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Plan for this section

• Overview of network inference (Sep 18th)
• Directed probabilistic graphical models 

Bayesian networks (Sep 18th, Sep 20th)
• Gaussian graphical models (Sep 20th)
• Dependency networks (Sep 25th)
• Integrating prior information for network 

inference (Sep 27th, Oct 2nd, 4th)



Readings

• Inferring cellular networks -- a review. 
http://dx.doi.org/10.1186/1471-2105-8-s6-s5

• Using bayesian networks to analyze expression 
data. 
http://dx.doi.org/10.1089/106652700750050
961

• Learning module networks. 
http://www.jmlr.org/papers/volume6/segal05
a/segal05a.pdf

http://dx.doi.org/10.1186/1471-2105-8-s6-s5
http://dx.doi.org/10.1089/106652700750050961
http://www.jmlr.org/papers/volume6/segal05a/segal05a.pdf


Goals for today

• Background on transcriptional networks 
• Expression-based network inference
– Per-gene and Per-module based methods

• Different types of probabilistic graphical 
models

• Learning Bayesian networks gene expression 
data



Transcriptional regulatory networks
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following the procedure detailed in Materials and Meth-
ods. From the way they are built, the randomized net-
works have the same number of TF and RG nodes, and
each node has the same number of links as in the corre-
sponding original networks.

We further calculated the connectivity distributions for
the E. coli and S. cerevisiae, original and randomized, TF
and RG projected networks. As seen in the plots of Figures
4a and 4b, the connectivity distributions corresponding to
the E. coli TF-projected original and randomized networks
are power-law distributions with slope about -1.5. The
corresponding S. cerevisiae distributions show a slight
non-monotonic growing tendency.

In the plots of figures 4c and 4d, the connectivity distribu-
tions for the E. coli and S. cerevisiae RG-projected networks
are presented. Notice that the connectivity distributions
for the S. cerevisiae RG-projected networks show an
approximately exponential decreasing behaviour, while
the distributions corresponding to E. coli have various
local maxima and present a slow decreasing tendency.

Interestingly, the TF and RG projected networks of E. coli
and S. cerevisiae have very different connectivity structures,

despite the strong similarities observed in the bipartite-
network link distributions (see Figure 3). Furthermore,
the connectivity distributions of the original and rand-
omized RG-projected networks are very similar in both
the E. coli and S. cerevisie cases, while small deviations
from the behaviour of the randomized plots are observed
in the TF projections. This indicates to our understanding
that the observed differences between the connectivity
distributions of the E. coli and S. cerevisiae projected net-
works are mainly due to the very different number tran-
scription factors and regulated genes in both organisms.

A network's clustering coefficient (C) is an estimation of
its nodes tendency to form tightly connected clusters (see
Materials and Methods). We calculated the clustering
coefficient of the E. coli and S. cerevisiae, original and ran-
domized, TF- and RG-projected networks, and the results
are shown in Table 1. Observe that the clustering coeffi-
cient of the original and randomized RG projected net-
works are quite similar for both E. coli and S. cerevisiae.
Contrarily, the C values of the randomized TF projections
are consistently larger than those of the original network
projections.

Representation of the E. coli transcriptional regulatory networkFigure 1
Representation of the E. coli transcriptional regulatory network. a) Representation of the transcription-factor gene 
regulatory network of E. coli. Green circles represent transcription factors, brown circles denote regulated genes, and those 
with both functions are coloured in red. Projections of the network onto b) transcription factor and onto c) regulated gene 
nodes are also shown.
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Why do we need to computationally infer 
transcriptional networks?

• Why infer transcriptional networks?
– Control which genes are expressed when and where
– Needed for accurate information processing in cells
– Many diseases are associated with changes in 

transcriptional networks
• Why do so computationally?
– Experimental detection of networks is hard, expensive
– A first step towards having an in silico model of a cell
– A model can be used to make predictions that can be 

tested and refine the model



Types of data for reconstructing transcriptional 
networks

• Node-specific datasets
– Genome-wide gene expression (mRNA) 

levels
– Can potentially recover genome-wide 

regulatory networks

• Edge-specific datasets
– ChIP-chip and ChIP-seq
– Sequence specific motifs
– Factor knockout followed by whole-

transcriptome profiling

Gene

motifChIP

differences from the mean ranged from 30 (in vineyard strain I14)
to nearly 600 (in clinical isolate YJM789), with a median of 88
expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).

Influence of Copy Number Variation on Gene Expression
Variation
Expression from transposable Ty elements was highly variable

across strains. However, Ty copy number is known to vary widely

Figure 3. Variation in gene expression in S. cerevisiae isolates. The diagrams show the average log2 expression differences measured in the
denoted strains. Each row represents a given gene and each column represents a different strain, color-coded as described in Figure 1. (A) Expression
patterns of 2,680 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to S288c. (B) Expression patterns of 953
genes that varied significantly in at least one strain compared to strain YPS163 (FDR= 0.01, unpaired t-test). For (A) and (B), a red color indicates
higher expression and a green color represents lower expression in the denoted strain compared to S288c, according to the key. (C) Expression
patterns of 1,330 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to the mean expression of all 17 strains.
Here, red and green correspond to higher and lower expression, respectively, compared to the mean expression of that gene in all strains. Genes
were organized independently in each plot by hierarchical clustering.
doi:10.1371/journal.pgen.1000223.g003

Phenotypic Variation in Yeast

PLoS Genetics | www.plosgenetics.org 5 October 2008 | Volume 4 | Issue 10 | e1000223
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Experimental techniques to measure 
expression

• Microarrays
– cDNA/spotted arrays
– Oligonucleotides arrays

• Sequencing
– RNA-seq



Microarrays

• A microarray is a solid support, on which pieces of DNA are 
arranged in a grid-like array
– Each piece is called a probe

• Measures RNA abundances by exploiting complementary 
hybridization
– DNA from labeled sample is called target



Spotted versus oligonucleotide array

From Vermeeren and Luc Michiels 2011 DOI: 10.5772/19432

Three key steps: Reverse transcription, labeling and hybridization



A video about DNA microarrays

From: https://www.youtube.com/watch?v=_6ZMEZK-alM.
Also see:  http://www.bio.davidson.edu/courses/genomics/chip/chip.html

https://www.youtube.com/watch?v=_6ZMEZK-alM


A video about two color DNA microarrays

From: https://www.youtube.com/watch?v=VNsThMNjKhM



Wang et al, Nature Genetics 2009; 

systems have already been applied for 
this purpose. The Helicos Biosciences 
tSMS system has not yet been used for 
published RNA-Seq studies, but is also 
appropriate and has the added advantage 
of avoiding amplification of target cDNA. 
Following sequencing, the resulting reads 
are either aligned to a reference genome 
or reference transcripts, or assembled 
de novo without the genomic sequence 
to produce a genome-scale transcription 
map that consists of both the transcrip-
tional structure and/or level of expression 
for each gene.

Although RNA-Seq is still a technology 
under active development, it offers several 
key advantages over existing technologies 
(TABLE 1). First, unlike hybridization-based 
approaches, RNA-Seq is not limited to 
detecting transcripts that correspond 
to existing genomic sequence. For 

example, 454-based RNA-Seq has been 
used to sequence the transcriptome of 
the Glanville fritillary butterfly27. This 
makes RNA-Seq particularly attractive 
for non-model organisms with genomic 
sequences that are yet to be determined. 
RNA-Seq can reveal the precise location 
of transcription boundaries, to a single-
base resolution. Furthermore, 30-bp short 
reads from RNA-Seq give information 
about how two exons are connected, 
whereas longer reads or pair-end short 
reads should reveal connectivity between 
multiple exons. These factors make RNA-
Seq useful for studying complex tran-
scriptomes. In addition, RNA-Seq can also 
reveal sequence variations (for example, 
SNPs) in the transcribed regions22,24.

A second advantage of RNA-Seq 
relative to DNA microarrays is that 
RNA-Seq has very low, if any, background 

signal because DNA sequences can 
been unambiguously mapped to unique 
regions of the genome. RNA-Seq does 
not have an upper limit for quantifica-
tion, which correlates with the number 
of sequences obtained. Consequently, 
it has a large dynamic range of expres-
sion levels over which transcripts can be 
detected: a greater than 9,000-fold range 
was estimated in a study that analysed 16 
million mapped reads in Saccharomyces 
cerevisiae18, and a range spanning five 
orders of magnitude was estimated for 
40 million mouse sequence reads20. By 
contrast, DNA microarrays lack sensitivity 
for genes expressed either at low or very 
high levels and therefore have a much 
smaller dynamic range (one-hundredfold 
to a few-hundredfold) (FIG. 2). RNA-Seq 
has also been shown to be highly accurate 
for quantifying expression levels, as deter-
mined using quantitative PCR (qPCR)18 and 
spike-in RNA controls of known concentra-
tion20. The results of RNA-Seq also show 
high levels of reproducibility, for both 
technical and biological replicates18,22. 
Finally, because there are no cloning steps, 
and with the Helicos technology there is 
no amplification step, RNA-Seq requires 
less RNA sample.

Taking all of these advantages into 
account, RNA-Seq is the first sequencing-
based method that allows the entire 
transcriptome to be surveyed in a very 
high-throughput and quantitative man-
ner. This method offers both single-base 
resolution for annotation and ‘digital’ 
gene expression levels at the genome scale, 
often at a much lower cost than either 
tiling arrays or large-scale Sanger EST 
sequencing.

Challenges for RNA-Seq
Library construction. The ideal method 
for transcriptomics should be able to 
directly identify and quantify all RNAs, 
small or large. Although there are only 
a few steps in RNA-Seq (FIG. 1), it does 
involve several manipulation stages dur-
ing the production of cDNA libraries, 
which can complicate its use in profiling 
all types of transcript.

Unlike small RNAs (microRNAs  
(miRNAs), Piwi-interacting RNAs (piRNAs), 
short interfering RNAs (siRNAs) and many 
others), which can be directly sequenced 
after adaptor ligation, larger RNA mol-
ecules must be fragmented into smaller 
pieces (200–500 bp) to be compatible 
with most deep-sequencing technologies. 
Common fragmentation methods include 

Nature Reviews | Genetics
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RNA fragments cDNA

mRNAAAAAAAAA
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TTTTTTTT

ATCACAGTGGGACTCCATAAATTTTTCT 
CGAAGGACCAGCAGAAACGAGAGAAAAA 
GGACAGAGTCCCCAGCGGGCTGAAGGGG
ATGAAACATTAAAGTCAAACAATATGAA
......

