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Topics in this section

* Topological properties of networks
* Modules in biological networks
* Algorithms for graph clustering



Goals for today

e Commonly measured network properties
— Degree distribution
— Average shortest path length
— Network motifs

e Studying modularity of biological networks

— Modularity
— Clustering coefficient
— Algorithms to find modules on graphs



Why should we care about network
measures?

e From Barabasi and Oltvai 2004:

“Probably the most important discovery of network
theory was the realization that despite the remarkable
diversity of networks in nature, their architecture is
governed by a few simple principles that are common
to most networks of major scientific and technological
interest”

Barabasi & Oltvai 2004, Nature Genetics Review



Node degree

e Undirected network

— Degree, k: Number of neighbors of a node

* Directed network
— In degree, k;,: Number of incoming edges
— Out degree, k.- Number of outgoing edges
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Average degree

e Consider an undirected network with N nodes
* Let k; denote the degree of node i

* Average degree is




Degree distribution

* P(k) the probability that a node has k edges

e Different networks can have different degree
distributions

* A fundamental property that can be used to
characterize a network



Different degree distributions

* Poisson distribution
— The mean is a good representation of £; of all nodes

— Networks that have a Poisson degree distribution are
called Erdos Renyi or random networks

e Power law distribution
— Also called scale free

I”

— There is no “typical” node that captures the degree of

nodes.



Poisson distribution

e A discrete distribution

P(X=k)
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P(X =k) = T
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* The Poisson is parameterized by ) which can be
easily estimated by maximum likelihood

AMLE =



Power law distribution

Used to capture the degree
distribution of most real networks

P(X =k)x k™7

P(k)

Typical value of ) is between 2 and 3.

MLE exists but is more complicated

— See Power-Law Distributions in Empirical
Data. Clauset, Shalizi and Newman, 2009

for details
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Erdos Renyi random graphs

Dates back to 1960 due to two mathematicians Paul
Erdos and Alfred Renyi.

Provides a probabilistic model to generate a graph

Starts with N nodes and connects two nodes with
probability p

Node degrees follow a Poisson distribution

Tail falls off exponentially, suggesting that nodes with
degrees different from the mean are very rare



Scale free networks

Degree distribution is captured by a power law
distribution

There is no “typical” node that describes the degree
of all other nodes

Such networks are ubiquitous in nature



Poisson versus Scale free
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Barabasi & Oltvai 2004, Nature Genetics Review k



Yeast protein interaction network is
believed to be scale free
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Degree of a node is correlated to
functional importance of a node

Yeast protein-protein
interaction network
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Red nodes on deletion cause the
J organism to die

Red nodes also among the nodes
with the highest degree



Origin of scale free networks

e Scale free networks are ubiquitous is nature
* How do such networks form?

e Such networks are the result of two processes

— a growth process where new nodes join the network over
an extended period of time

* Think about how the internet has grown

— preferential attachment: new nodes tend to connect to
nodes with many neighbors

* Rich getricher.

Barabasi & Oltvai 2004, Nature Genetics Review



Growth and preferential attachment
in scale free networks

Barabasi & Oltvai 2004, Nature Genetics Review

A new node (red) is more likely to
connect to node 1
than 2



Paths on a graph

Paths from Bto D
B

E

Path: a set of connected edges from one node to another

There are two paths from B-D: B->A->D and B->G->H->A->D



Path lengths

The shortest path length between two nodes A and
B:

— The smallest number of edges that need to be traversed to
get from Ato B

Mean path length is the average of all shortest path
lengths

Diameter of a graph is the longest of all shortest
paths in the network



Scale-free networks tend to be ultra-
small

 Two nodes on the network are connected by a small
number of edges

* Average path length is proportional to log(log(N)),
where N is the number of nodes in the network

* In arandom network (Erdos Renyi network) the
average path length is proportional to log(N)



Network motifs

* Network motifs are defined as small recurring subgraphs
that occur much more than a randomized network

* Asubgraph is called a network motif of a network if its
occurrence in randomized networks is significantly less
than the original network.

* Network motifs are often called “building blocks” of
complex networks

* Bio-molecular networks tend to exhibit certain types of
network motifs more frequently than random

 Some motifs are associated with specific network
dynamics

Milo Science 2002



Network motifs of size 3 in a directed
network
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Additional possibilities if we consider the sign of an edge

Milo Science 2002




Different types of feed-forward motifs

These appear
much more in
transcriptional
networks than
other FF motifs
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Alon 2007, Nature Review Genetics



Network motifs are associated with
dynamics

A feed-forward motif with an AND gate can encode a sign sensitive delay
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Alon 2007, Nature Review Genetics Cited >2000 times!



