between two
variables

— Knowing X, how much information do we have for Y

P(Z) is the probability distribution of Z

[XGY) = Sayexrplo g (550

 Measures the difference between the two
distributions: joint and product of marginals




Selecting candidate parents in the Restrict Step

* A good parent for X, is one with strong statistical
dependence with X;

— Mutual information provides a good measure of statistical
dependence I(X;; X))

— Mutual information should be used only as a first
approximation

* Candidate parents need to be iteratively refined to
avoid missing important dependences

* A good parent for X, has the highest score
improvement when added to Pa(X;)



Sparse candidate learns good networks faster

than hill-climbing
Greedy hill climbing takes much

longer to reach a high scoring
bayesian network
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Some comments about choosing candidates

How to select k in the sparse candidate
algorithm?
Should k be the same for all X, ?

Estimate an undirected dependency network

— Learn a Bayesian network constrained on the
dependency network structure

Regularized regression approaches can be used to
estimate the structure of an undirected graph
— Schmidt, Niculescu-Mizil, Murphy 2007



Bayesian network-based methods to handle
genome-scale networks

e Module networks

— Segal, Pe’er, Regey, Koller, Q g
Foo Ao Module (Cluster)
E X, Xs —

Friedman. 2005

_______________

Per-module



Per-module methods

_______________

* Find regulators for an entire module

— Assume genes in the same module have the same
regulators

 Module Networks (Segal et al. 2005)
* Stochastic LeMoNe (Joshi et al. 2008)



Module Networks

* Motivation:
— Most complex systems have too many variables
— Not enough data to robustly learn networks
— Large networks are hard to interpret

* Key idea: Group similarly behaving variables into
“modules” and learn the same parents and
parameters for each module

* Relevance to gene regulatory networks

— Genes that are co-expressed are likely regulated in
similar ways

Segal et al 2005, JMLR



Definition of a module

e Statistical definition (specific to module
networks by Segal 2005)

— A set of random variables that share a statistical
model

* Biological definition of a module

— Set of genes that are co-expressed and co-
regulated



Bayesian network vs Module network

e Bayesian network
— Different CPD per random variable

— Learning only requires to search for parents

e Module network
— CPD per module
e Same CPD for all random variables in the same module

— Learning requires parent search and module
membership assignment



Bayesian network vs Module network

Module 1 @
CPD 4 \ @ ’
P(INTL)
/ \

-

Module 3

(b) Module network

(a) Bayesian network

Each variable takes three values: UP, DOWN, SAME



Modeling questions in Module Networks

e How to score and learn module networks?

* How to model the CPD between parent and
children?

— Regression Tree



Defining a Module Network

A probabilistic graphical model over N random
variables X ={Xq,--- , Xy}

Set of module variables M,.. M

Module assignments A that specifies the
module (1-to-K) for each X,

CPD per module P(M/Pa,,;), Pa,,; are parents
of module M,

— Each variable X; in M; has the same conditional
distribution



Learning a Module Network

* Given training dataset D = {x!,... ,x™}, fixed
number of modules, K
* Learn

— Module assignments A of each variable to a
module

— The parents of each module to give structure S



Score of a module network

* Module network makes use of a Bayesian
score
P(S,A| D) x P(A)P(S | A)P(D ]S, A)
Priors Data likelihood

score (5,4 : D) =
logP(A4)+1logP(S|A)+1ogP(D|S5,A4).

Data likelihood
Priors



Score of a module network continued

Integrate parameters out
1ogp(z>\s A) = log/ P(D|S. A, 0)P(0]S, A)do
Decomposes over each module

05 T [ E5(U.X bra, 10 D)P(0r, [U) b, o

71=1
Decomposes over each module

Zlog [ £5(0.X. b, 10 D) PO, [U) b o
U: Set of parents defined by S

X: Set of variables.

For computing each L, term we would need only the
variables and parents associated with module j



Defining the data likelihood

X7 = {X; € X|A(X;) = j}

Likelihood of modulej  Lij(Paps;, X7,0; : D)

D
= [ 1] Plmllpay,ml,6))
m=1 X,eXJ

K: number of modules, X/: j# module Pa,,; Parents of module M;



Data likelihood example

o= ) @i -sme
S(AMAT, MSFT) +
§(M07; MSFT) + Module 1MSFT __
\_ S(INTL, MSFT)
/ \
Module2 [/ ¥

S(M,, AMAT, INTL) =

S(DELL, AMAT, INTL) + Instance 1
c Instance 2

5 (HPQ AMAT, INTL) + [Instance 3




Module network learning algorithm

Input:
D // Data set
K // Number of modules
Output:
M // A module network
Learn-Module-Network
Ay = cluster X into K modules
So = empty structure
Loopt=1,2,... until convergence
St = Greedy-Structure-Search(A4;_1,.5-1)
A, = Sequential-Update(A4;_1,.5);
Return M = (4, %)



Genes

Initial modules identified by expression

clustering
Experiments e
e | - ™
_ Cluster _ M2
.