...AAAAAA

...AAAAAAAAA

poly(A) end reads

Figure 1 | A typical RNA-Seq experiment. Briefly, long RNAs are first converted into a library of cDNA 
fragments through either RNA fragmentation or DNA fragmentation (see main text). Sequencing 
adaptors (blue) are subsequently added to each cDNA fragment and a short sequence is obtained from 
each cDNA using high-throughput sequencing technology. The resulting sequence reads are aligned 
with the reference genome or transcriptome, and classified as three types: exonic reads, junction reads 
and poly(A) end-reads. These three types are used to generate a base-resolution expression profile for 
each gene, as illustrated at the bottom; a yeast ORF with one intron is shown.
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A typical RNA-seq pipeline



Gene expression profiling experiments produce 
expression matrices

Ge
ne

s

Biological samples

E1 E2 E3 E4 E5 E6 E7

ENSMUSG00000028180 8.82 9.09 6.43 8.11 7.13 7.55 9.18

ENSMUSG00000053211 0.0 0.15 0.07 0.0 0.08 0.0 0.0

ENSMUSG00000028182 0.0 0.0 0.0 0.0 0.1 0.08 0.26

ENSMUSG00000002017 2.83 1.92 2.33 0.86 2.17 2.53 3.19

ENSMUSG00000028184 2.0 1.32 1.13 0.72 1.25 1.17 2.27

ENSMUSG00000028187 12.41 10.72 10.23 8.59 8.08 8.92 11.61

ENSMUSG00000028186 0.02 0.68 0.0 0.0 0.0 0.0 0.0

ENSMUSG00000028189 0.69 0.95 1.09 0.97 0.71 0.44 0.76

ENSMUSG00000028188 0.11 0.22 0.12 0.21 0.24 0.2 0.43
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Goals for today

• Background on transcriptional networks 
• Expression-based network inference
– Per-gene and Per-module based methods

• Different types of probabilistic graphical 
models

• Learning Bayesian networks gene expression 
data



What do we want a model for a regulatory 
network to capture?

HSP12
Sko1Hot1

HSP12’s expression is dependent upon Hot1 and Sko1 binding to HSP12’s promoter

HSP12 ON

HSP12
Sko1

HSP12 OFF

X3=ψ(X1,X2)

Function

X1 X2

X3

BOOLEAN
LINEAR
DIFF. EQNS
PROBABILISTIC…

.

How they determine expression levels?

Sko1

Structure

HSP12

Hot1

Who are the regulators?

Hot1 regulates HSP12

HSP12 is a target of Hot1



Mathematical representations of the “how” 
question

X1 X2

X3

ψ
Output expression of target

Models differ in the function that maps 
input system state to output state

Input expression of 
neighbors

Probability distributions

Boolean Networks Differential equations Probabilistic graphical models

X1 X2

0 0

0 1

1 0

1 1

X3

0

1

1

1

Input Output dX3(t)
dt

=

� g(X1(t), X2(t))
�rX3(t)

P (X3|X1, X2) =
N(X1a + X2b, �)

X1 X2

X3



Expression-based regulatory network inference

• Given 
– A set of measured mRNA levels across multiple 

biological samples
• Do
– Infer the regulators of genes
– Infer how regulators specify the expression of a 

gene
• Algorithms for network reconstruction vary 

based on their meaning of interaction



Expression-based network inference
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X3Expression level of gene i in experiment j



Regulatory gene modules

A regulatory module: set of genes with similar regulatory state
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http://genomebiology.com/2002/3/11/research/0059.3

Figure 1
Many yeast genes are conditionally coregulated. (a) A Venn diagram representing hypothetical genes that are coregulated by transcription factor A (TF
A) in response to condition a, transcription factor B (TF B) in response to condition b, or transcription factor C (TF C) in response to condition c. The
regions of overlap in the diagram represent genes that are conditionally coregulated with each respective group of genes (for example, gene 4).
(b) Hypothetical gene-expression patterns for four representative genes in groups from (a) show that the expression pattern for gene 4 has similarities
to the expression patterns of each of the other genes. For this and other diagrams, gene-expression data are represented in a colorized, tabular format
in which each row indicates the relative transcript abundance for a given gene, and each column represents the relative transcript abundance for many
genes as measured in one experiment. A red square indicates that a gene was induced in response to the condition listed, a green square indicates that a
gene was repressed under those conditions, a black square indicates that there was no detectable change in expression, and a gray square represents
missing data. (c) The gene-expression patterns of around 40 of the 70 known Yap1p targets are shown, as the genes appear in the complete,
hierarchically clustered dataset. Because these genes were coordinately induced in response to only subsets of the conditions shown here (labeled in
red), the entire set of Yap1p targets was assigned to multiple hierarchical clusters, the largest of which are shown here. The remaining Yap1p targets
were assigned to other hierarchical clusters and are not shown in this display. The colored triangles above the figure represent the microarray time
courses that measured the changes in transcript abundance in response to zinc or phosphate limitation (Zn Pho), treatment with methylmethane
sulfonate (MMS), ionizing radiation (IR), heat shock (HS), hydrogen peroxide (H2O2), menadione (MD), dithiothreitol (DTT), diamide (DI), sorbitol
(SORB), amino-acid starvation (AA starv), nitrogen starvation (N starv), and progression into stationary phase (STAT). Steady-state gene expression was
also measured for cells growing on alternative carbon sources (C sources), indicated by the purple rectangle. See text for references. 
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Two classes of expression-based network 
inference methods

• Per-gene/direct methods

• Module based methods

X5X3

X1 X2

Module (Cluster)

X3

X1 X2

X5

X1 X4



A non-exhaustive list of expression-based 
network inference method

Method Name Per-module Per-gene Model type

Sparse candidate ✓ Bayesian network

CLR ✓ Information theoretic

ARACNE ✓ Information theoretic

TIGRESS ✓ Dependency network

Inferelator ✓ Dependency network

GENIE3 ✓ Dependency network

ModuleNetworks ✓ Bayesian network

LemonTree ✓ Dependency network

WGCNA ✓ Correlation



Per-gene methods

X3

X1 X2

X5

X3 X4

• Key idea: find the regulators that “best explain” expression 
level of a gene

• Probabilistic graphical methods
– Bayesian network 

• Sparse Candidates
– Dependency networks

• GENIE3, TIGRESS

• Information theoretic methods
– Context Likelihood of relatedness
– ARACNE



Per-module methods

• Find regulators for an entire module
– Assume genes in the same module have the same 

regulators
• Module Networks (Segal et al. 2005)
• Stochastic LeMoNe (Joshi et al. 2008)

Per module

Y2Y1

X1 X2

Module



Goals for today

• Background on transcriptional networks 
• Expression-based network inference
– Per-gene and Per-module based methods

• Different types of probabilistic graphical 
models

• Learning Bayesian networks gene expression 
data



Probabilistic graphical models (PGMs)

• A marriage between probability and graph theory 
• Nodes on the graph represent random variables
• Graph structure specifies statistical dependency 

structure
• Graph parameters specify the nature of the 

dependency
• PGMs can be directed or undirected
• Examples of PGMs: Bayesian networks, 

Dependency networks, Markov networks, Factor 
graphs



Different types of probabilistic graphs

• In each graph type we can assert different 
conditional independencies

• Correlation networks 
• Gaussian Graphical models
• Dependency networks
• Bayesian networks



Correlational networks
• An undirected graph
• Edges represent high correlation
– Need to determine what “high” is

• Edge weights denote different values of correlation
• Cannot discriminate between direct and indirect 

correlations

Msb2

Sho1

Ste20

Random variables 
represent gene 
expression levels

X1

X2

X3

X1 X2

X3

w23w13

A measure of 
statistical correlation 
(e.g. Pearson’s 
correlation)

An undirected weighted graph. 



Popular examples of correlational networks

• Weighted Gene Co-expression Network 
Analysis (WGCNA)
- Zhang and Horvath 2005

• Relevance Networks
– Butte & Kohane, 2000 Pacific symposium of 

biocomputing



Limitations of correlational networks
• Correlational networks cannot distinguish between direct and indirect dependencies
• This makes them less interpretable than other PGMsBMC Bioinformatics 2007, 8(Suppl 6):S5 http://www.biomedcentral.com/1471-2105/8/S6/S5
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expression profiles between genes does not have full rank
and cannot be inverted [21]. The p Ŭ N-situation is true
for almost all genomic applications of graphical models.
Therefore, one must either improve the estimators of par-
tial correlations or resort to a simpler model. The basic
idea in all of these approaches is that biological data are

high-dimensional but sparse in the sense that only a small
number of genes will regulate one specific gene of interest.

Several papers suggest ways to estimate GGMs in a p Ŭ N-
situation. Kishino and Waddell [22] propose gene selec-
tion by setting very low partial correlation coefficents to
zero. As they state, the estimate still remains unstable. In
one study, Schäfer and Strimmer [21] use bootstrap resa-
mpling together with the Moore-Penrose pseudoinverse
and false discovery rate multiple testing, while in another
[23], they discuss a linear shrinkage approach to regulari-
zation. Li and Gui [24] prospose a threshold gradient
descent regularization procedure for estimating a sparse
precision matrix.

Heuristic regression-based estimation
Full conditional independence models are closely related
to a class of graphical models called dependency networks
[25]. Dependency networks are built using sparse regres-
sion models to regress each gene Xi onto the remaining
genes XV \ i. The genes, which predict the state of gene Xi
well, are connected to it by (directed) edges in the graph.
In general, dependency networks may be inconsistent, i.e.
the local regression models may not consistently specify a
joint distribution over all genes. Thus, the resulting model
is only an approximation of the true full conditional
model. Still, dependency networks are widely used
because of their flexibility and the computational advan-
tage compared to structure learning in full conditional
independence models. When learning dependency net-
works, a variety of sparse classification/regression tech-
niques may be used to estimate the local distributions,
including linear models with an L1-penalty on model
parameters [20,26], classification trees [25,27], or sparse
Bayesian regression [19,28]. We will see later that these

Different mechanisms can explain coexpressionFigure 1
Different mechanisms can explain coexpression. The left plot in the dashed box shows three coexpressed genes form-
ing a clique in the coexpression graph. The other three plots show possible regulatory relationships that can explain coexpres-
sion: The genes could be regulated in a cascade (left), or one regulates both others (middle), or there is a common "hidden" 
regulator (right), which is not part of the model.

Coexpression Regulatory network

X Z

Y

X Z

Y

X Z

Y

X Y Z

H

A small Gaussian graphical modelFigure 2
A small Gaussian graphical model. Example of a full con-
ditional model. Missing edges between nodes indicate inde-
pendencies of two genes given all the other genes in the 
model. We can read from the graph that X ⊥ W | {Y, Z} and 
Y ⊥ W | {X, Z} and X ⊥ Z | {Y, W}.

W

Y

X Z

• For any co-expression network, there are several possible regulatory networks that can 
explain these correlations.

• What we would like is to be able to discriminate between direct and indirect 
dependencies

• Here we need to review conditional independencies



Conditional independencies in PGMs

• The different classes of models we will see are based 
on a general notion of specifying statistical 
independence

• Suppose we have two genes X and Y. We add an 
edge between X and Y if X and Y are not 
independent given a third set Z.

• Depending upon Z we will have a family of different 
PGMs



Conditional independence and PGMs

• Correlational networks
– Z is the empty set

• Markov networks
– X and Y are not independent given all other variables
– Gaussian Graphical models are a special case (later lectures)

• Dependency networks
– Approximate Markov networks
– May not be associated with a valid joint distribution (later lectures)

• First-order conditional independence models
– Explain the correlation between two variables by a third variable

• Bayesian networks
– Generalize first-order conditional independence models



Goals for today

• Background on transcriptional networks 
• Expression-based network inference
– Per-gene and Per-module based methods

• Different types of probabilistic graphical 
models

• Bayesian networks
• Learning Bayesian networks gene expression 

data



Bayesian networks (BN)
• A special type of probabilistic graphical model
• Has two parts:
– A graph which is directed and acyclic
– A set of conditional distributions

• Directed Acyclic Graph (DAG) 
– The nodes  denote random variables X1… XN

– The edges 
• encode statistical dependencies between the random variables
• establish parent child relationships

• Each node Xi has a conditional probability distribution 
(CPD) representing P(Xi | Pa(Xi)); Pa: Parents

• Provides a tractable way to represent large joint 
distributions



Key questions in Bayesian networks

• What do the CPDs look like?
• What independence assertions can be made 

in Bayesian networks?



An example Bayesian network 

Adapted from Kevin Murphy: Intro to Graphical models and Bayes networks: 
http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

Cloudy 
(C)

Rain (R)Sprinkler 
(S)

WetGrass
(W)

P(C=F)  P(C=T)

0.5     0.5

P(R=F)  P(R=T)

0.8     0.2
T 0.2     0.8

P(S=F)  P(S=T)

0.5     0.5F
T 0.9     0.1

P(W=F)  P(W=T)
1        0F  F

T  F 0.1     0.9

C

F  T
T  T

0.1     0.9
0.01   0.99

C

F

S  R



Notation

• B={G, Θ} A Bayesian network
• Xi: ith random variable
• If there are few random variables, we will just 

use upper case letters. E.g. A, B, C..
• X={X1,.., Xp}: set of p random variables
• xi

k:An assignment of Xi in the kth sample
• Pa(Xi) : Parents of random variable Xi
• D={x1,.. ,xm}: Dataset of m observations/samples 

of X
• I(Xi;Xj|Xk,Xl): Conditional independence 

notation: Xi is independent of Xj given Xk and Xl



Bayesian networks compactly represent joint 
distributions

P (X1, · · · , Xp) =
pY

i=1

P (Xi|Pa(Xi))



Example Bayesian network of 5 variables

CHILD

PARENTS

X1 X2

X3

X5

X4

P (X) = P (X1)P (X2)P (X4)P (X3|X1, X2)P (X5|X3, X4)

P (X) = P (X1, X2, X3, X4, X5)
No independence assertions

Independence assertions

Assume Xi is binary 

Needs 25 measurements

Needs 23 measurements



Conditional independencies in BN

• A variable Xi is independent of its non-
descendants given its parents

• I(Xi;Xj|Xk,Xl): Xi is independent of Xj given Xk
and XlUSING BAYESIAN NETWORKS 603

FIG. 1. An example of a simple Bayesian network structure. This network structure implies several con-
ditional independence statements: I .A; E/, I .B; D j A; E/, I .C; A; D; E j B/, I .D; B; C; E j A/, and
I .E; A; D/. The network structure also implies that the joint distribution has the product form: P .A; B; C; D; E/ 5
P .A/P .BjA; E/P .CjB/P .DjA/P .E/.

are denoted by boldface lowercase letters x; y; z. We denote I . ; j / to mean is independent of
conditioned on : P . j ; / 5 P . j /.

A Bayesian network is a representation of a joint probability distribution. This representation consists
of two components. The érst component, G, is a directed acyclic graph (DAG) whose vertices correspond
to the random variables X1; : : : ; Xn . The second component, µ describes a conditional distribution for
each variable, given its parents in G. Together, these two components specify a unique distribution on
X1; : : : ; Xn .

The graph G represents conditional independence assumptions that allow the joint distribution to be
decomposed, economizing on the number of parameters. The graph G encodes the Markov Assumption:

(*) Each variable Xi is independent of its nondescendants, given its parents in G.

By applying the chain rule of probabilities and properties of conditional independencies, any joint
distribution that satisées (*) can be decomposed into the product form

P .X1; : : : ; Xn/ 5
nY

i51

P .Xi jPaG.Xi//; (1)

where PaG.Xi/ is the set of parents of Xi in G. Figure 1 shows an example of a graph G and lists the
Markov independencies it encodes and the product form they imply.

A graph G speciées a product form as in (1). To fully specify a joint distribution, we also need to
specify each of the conditional probabilities in the product form. The second part of the Bayesian network
describes these conditional distributions, P .Xi jPaG.Xi// for each variable Xi . We denote the parameters
that specify these distributions by µ .

In specifying these conditional distributions, we can choose from several representations. In this paper,
we focus on two of the most commonly used representations. For the following discussion, suppose that
the parents of a variable X are fU1; : : : ; Uk g. The choice of representation depends on the type of variables
we are dealing with:

° Discrete variables. If each of X and U1; : : : ; Uk takes discrete values from a énite set, then we can
represent P .X j U1; : : : ; Uk/ as a table that speciées the probability of values for X for each joint
assignment to U1; : : : ; Uk . Thus, for example, if all the variables are binary valued, the table will
specify 2k distributions.
This is a general representation which can describe any discrete conditional distribution. Thus, we do
not loose expressiveness by using this representation. This èexibility comes at a price: The number of
free parameters is exponential in the number of parents.

° Continuous variables. Unlike the case of discrete variables, when the variable X and its parents
U1; : : : ; Uk are real valued, there is no representation that can represent all possible densities. A
natural choice for multivariate continuous distributions is the use of Gaussian distributions. These
can be represented in a Bayesian network by using linear Gaussian conditional densities. In this
representation, the conditional density of X given its parents is given by:

P .X j u1; : : : ; uk/ π N.a0 1
X

i

ai ui ; æ 2/:

Consider the example Bayesian network. What are the set of 
conditional independencies in this graph? 

I(A;E)

I(B;D|A,E)

I(D;E,B,C|A)

I(C;E,A,D|B)

I(E;A,D)

Friedman et al., 2000



CPD in Bayesian networks

• The CPD P(Xi|Pa(Xi)) specifies a distribution over 
values of Xi for each combination of values of Pa(Xi)

• CPD P(Xi|Pa(Xi)) can be parameterized in different 
ways

• Xi are discrete random variables 
– Conditional probability table or tree

• Xi are continuous random variables
– CPD can be linear Gaussians, conditional Gaussians or 

regression trees



• Consider  four binary variables X1, X2, X3, X4

Representing CPDs as tables

X1 X2 X3 t f
t t t 0.9 0.1

t t f 0.9 0.1

t f t 0.9 0.1

t f f 0.9 0.1

f t t 0.8 0.2

f t f 0.5 0.5

f f t 0.5 0.5

f f f 0.5 0.5

P( X4 | X1, X2, X3 ) as a table
X4

X1
X2

X4

X3

Pa(X4): X1, X2, X3



Estimating CPD table from data

• Assume we observe the following assignments for 
X1, X2, X3, X4

T F T T
T T F T
T T F T
T F T T
T F T F
T F T F
F F T F

X1 X2 X3 X4

For each joint assignment to X1, X2, X3, 
estimate the probabilities for each 
value of X4

For example, consider X1=T, X2=F, X3=T

P(X4=T|X1=T, X2=F, X3=T)=2/4
P(X4=F|X1=T, X2=F, X3=T)=2/4

N=7



Gaussians distribution for CPD

• For every joint assignment of the parent set, 
we have a Gaussian distribution on the child 
variable.