Iterations in learning Module Networks

Learn
regulators/CPD

B Qe

X1 X M, ’Xs X1 X,

Revisit the modules

Xa X3 | M Xa X3

Module M; and
’ Q% ’ @ M; get updated
X7 Xg X5 Xg X7 Xs Xe

3




Module re-assighment

* Must preserve the acyclic graph structure
* Must improve score

* Module re-assignment happens using a
sequential update procedure:

— Update only one variable at a time

— The change in score of moving a variable from one
module to another while keeping the other
variables fixed



Module re-assignment via sequential update

Input:

D // Data set

Ay // Initial assignment function

S // Given dependency structure
Output:

A // improved assignment function
Sequential-Update

A= A
Loop
Fori=1ton
For j=1t0K

A" = A except that 4'(X;) = j
If (Gar, A') is cyclic, continue
If score($,4" : D) > score(S,4 : D)
4=242
Until no reassignments to any of Xi,...X,
Return 4



Modeling questions in Module Networks

* How to model the CPD between parent and
children?

— Regression Tree



Representing the Conditional probability
distribution

X. are continuous variables

How to represent the distribution of X; given
the state of its parents?

How to capture context-specific
dependencies?

Module networks use a regression tree



Modeling the relationship between regulators and
targets

d Transcript d
—»> level Activator? \
L] | > == Activator ctivator
- ) = expression
Upstre;rg region Context A d |/ s
of target gene False True 8,
* a
b :
9o
T
Activator % Repressor Repressorf H
% expression ]
== I - T ©
L] —» % False True
’\/
—_—
Activator = J
Target gene
binding site Context B exp?res%ion .
N

Activator
Induced

Y
Module genes

/

—» T~ Repressed

Context C ks Q O
IS S IS

Repressor  Activator 6‘0 (*\@' N
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e suppose we have a set of (8) genes that all have in their
upstream regions the same activator/repressor binding

sites Segal et al., Nature Genetics 2003



A regression tree

A rooted binary tree T

Each node in the tree is either an interior
node or a leaf node

Interior nodes are labeled with a binary test
X.<u, u is a real number observed in the data

Leaf nodes are associated with univariate
distributions of the child



An example regression tree for a Module
network

/ P(M, | AMAT, INTL)\
AMAT<S%

_6A 5 0
N(1.4,0.8) N(0.1,1.6) N(-Z,W

Module 3 values are modeled using Gaussians at each leaf node



Assessing the value of using Module Networks

e Using simulated data
— Generate data from a known module network
— Known module network was in turn learned from real data
* 10 modules, 500 variables

— Evaluate using
* Test data likelihood

* Recovery of true parent-child relationships are recovered in
learned module network

* Using gene expression data

— External validation of modules (Gene ontology, motif
enrichment)

— Cross-check with literature



Test data likelihood
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Recovery of graph structure
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Application of Module networks to yeast
expression data

Regulator -
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Segal et al, Regev, Pe’er, Gasch, Nature Genetics 2003



The Respiration and Carbon Module

Regression
tree

representing
rules of
regulation
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Amino acid
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Application of Module networks to
mammalian data

* Module networks have been Le
applied to mammalian systems —
as well —

 We will look at a case-study in =T
the human blood cell lineage "

* Dataset

— Genome-wide expression levels
in 38 hematopoietic cell types
(211 samples)

— 523 candidate regulators ERE
(Transcription factors)

Human hematopoetic lineage

Novershtern et al., Cell 2011
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An HSCs, MEPs, and Early Erythroid-Induced
Module

PBX1, SOX4 need to be high and MNDA
need to be low for the highest expression

of these genes

Module genes

ool R

L



Other key points from this analysis

* Many novel regulators associated with the
hematopoietic lineage

* Several regulators were validated based on
shRNA and ChlP-seq analysis



Extensions to module networks

* Physical module networks
— Novershtern et al., Bioinformatics 2011

* Integrating sequence variants with expression
modules
— Lee et al., PLOS Genetics 2009

 Combining module networks with per-gene
methods
— Roy et al., PLOS computational biology 2013



Limitations with Bayesian networks

* Cannot model cyclic dependencies
* |n practice have not been shown to be better
than dependency networks

— However, most of the evaluation has been done
on structure not function

* Directionality is often not associated with
causality

— Too many hidden variables in biological systems



Take away points

 Network inference from expression provides a
promising approach to identify cellular networks

e Graphical models are one representation of networks
that have a probabilistic and graphical component

— Network inference naturally translates to learning
problems in these models

e Bayesian networks were among the first type of PGMs
for representing networks

* Applying Bayesian networks to expression data
required several additional considerations

— Too few samples: Sparse candidates, Module networks
— Too many parents: Sparse candidates
— Imposing modularity: Module networks



Plan for next lectures

* Gaussian graphical models

* Dependency networks
— GENIE3
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