X3

X1 X2 P (X3|X1 = x1, X2 = x2) =

N (a0 + a1x1 + a2x2,�)
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A regression tree to capture a CPD

X1 > e1

X2 > e2

YES
NO

NO YES
Leaf

Interior node

P (X3|X1, X2)

X3 ⇠ N (µ31,�31) X3 ⇠ N (µ32,�32) X3 ⇠ N (µ33,�33)

X3

X1 X2

Expression of gene represented by X3 modeled using Gaussians at each leaf node

e1, e2 are values seen in the data



A regression tree captures non-linear 
dependencies

X2

X3

e1 e2

µ1,�1

µ2,�2

µ3,�3

X2 > e1

X2 > e2

YESNO

NO YES

µ3,�3µ2,�2µ1,�1

X3



Compute probabilities using a Bayesian 
network

What is the probability of P(C=F)  P(C=T)

0.5     0.5

P(S=F)  P(S=T)

0.5     0.5F
T 0.9     0.1

C
P(R=F)  P(R=T)

0.8     0.2
T 0.2     0.8

C

F

P(W=F)  P(W=T)
1        0F  F

T  F 0.1     0.9
F  T
T  T

0.1     0.9
0.01   0.99

S  R

C

RS

W

P (C = F,R = T, S = F,W = T )
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Bayes net allows us to write

P (W = T |S = F,R = T )P (S = F |C = F )

P (R = T |C = F )P (C = F )
<latexit sha1_base64="JTOJmhP14v0tPKEKEM8SPROZJUA=">AAACE3icbZDLSsNAFIYn9VbrLerSTbAIqUhJRNBNoFgoLqP2Bm0pk+mkHTq5MDMRStp3cOOruHGhiFs37nwbJ2kW2npgho//P4eZ8zshJVwYxreSW1ldW9/Ibxa2tnd299T9gyYPIoZwAwU0YG0HckyJjxuCCIrbIcPQcyhuOeNq4rceMOMk8OtiEuKeB4c+cQmCQkp99dTWW1Z9em/Vzu6sesnWJU2rVq3U7dq6VFK29eTuq0WjbKSlLYOZQRFkZffVr+4gQJGHfYEo5LxjGqHoxZAJgiieFboRxyFEYzjEHYk+9DDvxelOM+1EKgPNDZg8vtBS9fdEDD3OJ54jOz0oRnzRS8T/vE4k3KteTPwwEthH84fciGoi0JKAtAFhGAk6kQARI/KvGhpBBpGQMRZkCObiysvQPC+bRtm8vShWrrM48uAIHAMdmOASVMANsEEDIPAInsEreFOelBflXfmYt+aUbOYQ/Cnl8wcIhJnX</latexit><latexit sha1_base64="JTOJmhP14v0tPKEKEM8SPROZJUA=">AAACE3icbZDLSsNAFIYn9VbrLerSTbAIqUhJRNBNoFgoLqP2Bm0pk+mkHTq5MDMRStp3cOOruHGhiFs37nwbJ2kW2npgho//P4eZ8zshJVwYxreSW1ldW9/Ibxa2tnd299T9gyYPIoZwAwU0YG0HckyJjxuCCIrbIcPQcyhuOeNq4rceMOMk8OtiEuKeB4c+cQmCQkp99dTWW1Z9em/Vzu6sesnWJU2rVq3U7dq6VFK29eTuq0WjbKSlLYOZQRFkZffVr+4gQJGHfYEo5LxjGqHoxZAJgiieFboRxyFEYzjEHYk+9DDvxelOM+1EKgPNDZg8vtBS9fdEDD3OJ54jOz0oRnzRS8T/vE4k3KteTPwwEthH84fciGoi0JKAtAFhGAk6kQARI/KvGhpBBpGQMRZkCObiysvQPC+bRtm8vShWrrM48uAIHAMdmOASVMANsEEDIPAInsEreFOelBflXfmYt+aUbOYQ/Cnl8wcIhJnX</latexit><latexit sha1_base64="JTOJmhP14v0tPKEKEM8SPROZJUA=">AAACE3icbZDLSsNAFIYn9VbrLerSTbAIqUhJRNBNoFgoLqP2Bm0pk+mkHTq5MDMRStp3cOOruHGhiFs37nwbJ2kW2npgho//P4eZ8zshJVwYxreSW1ldW9/Ibxa2tnd299T9gyYPIoZwAwU0YG0HckyJjxuCCIrbIcPQcyhuOeNq4rceMOMk8OtiEuKeB4c+cQmCQkp99dTWW1Z9em/Vzu6sesnWJU2rVq3U7dq6VFK29eTuq0WjbKSlLYOZQRFkZffVr+4gQJGHfYEo5LxjGqHoxZAJgiieFboRxyFEYzjEHYk+9DDvxelOM+1EKgPNDZg8vtBS9fdEDD3OJ54jOz0oRnzRS8T/vE4k3KteTPwwEthH84fciGoi0JKAtAFhGAk6kQARI/KvGhpBBpGQMRZkCObiysvQPC+bRtm8vShWrrM48uAIHAMdmOASVMANsEEDIPAInsEreFOelBflXfmYt+aUbOYQ/Cnl8wcIhJnX</latexit><latexit sha1_base64="JTOJmhP14v0tPKEKEM8SPROZJUA=">AAACE3icbZDLSsNAFIYn9VbrLerSTbAIqUhJRNBNoFgoLqP2Bm0pk+mkHTq5MDMRStp3cOOruHGhiFs37nwbJ2kW2npgho//P4eZ8zshJVwYxreSW1ldW9/Ibxa2tnd299T9gyYPIoZwAwU0YG0HckyJjxuCCIrbIcPQcyhuOeNq4rceMOMk8OtiEuKeB4c+cQmCQkp99dTWW1Z9em/Vzu6sesnWJU2rVq3U7dq6VFK29eTuq0WjbKSlLYOZQRFkZffVr+4gQJGHfYEo5LxjGqHoxZAJgiieFboRxyFEYzjEHYk+9DDvxelOM+1EKgPNDZg8vtBS9fdEDD3OJ54jOz0oRnzRS8T/vE4k3KteTPwwEthH84fciGoi0JKAtAFhGAk6kQARI/KvGhpBBpGQMRZkCObiysvQPC+bRtm8vShWrrM48uAIHAMdmOASVMANsEEDIPAInsEreFOelBflXfmYt+aUbOYQ/Cnl8wcIhJnX</latexit>

Plugging in the assignments for the variables:

0.9*0.5*0.2*0.5
Looking up in the CPD

=0.045



Learning problems in Bayesian networks

• Parameter learning on known graph structure
– Given a set of joint assignments of the random 

variables, estimate the parameters of the model
• Structure learning
– Given a set of joint assignments of the random 

variables, estimate the structure and parameters 
of the model

– Structure learning subsumes parameter learning



Structure learning using score-based search

...

Score(B) Describes how well B describes the data

Score(B1) Score(B2) Score(B3) Score(Bm)

Exhaustive search is not computationally tractable



Scoring a Bayesian network

• Maximum likelihood score

• Bayesian score

We typically ignore the denominator 
as it is the same for all models

ScoreML(G : D) = max⇥P (D|G,⇥)

ScoreBayes(G : D) = P (G|D) =
P (D|G)P (G)

P (D)



Greedy hill climbing to search Bayesian 
network space

• Input: Data D, An initial Bayesian network, B0={G0,
Θ0}

• Output: Bbest

• Loop for r=1, 2.. until convergence:
– {Br

1, .., Br
m} = Neighbors(Br) by making local changes to Br

– Br+1: arg maxj(Score(Br
j))

• Termination: 
– Bbest= Br



Local changes to Bi

A

B C

D

A

B C

D

add an edge

A

B C

D

delete an edge

Current network

Check for cycles

Br

Br1 Br2



Goals for today

• Background on transcriptional networks 
• Expression-based network inference
– Per-gene and Per-module based methods

• Different types of probabilistic graphical 
models

• Bayesian networks
• Learning Bayesian networks gene expression 

data



Bayesian network representation of a 
regulatory network

Bayesian network

TARGET (CHILD)

REGULATORS (PARENTS)
X1

X2

X3

X1 X2

X3
P(X3|X1,X2)

Random variables

HSP12
Sko1Hot1

Inside the cell

Hot1:

Sko1:

Hsp12:

P(X1) P(X2)



Expression data matrix

p
Ge

ne
s

N Experiments/Time points etc

Observations (expression levels) of all 
variables in sample i, x(i)

Observations of 
variable Xj in all N 
experiments



Challenges with applying Bayesian network to 
genome-scale data

• Number of variables, p is in thousands

• Number of samples, N is in hundreds



Bayesian network-based methods to handle 
genome-scale networks

• Sparse candidate algorithm 

– Friedman, Nachman, Pe’er. 1999

– Friedman, Linial, Nachman, Pe’er. 

2000.

• Module networks 

– Segal, Pe’er, Regev, Koller, Friedman. 

2005 X5X3

X1 X2

Module (Cluster)

X3

X1 X2

X5

X1 X4

Per-module

Per-gene



The Sparse candidate Structure learning in 
Bayesian networks

• A fast Bayesian network learning algorithm
• Key idea: Identify k “promising” candidate parents 

for each Xi
– k<<p, p: number of random variables
– Candidates define a “skeleton graph” H

• Restrict graph structure to select parents from H
• Early choices in Hmight exclude other good parents
– Resolve using an iterative algorithm



Sparse candidate algorithm

• Input:
– A data set D
– An initial Bayes net B0
– A parameter k: max number of parents per variable

• Output: 
– Final Br

• Loop for r=1,2.. until convergence
– Restrict

• Based on D and Br-1 select candidate parents Ci
r for Xi

• This defines a skeleton directed network Hr

– Maximize
• Find network Br that maximizes the score Score(Br) among networks 

satisfying

• Termination: Return Br

Par(Xi) ✓ Cr
i



Information theory for measuring dependence

• I(X;Y) is the mutual information between two 
variables
– Knowing X, how much information do we have for Y

• P(Z) is the probability distribution of Z

• Measures the difference between the two 
distributions: joint and product of marginals



Selecting candidate parents in the Restrict Step

• A good parent for Xi is one with strong statistical 
dependence with Xi
– Mutual information provides a good measure of statistical 

dependence I(Xi; Xj)
– Mutual information should be used only as a first 

approximation
• Candidate parents need to be iteratively refined to 

avoid missing important dependences
• A good parent for Xi has the highest score 

improvement when added to Pa(Xi)



Sparse candidate learns good networks faster 
than hill-climbing
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Figure 4: Graphs showing the performance of the different algorithms on the text and biological domains. The graphs
on the top row show plots of score ( -axis) vs. running time ( -axis). The graphs on the bottom row show the same run
measured in terms of score ( -axis) vs. number of statistics computed ( -axis). The reported methods vary in terms of the
candidate selection measure (Disc – discrepancy measure, Shld – shielding measure, Score – score based measure) and
the size of the candidate set (k = 10 or 15). The points on each curve for the sparse candidate algorithm are the end result
of an iteration.

marginalize statistics to get the statistics of subsets. We
report the number of actual statistics that were computed
from the data.
Finally, in all of our experiments we used the BDe score

of [16] with a uniform prior with equivalent sample size of
ten. This choice is a fairly unformed prior that does not
code initial bias toward the correct network. The strength
of the equivalent sample size was set prior to the experi-
ments and was not tuned.
In the first set of experiments we used a sample of 10000

instances from the “alarm” network [1]. This network has
been used for studies of structure learning in various pa-
pers, and is treated as a common benchmark in the field.
This network contains 37 variables, of which 13 have 2
values, 22 have 3 values, and 2 have 4 values. We note
that although we do not consider this data set particularly
massive, it does allow us to estimate the behavior of our
search procedure. In the future we plan to use synthetic
data from larger networks.
The results for this small data set are reported in Table 1.

In this table we measure both the score of the networks
found and their error with respect to generating distribu-
tions. The results on this toy domain show that our algo-
rithm, in particular with the selection heuristic, finds
networks with comparable score to the one found by greedy
hill climbing. Although the timing results for this small
scale experiments are not too significant, we do see that the
sparse candidate algorithm usually requires fewer statistics
records. Finally, we note that the first iteration of the al-

gorithm finds reasonably high scoring networks. Nonethe-
less, subsequent iterations improve the score. Thus, the re-
estimation of candidate sets based on our score does lead
to important improvements.
To test our learning algorithms on more challenging do-

mains we examined data from text. We used the data
set that contains messages from 20 newsgroups (approxi-
mately 1000 from each) [18]. We represent each message
as a vector containing one attribute for the newsgroup and
attributes for each word in the vocabulary. We constructed
data sets with different numbers of attributes by focusing
on subsets of the vocabulary. We did this by removing
common stop words, and then sorting words based on their
frequency in the whole data set. The data sets included the
group designator and the 99 (text 100 set) or 199 (text 200
set) most common words. We trained on 10,000 messages
that were randomly selected from the total data set.
The results of these experiments are reported in figure 4.

As we can see, in the case of 100 attributes, by using the
selection method with candidate sets of sizes 10 or

15, we can learn networks that are reasonably close to the
one found by greedy hill-climbing in about half the running
time and half the number of sufficient statistics. When we
have 200 attributes, the speedup is larger than 3. We ex-
pect that as we consider data sets with larger number of
attributes, this speedup ratio will grow.
To test that, we devised another synthetic dataset, which

originates in real biological data. We used gene expres-
sion data from [23]. The data describes expression level

Size of Bayesian network: 100 variables

Greedy hill climbing takes much 
longer to reach a high scoring 
bayesian network
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Some comments about choosing candidates

• How to select k in the sparse candidate 
algorithm?

• Should k be the same for all Xi ?
• Estimate an undirected dependency network
– Learn a Bayesian network constrained on the 

dependency network structure
• Regularized regression approaches can be used to 

estimate the structure of an undirected graph
– Schmidt, Niculescu-Mizil, Murphy 2007



Bayesian network-based methods to handle 
genome-scale networks

• Sparse candidate algorithm 

– Friedman, Nachman, Pe’er. 1999

– Friedman, Linial, Nachman, Pe’er. 

2000.

• Module networks 

– Segal, Pe’er, Regev, Koller, 

Friedman. 2005 X5X3

X1 X2

Module (Cluster)

X3

X1 X2

X5

X1 X4

Per-module

Per-gene



Per-module methods

• Find regulators for an entire module
– Assume genes in the same module have the same 

regulators
• Module Networks (Segal et al. 2005)
• Stochastic LeMoNe (Joshi et al. 2008)

Per module

Y2Y1

X1 X2

Module



Module Networks

• Motivation: 
– Most complex systems have too many variables
– Not enough data to robustly learn networks
– Large networks are hard to interpret

• Key idea: Group similarly behaving variables into 
“modules” and learn the same parents and 
parameters for each module

• Relevance to gene regulatory networks
– Genes that are co-expressed are likely regulated in 

similar ways

Segal et al 2005, JMLR



Definition of a module

• Statistical definition (specific to module 
networks by Segal 2005)
– A set of random variables that share a statistical 

model
• Biological definition of a module
– Set of genes that are co-expressed and co-

regulated



Bayesian network vs Module network

• Bayesian network
– Different CPD per random variable
– Learning only requires to search for parents

• Module network
– CPD per module
• Same CPD for all random variables in the same module

– Learning requires parent search and module 
membership assignment



Bayesian network vs Module networkLEARNING MODULE NETWORKS
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CPD 4

P(INTL)
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CPD 5

CPD 1

CPD 2

INTL

MSFT

MOT
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Module 3

Module 2

Module 1

CPD 3

CPD 2

CPD 1

AMAT

HPQ

(a) Bayesian network (b) Module network

Figure 1: (a) A simple Bayesian network over stock price variables; the stock price of Intel (INTL)
is annotated with a visualization of its CPD, described as a different multinomial dis-
tribution for each value of its influencing stock price Microsoft (MSFT). (b) A simple
module network; the boxes illustrate modules, where stock price variables share CPDs
and parameters. Note that in a module network, variables in the same module have the
same CPDs but may have different descendants.

to modules and the probabilistic model for each module. We evaluate the performance of our al-
gorithm on two real data sets, in the domains of gene expression and the stock market. Our results
show that our learned module network generalizes to unseen test data much better than a Bayesian
network. They also illustrate the ability of the learned module network to reveal high-level structure
that provides important insights.

2. The Module Network Framework

We start with an example that introduces the main idea of module networks and then provide a
formal definition. For concreteness, consider a simple toy example of modeling changes in stock
prices. The Bayesian network of Figure 1(a) describes dependencies between different stocks. In
this network, each random variable corresponds to the change in price of a single stock. For illus-
tration purposes, we assume that these random variables take one of three values: ‘down’, ‘same’
or ‘up’, denoting the change during a particular trading day. In our example, the stock price of
Intel (INTL) depends on that of Microsoft (MSFT). The conditional probability distribution (CPD)
shown in the figure indicates that the behavior of Intel’s stock is similar to that of Microsoft. That
is, if Microsoft’s stock goes up, there is a high probability that Intel’s stock will also go up and vice
versa. Overall, the Bayesian network specifies a CPD for each stock price as a stochastic function
of its parents. Thus, in our example, the network specifies a separate behavior for each stock.

The stock domain, however, has higher order structural features that are not explicitly modeled
by the Bayesian network. For instance, we can see that the stock price of Microsoft (MSFT) in-

559

Each variable takes three values: UP, DOWN, SAME



Modeling questions in Module Networks

• How to score and learn module networks?
• How to model the CPD between parent and 

children?
– Regression Tree



Defining a Module Network

• A probabilistic graphical model over N random 
variables

• Set of module variables M1.. MK

• Module assignments A that specifies the 
module (1-to-K) for each Xi

• CPD per module P(Mj|PaMj), PaMj are parents 
of module Mj
– Each variable Xi in Mj has the same conditional 

distribution

X = {X1, · · · , XN}



Learning a Module Network

• Given training dataset , fixed 
number of modules, K

• Learn
– Module assignments A of each variable to a 

module 
– The parents of each module to give structure S

D = {x1, · · · ,xm}



Score of a module network

• Module network makes use of a Bayesian 
score

SEGAL, PE’ER, REGEV, KOLLER AND FRIEDMAN

For example, in the case of networks that use only multinomial table CPDs, we have one suffi-
cient statistic function for each joint assignment x ∈ Val(M j),u ∈ Val(PaM j), which is

${Xi[m] = x,paM j [m] = u},

the indicator function that takes the value 1 if the event (Xi[m] = x,PaM j [m] = u) holds, and 0
otherwise. The statistic on the data is

Ŝ j[x,u] =
M

#
m=1

#
Xi∈X j

${Xi[m] = x,PaM j [m] = u}.

Given these sufficient statistics, the formula for the module likelihood function is:

Lj(PaM j ,X j,!M j|PaM j
:D) = "

x,u∈Val(M j,PaM j )

!
Ŝ j[x,u]
x|u .

This term is precisely the one we would use in the likelihood of Bayesian networks with multinomial
table CPDs. The only difference is that the vector of sufficient statistics for a local likelihood term
is pooled over all the variables in the corresponding module.

For example, consider the likelihood function for the module network of Figure 1(b). In this
network we have three modules. The first consists of a single variable and has no parents, and so
the vector of statistics Ŝ[M1] is the same as the statistics of the single variable Ŝ[MSFT]. The second
module contains three variables; thus, the sufficient statistics for the module CPD is the sum of the
statistics we would collect in the ground Bayesian network of Figure 1(a):

Ŝ[M2,MSFT] = Ŝ[AMAT,MSFT]+ Ŝ[MOT,MSFT]+ Ŝ[INTL,MSFT].

Finally,
Ŝ[M3,AMAT, INTL] = Ŝ[DELL,AMAT, INTL]+ Ŝ[HPQ,AMAT, INTL].

An illustration of the decomposition of the likelihood and the associated sufficient statistics using
the plate model is shown in Figure 2.

As usual, the decomposition of the likelihood function allows us to perform maximum likeli-
hood or MAP parameter estimation efficiently, optimizing the parameters for each module sepa-
rately. The details are standard (Heckerman, 1998), and are thus omitted.

3.2 Priors and the Bayesian Score

As we discussed, our approach for learning module networks is based on the use of a Bayesian
score. Specifically, we define a model score for a pair (S ,A) as the posterior probability of the
pair, integrating out the possible choices for the parameters !. We define an assignment prior P(A),
a structure prior P(S | A) and a parameter prior P(! | S ,A). These describe our preferences over
different networks before seeing the data. By Bayes’ rule, we then have

P(S ,A | D) % P(A)P(S | A)P(D | S ,A),

where the last term is the marginal likelihood

P(D | S ,A) =
Z

P(D | S ,A ,!)P(! | S)d!.
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We define the Bayesian score as the log of P(S ,A | D), ignoring the normalization constant

score(S ,A : D) = logP(A)+ logP(S | A)+ logP(D | S ,A). (3)

As with Bayesian networks, when the priors satisfy certain conditions, the Bayesian score de-
composes. This decomposition allows to efficiently evaluate a large number of alternatives. The
same general ideas carry over to module networks, but we also have to include assumptions that
take the assignment function into account. Following is a list of conditions on the prior required for
the decomposability of the Bayesian score in the case of module networks:

Definition 7 Let P(!,S ,A) be a prior over assignments, structures, and parameters.

• P(!,S ,A) is globally modular if

P(! | S ,A) = P(! | S),

and

P(S ,A) % &(S)'(A)C(A ,S),

where &(S) and '(A) are non-negative measures over structures and assignments, andC(A ,S)
is a constraint indicator function that is equal to 1 if the combination of structure and assign-
ment is a legal one (i.e., the module graph induced by the assignment A and structure S is
acyclic), and 0 otherwise.

• P(! | S) satisfies parameter independence if

P(! | S) =
K

"
j=1

P(!M j|PaM j
| S).

• P(! | S) satisfies parameter modularity if

P(!M j|PaM j
| S1) = P(!M j|PaM j

| S2).

for all structures S1 and S2 such that PaS1
M j

= PaS2
M j
.

• &(S) satisfies structure modularity if

&(S) ="
j
& j(S j),

where S j denotes the choice of parents for moduleM j and & j is a non-negative measure over
these choices.

• '(A) satisfies assignment modularity if

'(A) ="
j
' j(A j),

where A j denote is the choice of variables assigned to module M j and ' j is a non-negative
measure over these choices.
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Score of a module network continued

Integrate parameters out

U: Set of parents defined by S
X: Set of variables. 

Decomposes over each module

log
kY

j=1

Z
Lj(U,X, ✓Mj |U : D)P (✓Mj |U)d✓Mj |U

For computing each Lj term we would need only the 
variables and parents associated with module j

Decomposes over each moduleKX

j=1

log

Z
Lj(U,X, ✓Mj |U : D)P (✓Mj |U)d✓Mj |U

logP (D|S,A) = log

Z
P (D|S,A, ✓)P (✓|S,A)d✓



Defining the data likelihood

Lj =
|D|Y

m=1

Y

Xi�Xj

P (xi[m]|paMj
[m], �j)

K: number of modules, Xj : jth module PaMj Parents of module Mj

Likelihood of module j=
KY

j=1

Lj(PaMj ,X
j , �j : D)

Xj = {Xi 2 X|A(Xi) = j}



Data likelihood exampleLEARNING MODULE NETWORKS

Instance 3

Module 3

Module 2

Module 1

AMAT

θθθθ

θθθθ

θθθθ

DELL HPQ

INTL

MOT

MSFT

Instance 1

Instance 2

+MSFT)(AMAT,S

+MSFT)(MOT,S

MSFT)(INTL,S

=MSFT),(MS (MSFT)S)(MS =

+INTL)AMAT,(DELL,S

+INTL)AMAT,(HPQ,S

=INTL)AMAT,,(MS

Figure 2: Shown is a plate model for three instances of the module network example of Figure 1(b).
The CPD template of each module is connected to all variables assigned to that module
(e.g. θM2|MSFT is connected to AMAT, MOT, and INTL). The sufficient statistics of
each CPD template are the sum of the sufficient statistics of each variable assigned to the
module and the module parents.

module likelihoods, each of which can be calculated independently and depends only on the values
of X j and PaM j , and on the parameters θM j|PaM j

:

L(M :D)

=
K

∏
j=1

[

M

∏
m=1

∏
Xi∈X j

P(xi[m] | paM j [m],θM j|PaM j
)

]

=
K

∏
j=1

Lj(PaM j ,X
j,θM j|PaM j

:D). (1)

If we are learning conditional probability distributions from the exponential family (e.g., discrete
distribution, Gaussian distributions, and many others), then the local likelihood functions can be
reformulated in terms of sufficient statistics of the data. The sufficient statistics summarize the
relevant aspects of the data. Their use here is similar to that in Bayesian networks (Heckerman,
1998), with one key difference. In a module network, all of the variables in the same module
share the same parameters. Thus, we pool all of the data from the variables in X j, and calculate
our statistics based on this pooled data. More precisely, let S j(Mj,PaM j) be a sufficient statistic
function for the CPD P(Mj | PaM j). Then the value of the statistic on the data set D is

Ŝ j =
M

∑
m=1

∑
Xi∈X j

S j(xi[m],paM j [m]). (2)
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Module network learning algorithm
LEARNING MODULE NETWORKS

Input:
D // Data set
K // Number of modules

Output:
M // A module network

Learn-Module-Network
A0 = cluster X into K modules
S0 = empty structure
Loop t = 1,2, . . . until convergence

St = Greedy-Structure-Search(At−1,St−1)
At = Sequential-Update(At−1,St );

Return M= (At ,St)

Figure 4: Outline of the module network learning algorithm. Greedy-Structure-Search successively
applies operators that change the structure as long as each such operator results in a legal
structure and improves the module network score

prove the score. Hence, it converges to a local maximum, in the sense that no single assignment
change can improve the score.

The computation of the score is the most expensive step in the sequential algorithm. Once again,
the decomposition of the score plays a key role in reducing the complexity of this computation:
When reassigning a variable Xi from one module Mold to another Mnew, only the local scores of
these modules change. The module score of all other modules remains unchanged. The rescoring of
these two modules can be accomplished efficiently by subtracting Xi’s statistics from the sufficient
statistics of Mold and adding them to those of Mnew. Thus, assuming that we have precomputed
the sufficient statistics associated with every pair of variable Xi and moduleM j, the cost of recom-
puting the delta-score for an operator is O(s), where s is the size of the table of sufficient statistics
for a module. The only operators whose delta-scores change are those involving reassignment of
variables to/from these two modules. Assuming that each module has approximately O(n/K) vari-
ables, and we have at most K possible destinations for reassigning each variable, the total number
of such operators is generally linear in n. Thus, the cost of each reassignment step is approximately
O(ns). In addition, at the beginning of the module reassignment step, we must initialize all of the
sufficient statistics at a cost of O(Mnd), and compute all of the delta-scores at a cost of O(nK).

4.3 Algorithm Summary

To summarize, our algorithm starts with an initial assignment of variables to modules. In general,
this initial assignment can come from anywhere, and may even be a random guess. We choose to
construct it using the clustering-based idea described in the previous section. The algorithm then
iteratively applies the two steps described above: learning the module dependency structures, and re-
assigning variables to modules. These two steps are repeated until convergence, where convergence
is defined by a score improvement of less than some fixed threshold ! between two consecutive
learned models. An outline of the module network learning algorithm is shown in Figure 4.

Each of these two steps — structure update and assignment update — is guaranteed to either
improve the score or leave it unchanged. The following result therefore follows immediately:
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Iterations in learning Module Networks
Learn 
regulators/CPD 
per module

X1

X3X4

X5 X6

X2M1
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M3

X1
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X6

X7

X8 X7 X8
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X4 X1

X1

X3X4

X5 X6

X2

X7

X8

X5 X6

X4 X1

Revisit the modules

M1

M2

M3 X8

Module M1 and 
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Module re-assignment

• Must preserve the acyclic graph structure
• Must improve score
• Module re-assignment happens using a 

sequential update procedure:
– Update only one variable at a time
– The change in score of moving a variable from one 

module to another while keeping the other 
variables fixed



Module re-assignment via sequential update

SEGAL, PE’ER, REGEV, KOLLER AND FRIEDMAN

Input:
D // Data set
A0 // Initial assignment function
S // Given dependency structure

Output:
A // improved assignment function

Sequential-Update
A = A0
Loop
For i= 1 to n
For j = 1 to K

A ′ = A except that A ′(Xi) = j
If ⟨GM ,A ′⟩ is cyclic, continue
If score(S ,A ′ : D) > score(S ,A : D)

A = A ′

Until no reassignments to any of X1, . . .Xn
Return A

Figure 3: Outline of sequential algorithm for finding the module assignment function

4.2.3 MODULE REASSIGNMENT

In the module reassignment step, the task is more complex. We now have a given structure S , and
wish to find A = argmaxA ′scoreM(S ,A ′ : D). We thus wish to take each variable Xi, and select the
assignment A(Xi) that provides the highest score.

At first glance, we might think that we can decompose the score across variables, allowing
us to determine independently the optimal assignment A(Xi) for each variable Xi. Unfortunately,
this is not the case. Most obviously, the assignments to different variables must be constrained
so that the module graph remains acyclic. For example, if X1 ∈ PaMi and X2 ∈ PaM j , we cannot
simultaneously assign A(X1) = j and A(X2) = i. More subtly, the Bayesian score for each module
depends non-additively on the sufficient statistics of all the variables assigned to the module. (The
log-likelihood function is additive in the sufficient statistics of the different variables, but the log
marginal likelihood is not.) Thus, we can only compute the delta score for moving a variable from
one module to another given a fixed assignment of the other variables to these two modules.

We therefore use a sequential update algorithm that reassigns the variables to modules one by
one. The idea is simple. We start with an initial assignment function A0, and in a “round-robin”
fashion iterate over all of the variables one at a time, and consider changing their module assignment.
When considering a reassignment for a variable Xi, we keep the assignments of all other variables
fixed and find the optimal legal (acyclic) assignment for Xi relative to the fixed assignment. We
continue reassigning variables until no single reassignment can improve the score. An outline of
this algorithm appears in Figure 3

The key to the correctness of this algorithm is its sequential nature: Each time a variable as-
signment changes, the assignment function as well as the associated sufficient statistics are updated
before evaluating another variable. Thus, each change made to the assignment function leads to a
legal assignment which improves the score. Our algorithm terminates when it can no longer im-
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Modeling questions in Module Networks

• How to score and learn module networks?
• How to model the CPD between parent and 

children?
– Regression Tree



Representing the Conditional probability 
distribution

• Xi are continuous variables
• How to represent the distribution of Xi given 

the state of its parents?
• How to capture context-specific 

dependencies?
• Module networks use a regression tree



Modeling the relationship between regulators and 
targets

• suppose we have a set of (8) genes that all have in their 
upstream regions the same activator/repressor binding 
sites Segal et al., Nature Genetics 2003



A regression tree

• A rooted binary tree T
• Each node in the tree is either an interior 

node or a leaf node
• Interior nodes are labeled with a binary test 

Xi<u, u is a real number observed in the data
• Leaf nodes are associated with univariate

distributions of the child



An example regression tree for a Module 
network

LEARNING MODULE NETWORKS

AMAT<5%

INTL<4%

00000

false

truefalse

true

INTL

MSFT

MOT

DELL

Module 3

Module 2

Module 1

AMAT

HPQ

P(M3 | AMAT, INTL)

N(1.4,0.8) N(0.1,1.6) N(-2,0.7)

Figure 6: Example of a regression tree with univariate Gaussian distributions at the leaves for rep-
resenting the CPD P(M3 | AMAT, INTL), associated withM3. The tree has internal nodes
labeled with a test on the variable (e.g. AMAT < 5%). Each univariate Gaussian distri-
bution at a leaf is parameterized by a mean and a variance. The tree structure captures
the local dependency structure of the conditional distributions. In the example shown,
when AMAT ≥ 5%, then the distribution over values of variables assigned toM3 will be
Gaussian with mean 1.4 and standard deviation 0.8 regardless of the value of INTL.

Figure 6. We note that, in some domains, Gaussian distributions may not be the appropriate choice
of models to assign at the leaves of the regression tree. In such cases, we can apply transforma-
tions to the data to make it more appropriate for modeling by Gaussian distributions, or use other
continuous or discrete distributions at the leaves.

To learn module networks with regression-tree CPDs, we must extend our previous discus-
sion by adding another component to S that represents the trees T1, . . . ,TK associated with the dif-
ferent modules. Once we specify these components, the above discussion applies with several
small differences. These issues are similar to those encountered when introducing decision trees to
Bayesian networks (Chickering et al., 1997; Friedman and Goldszmidt, 1998), so we discuss them
only briefly.

Given a regression tree Tj for P(M j | PaM j), the corresponding sufficient statistics are the statis-
tics of the distributions at the leaves of the tree. For each leaf ℓ in the tree, and for each data instance
x[m], we let ℓ j[m] denote the leaf reached in the tree given the assignment to PaM j in x[m]. The mod-
ule likelihood decomposes as a product of terms, one for each leaf ℓ. Each term is the likelihood for
the Gaussian distribution N

(

µℓ;+2ℓ
)

, with the usual sufficient statistics for a Gaussian distribution.
Given a regression tree Tj for P(M j | PaM j), the corresponding sufficient statistics are the statis-

tics of the distributions at the leaves of the tree. For each leaf ℓ in the tree, and for each data instance
x[m], we let ℓ j[m] denote the leaf reached in the tree given the assignment to PaM j in x[m]. The mod-
ule likelihood decomposes as a product of terms, one for each leaf ℓ. Each term is the likelihood for
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Assessing the value of using Module Networks

• Using simulated data
– Generate data from a known module network 
– Known module network was in turn learned from real data

• 10 modules, 500 variables 
– Evaluate using

• Test data likelihood
• Recovery of true parent-child relationships are recovered in 

learned module network
• Using gene expression data
– External validation of modules (Gene ontology, motif 

enrichment)
– Cross-check with literature



Test data likelihood 
LEARNING MODULE NETWORKS
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Figure 7: Performance of learning from synthetic data as a function of the number of modules and
training set size. The x-axis corresponds to the number of modules, each curve corre-
sponds to a different number of training instances, and each point shows the mean and
standard deviations from the 10 sampled data sets. (a) Log-likelihood per instance as-
signed to held-out data. (b) Average score per instance on the training data.

to a specification of the total number of modules. We used regression trees as the local probability
model for all modules, and uniform priors for !(S) and "(A). For structure search, we used beam
search, using a lookahead of three splits to evaluate each operator. When learning Bayesian net-
works, as a comparison, we used precisely the same structure learning algorithm, simply treating
each variable as its own module.

6.1 Synthetic Data

As a basic test of our procedure in a controlled setting, we used synthetic data generated by a known
module network. This gives a known ground truth to which we can compare the learned models.
To make the data realistic, we generated synthetic data from a model that was learned from the
gene expression data set described below. The generating model had 10 modules and a total of
35 variables that were a parent of some module. From the learned module network, we selected
500 variables, including the 35 parents. We tested our algorithm’s ability to reconstruct the network
using different numbers of modules; this procedure was run for training sets of various sizes ranging
from 25 instances to 500 instances, each repeated 10 times for different training sets.

We first evaluated the generalization to unseen test data, measuring the likelihood ascribed by
the learned model to 4500 unseen instances. The results, summarized in Figure 7(a), show that, for
all training set sizes, except the smallest one with 25 instances, the model with 10 modules performs
the best. As expected, models learned with larger training sets do better; but, when run using the
correct number of 10 modules, the gain of increasing the number of data instances beyond 100
samples is small and beyond 200 samples is negligible.
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Recovery of graph structure

SEGAL, PE’ER, REGEV, KOLLER AND FRIEDMAN
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Figure 8: (a) Fraction of variables assigned to the 10 largest modules. (b) Average percentage of
correct parent-child relationships recovered (fraction of parent-child relationships in the
true model recovered in the learned model) when learning from synthetic data for models
with various number of modules and different training set sizes. The x-axis corresponds
to the number of modules, each curve corresponds to a different number of training in-
stances, and each point shows the mean and standard deviations from the 10 sampled data
sets.

To test whether we can use the score of the model to select the number of modules, we also
plotted the score of the learned model on the training data (Figure 7(b)). As can be seen, when the
number of instances is small (25 or 50), the model with 10 modules achieves the highest score and
for a larger number of instances, the score does not improve when increasing the number of modules
beyond 10. Thus, these results suggest that we can select the number of modules by choosing the
model with the smallest number of modules from among the highest scoring models.

A closer examination of the learned models reveals that, in many cases, they are almost a 10-
module network. As shown in Figure 8(a), models learned using 100, 200, or 500 instances and up
to 50 modules assigned ≥ 80% of the variables to 10 modules. Indeed, these models achieved high
performance in Figure 7(a). However, models learned with a larger number of modules had a wider
spread for the assignments of variables to modules and consequently achieved poor performance.

Finally, we evaluated the model’s ability to recover the correct dependencies. The total num-
ber of parent-child relationships in the generating model was 2250. For each model learned, we
report the fraction of correct parent-child relationships it contains. As shown in Figure 8(b), our
procedure recovers 74% of the true relationships when learning from a data set with 500 instances.
Once again, we see that, as the variables begin fragmenting over a large number of modules, the
learned structure contains many spurious relationships. Thus, our results suggest that, in domains
with a modular structure, statistical noise is likely to prevent overly detailed learned models such
as Bayesian networks from extracting the commonality between different variables with a shared
behavior.
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Application of Module networks to yeast 
expression data

A R T I C L E S
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Figure 2  Regulation programs represent context-specific and combinatorial
regulation. Shown is a scheme depicting three distinct modes of regulation
for a group of genes. (a) Context A. Genes in the module are not under
transcriptional regulation and are in their basal expression level. (b) Context
B. An activator gene is upregulated and, as a result, binds the upstream
regions of the module genes, thereby inducing their transcription. (c) Context
C. A repressor gene is upregulated and, as a result, blocks transcription of the
genes in the module, thereby reducing their expression levels. (d) A regulation
tree or program can represent the different modes of regulation described
above. Each node in the tree consists of a regulatory gene (for example,
‘Activator’) and a query on its qualitative value, in which an upward arrow
(red) denotes the query “is gene upregulated?” and a downward arrow (green)
denotes the query “is gene downregulated?”. Right branches represent
instances for which the answer to the query in the node is ‘true’; left branches
represent instances for which the answer is ‘false’. The expression of the
regulatory genes themselves is shown below their respective node. Each leaf
of the regulation tree is a regulation context (bordered by black dotted lines)
as defined by the queries leading to the leaf. The contexts partition the arrays
into disjoint sets, where each context includes the arrays defined by the
queries of the inputs that define the context. In context A, the activator is not
upregulated and the genes in the module are in their basal expression level
(left leaf). In contexts B and C, the activator is upregulated. In context C, the repressor is also upregulated and the module genes are repressed (right leaf).
In context B, the repressor is not upregulated and the activator induces expression of the module genes (center leaf). This regulation program specifies
combinatorial interaction; for example, in context B, the module genes are upregulated only when the activator is upregulated but the repressor is not.

of the module’s genes contained the known motif in their upstream
regions). Overall, our results provide a global view of the yeast
transcriptional network, including many instances in which our
method identifies known functional modules and their correct reg-
ulators, showing its ability to derive regulation from expression.

A regulation program specifies that certain genes regulate certain
processes under certain conditions. Our method thus generates
detailed, testable hypotheses, suggesting specific roles for a regulator
and the conditions under which it acts. We tested experimentally the

computational predictions for three putative regulators with
unknown functions (a transcription factor and two signaling mole-
cules). Our method’s results make specific predictions regarding the
conditions under which these regulators operate. Using microarray
analysis, we compared the transcriptional responses of the respective
genetically disrupted strains with their congenic wild-types under
these conditions. Deletion of each of the three regulators caused a
marked impairment in the expression of a substantial fraction of their
computationally predicted targets, supporting the method’s predic-
tions and giving important insight regarding the function of these
uncharacterized regulators.

RESULTS
We compiled a list of 466 candidate regulators and applied our proce-
dure to 2,355 genes in the 173 arrays of the yeast stress data set3,
resulting in automatic inference of 50 modules. We analyzed each of
the resultant modules (Fig. 1) using a variety of external data sources,
evaluating the functional coherence of its gene products and the
validity of its regulatory program.

Sample modules
We first present in detail several of the inferred modules, selected to
show the method’s ability to reproduce diverse features of regulatory
programs.

The respiration module (Fig. 3) is a clear example of a predicted
module and of the validation process. It consists primarily of genes
encoding respiration proteins (39 of 55) and glucose-metabolism reg-
ulators (6 of 55). The inferred regulatory program specifies the Hap4
transcription factor as the module’s top (activating) regulator, pri-
marily under stationary phase (a growth phase in which nutrients,
primarily glucose, are depleted). This prediction is consistent with the
known role of Hap4 in activation of respiration1,19. Indeed, our post-
analysis detected a Hap4-binding DNA sequence motif (bound by the
Hap2/3/4/5 complex) in the upstream region of 29 of 55 genes in the
module (P < 2 ! 10–13). This motif also appears in non-respiration
genes (mitochondrial genes and glucose-metabolism regulators),
which, together with their matching expression profiles, supports
their inclusion as part of the module. When Hap4 is not induced, the
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Figure 1 Overview of the module networks algorithm and evaluation
procedure. The procedure takes as input a data set of gene expression
profiles and a large precompiled set of candidate control genes. The method
itself (dotted box) is an iterative procedure that determines both the partition
of genes to modules and the regulation program (right icon in dotted box) for
each module. In a post-processing phase, modules are tested for enrichment
of gene annotations and cis-regulatory binding site motifs.
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The Respiration and Carbon Module
Regression 
tree 
representing 
rules of 
regulation



Global View 
of Modules

• modules for common processes 
often share common
– regulators
– binding site motifs



Application of Module networks to 
mammalian data

• Module networks have been 

applied to mammalian systems 

as well

• We will look at a case-study in 

the human blood cell lineage

• Dataset

– Genome-wide expression levels 

in 38 hematopoietic cell types 

(211 samples)

– 523 candidate regulators 

(Transcription factors)

by induction of lineage-specific genes or by a unique combina-
tion of modules, wherein the distinct capacities of each cell
type are largely determined through the reuse of modules? (2)
Is hematopoiesis determined solely by a few master regulators,
or does it involve a more complex network with a larger number
of factors? (3) What are the regulatory mechanisms that maintain
cell state in the hematopoietic system, and how do they change
as cells differentiate?
Here, we measured mRNA profiles in 38 prospectively purified

cell populations, from hematopoietic stem cells, throughmultiple
progenitor and intermediate maturation states, to 12 terminally
differentiated cell types (Figure 1). We found distinct, tightly
integrated, regulatory circuits in hematopoietic stem cells and

differentiated cells, implicated dozens of new regulators in
hematopoiesis, and demonstrated a substantial reuse of gene
modules and their regulatory programs in distinct lineages. We
validated our findings by experimentally determining the binding
sites of four TFs in hematopoietic stem cells, by examining the
expression of a set of 33 TFs in erythroid and myelomonocytic
differentiation in vitro, and by investigating the function of 17 of
these TFs using RNA interference. Our data provide strong
evidence for the role of complex interconnected circuits in hema-
topoiesis and for ‘‘anticipatory binding’’ to the promoters of their
target genes in hematopoietic stem cells. Our data set and
analyses will serve as a comprehensive resource for the study
of gene regulation in hematopoiesis and differentiation.
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Figure 1. Hematopoietic Differentiation
The 38 hematopoietic cell populations purified by flow sorting and analyzed by gene expression profiling are illustrated in their respective positions in hema-

topoiesis. (Gray) Hematopoietic stem cell (HSC1,2), common myeloid progenitor (CMP), megakaryocyte/erythroid progenitor (MEP). (Orange) Erythroid cells

(ERY1–5). (Red) CFU-MK (MEGA1) and megakaryocyte (MEGA2). (Purple) Granulocyte/monocyte progenitor (GMP), CFU-G (GRAN1), neutrophilic meta-

myelocyte (GRAN2), neutrophil (GRAN3), CFU-M (MONO1), monocytes (MONO2), eosinophil (EOS), and basophil (BASO). (Blue) Myeloid dendritic cell (DENDa2)

and plasmacytoid dendritic cell (DENDa1). (Light green) Early B cell (Pre-BCELL2), pro-B cell (Pre-BCELL3), naive B cell (BCELLa1), mature B cell, class able to

switch (BCELLa2), mature B cell (BCELLa3), and mature B cell, class switched (BCELLa4). (Dark green) Mature NK cell (NK1–4). (Turquoise) Naive CD8+ T cell

(TCELL2), CD8+ effector memory RA (TCELL1), CD8+ effector memory (TCELL3), CD8+ central memory (TCELL4), naive CD4+ T cell (TCELL6), CD4+ effector

memory (TCELL7), and CD4+ central memory (TCELL8). See Table S1 for markers information.
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The signature genes are enriched for molecular functions and
biological processes consistent with the functional differences
between lineages (Figure S1D and Table S2). Of note, a set of
16 genes comprised of the 50 partners of known translocations
in leukemias (Mitelman et al., 2010) is enriched in the HSPC pop-
ulation (p < 0.013). This suggests that the 50 partners of leukemia-
causing translocations, containing the promoters of the fusion
genes, tend to be selectively expressed in stem and progenitor
cell populations.
The diversity of gene expression across hematopoietic line-

ages is comparable to the diversity in gene expression observed
across a host of human tissue types. The number of genes that
are differentially expressed throughout our hematopoiesis data
set (outlier analysis) (Tibshirani and Hastie, 2007) (Extended

Experimental Procedures) is comparable to that determined for
an atlas of 79 different human tissues (Su et al., 2004 ) and far
higher than in lymphomas (Monti et al., 2005), lung cancers
(Bhattacharjee et al., 2001), or breast cancers (Chin et al.,
2006) (Figure 2C).

Coherent Functional Modules of Coexpressed Genes
Are Reused across Lineages
To dissect the architecture of the gene expression program, we
used the Module Networks (Segal et al., 2003) algorithm (Exper-
imental Procedures) to find modules of strongly coexpressed
genes and associate them with candidate regulatory programs
that (computationally) predict their expression pattern. We iden-
tified 80 gene modules (Figure 3A; modules are numbered
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Figure 3. Expression Pattern and Functional Enrichment of 80 Transcriptional Modules
(A) Average expression levels of 80 gene modules. Shown is the average expression pattern of the genemembers in each of the 80modules (rows) across all 211

samples (columns). Colors and normalization as in Figure 2B. The samples are organized according to the differentiation tree topology (top) with abbreviations as

in Figure 1. The number of genes in each module is shown in the bar graph (left). The expression profiles of a few example modules discussed in the text are

highlighted by vertical yellow lines. The expression of individual genes in each module is shown in Figure S2.

(B) Functional enrichment in genemodules. Functional categories with enriched representation (FDR < 5%) in at least onemodule are portrayed. Categories were

selected for broad representation. The complete list appears in Table S3.

See also Figure S2 and Figure S7.
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Expression profiles of 80 transcriptional 
modules

The signature genes are enriched for molecular functions and
biological processes consistent with the functional differences
between lineages (Figure S1D and Table S2). Of note, a set of
16 genes comprised of the 50 partners of known translocations
in leukemias (Mitelman et al., 2010) is enriched in the HSPC pop-
ulation (p < 0.013). This suggests that the 50 partners of leukemia-
causing translocations, containing the promoters of the fusion
genes, tend to be selectively expressed in stem and progenitor
cell populations.
The diversity of gene expression across hematopoietic line-

ages is comparable to the diversity in gene expression observed
across a host of human tissue types. The number of genes that
are differentially expressed throughout our hematopoiesis data
set (outlier analysis) (Tibshirani and Hastie, 2007) (Extended

Experimental Procedures) is comparable to that determined for
an atlas of 79 different human tissues (Su et al., 2004 ) and far
higher than in lymphomas (Monti et al., 2005), lung cancers
(Bhattacharjee et al., 2001), or breast cancers (Chin et al.,
2006) (Figure 2C).

Coherent Functional Modules of Coexpressed Genes
Are Reused across Lineages
To dissect the architecture of the gene expression program, we
used the Module Networks (Segal et al., 2003) algorithm (Exper-
imental Procedures) to find modules of strongly coexpressed
genes and associate them with candidate regulatory programs
that (computationally) predict their expression pattern. We iden-
tified 80 gene modules (Figure 3A; modules are numbered
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Figure 3. Expression Pattern and Functional Enrichment of 80 Transcriptional Modules
(A) Average expression levels of 80 gene modules. Shown is the average expression pattern of the genemembers in each of the 80modules (rows) across all 211

samples (columns). Colors and normalization as in Figure 2B. The samples are organized according to the differentiation tree topology (top) with abbreviations as

in Figure 1. The number of genes in each module is shown in the bar graph (left). The expression profiles of a few example modules discussed in the text are

highlighted by vertical yellow lines. The expression of individual genes in each module is shown in Figure S2.

(B) Functional enrichment in genemodules. Functional categories with enriched representation (FDR < 5%) in at least onemodule are portrayed. Categories were

selected for broad representation. The complete list appears in Table S3.
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An HSCs, MEPs, and Early Erythroid-Induced 
Module

PBX1

SOX4SOX4

BRCA1 MNDA
FUBP1

Figure S3. Module 865, an HSCs, MEPs, and Early Erythroid Cells-Induced Module, Related to Figure 4
(Bottom) Shown are expression levels of the 52module genes (rows) across the 211 samples (columns). (Top) Samples are sorted by the regulation program. The

regulation program, presented as a decision tree, shows the TFs whose combinatorial expression best explains the expression of the module’s genes. For

example, the regulation program states that when both the PBX1 and SOX4 TFs are induced (in HSCs, CMPs, MEPs, and early erythroid cells), the module’s

genes are induced (red, right). The induction is the highest when MNDA is repressed (rightmost), and lower when MNDA is not repressed (second from right).

Conversely, when both PBX1 and SOX4 are off, themodules genes are themost repressed (leftmost, blue). The regulation tree is automatically built by theModule

Network algorithm, and is different for each module. In this example the regulators of module 865 are PBX1 (top regulator), SOX4 (2nd regulator), BRCA1, FUBP1

and MNDA.
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Other key points from this analysis

• Many novel regulators associated with the 
hematopoietic lineage

• Several regulators were validated based on 
shRNA and ChIP-seq analysis



Extensions to module networks

• Physical module networks
– Novershtern et al., Bioinformatics 2011

• Integrating sequence variants with expression 
modules
– Lee et al., PLOS Genetics 2009

• Combining module networks with per-gene 
methods
– Roy et al., PLOS computational biology 2013



Limitations with Bayesian networks

• Cannot model cyclic dependencies
• In practice have not been shown to be better  

than dependency networks
– However, most of the evaluation has been done 

on structure not function
• Directionality is often not associated with 

causality
– Too many hidden variables in biological systems



Take away points
• Network inference from expression provides a 

promising approach to identify cellular networks
• Graphical models are one representation of networks 

that have a probabilistic and graphical component
– Network inference naturally translates to learning 

problems in these models
• Bayesian networks were among the first type of PGMs 

for representing networks
• Applying Bayesian networks to expression data 

required several additional considerations
– Too few samples: Sparse candidates, Module networks
– Too many parents: Sparse candidates
– Imposing modularity: Module networks



Plan for next lectures

• Gaussian graphical models
• Dependency networks
– GENIE3
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