How to find network motifs?

* Given an input network G we need to address two
problems
— Subgraph enumeration: Find which subgraphs occur in G
and how many times

— Significance of the number of occurrences: Compare to
the number of occurrences of subgraphs in randomized
networks

e Software to find network motifs

— FANMOD: a tool for fast network motif detection
http://bioinformatics.oxfordjournals.org/content/22/9/11
52.full

Wernicke 2005: http://theinfl.informatik.uni-jena.de/publications/network-motifs-wabi05.pdf


http://bioinformatics.oxfordjournals.org/content/22/9/1152.full

Algorithm for enumerating
subgraphs: Edge sampling

Input: A graph G = (V, F) and an integer 2 < k < |V]|.
Output: Vertices of a randomly chosen size-k£ subgraph in G.

01 {u,v} < random edge from E

02 V' —{u,v}

03 while |V'| # k do

04 {u,v} < random edge from V' x N(V"')
05 Vi— V' U{u}U{v}

06 return V'

N(V’): set of neighbors of all verticesin V’
Kashtan et al., Bioinformatics 2004




Assessing the significance of a
network motif

B

randomized networks

real network

The motif (red dashed edges) occurs much more frequently in the real network than
in any randomized network



Generating a randomized network

 While an Erdos Renyi network is random, it does not

have the same degree distribution as a given
network

* How to generate a randomized network with the
same degree distribution?



Strategy to generate randomized
networks

Select two edges connecting four
vertices and swap the end points.

Repeat.

e



Network motifs found in many
complex networks

Network Nodes  Edges | Nreal Nrand*SD  Zscore | Nreal Nrand*SD  Zscore | Nreal Nrand=SD  Zscore
Gene regulation X Feed- X Y Bi-fan
(transcription) V forward M/
Y loop
\/ Z w
V4
E. coli 424 519 | 40 7+3 10 203 47+12 13
S. cerevisiae* 685 1,052 |70 11+4 14 1812 30040 41
Neurons X Feed- X Y Bi-fan X Bi-
\% forward M 2 parallel
\?/( loop 7 W YN MZ
7 W
C.eleganst 252 509 125 90 + 10 37 127 55+13 53 227 35+10 20
Food webs X Three X Bi-
\'% chain 2 parallel
Y Y Z
\% N\ K/
V4 w
Little Rock 92 984 3219 3120 £ 50 2.1 7295 2220 £210 25
Ythan 83 391 1182 1020 + 20 72 1357 230 =50 23
St. Martin 42 205 469 450 = 10 NS 382 130 +£20 12
Chesapeake 31 67 80 82 +4 NS 26 5+2 8
Coachella 29 243 279 235+ 12 3.6 181 80 +20 5
Skipwith 25 189 184 150 =7 55 397 80 £ 25 13
B. Brook 25 104 181 130 =7 74 267 307 32

The occurrence of the feedforward loop in both networks suggests a fundamental similarity
in the design on these networks

Milo et al., Science 2002



Structural common motifs seen in the yeast
regulatory network

Auto-regulation Multi-component Feed-forward loop
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Feed-forward loops involved in speeding up in response of target gene

Lee et.al. 2002, Mangan & Alon, 2003



Modularity in networks

Modularity “refers to a group of physically or functionally
linked nodes that work together to achieve a distinct
function” -- Barabasi & Oltvai

Modularity is an important principle of biological systems

Genes tend to interact with a select set of other genes
exhibiting a clustering of interactions

Module detection can help to

— Understand the organizational properties of the network

— Can be used to predict function of genes based on their
grouping behavior



A modular network

Module 2

Module 3

Module 1

M. E. J. Newman, Modularity and community structure in networks, PNAS 2006



Clustering coefficient

Measure of transitivity in the network that asks
— If Alis connected to B, and B is connected to C, how often is A

connected to C?
Clustering coefficient C; for each node i is
?
2712' @

ki(k; — 1)

k; Degree of node i
n;is the number of edges among neighbors of i

Average clustering coefficient gives a measure of “modularity”
of the network



Summary of topological properties of
networks

Given a network, its topology can be characterized using
different measures

— Degree distribution

— Average path length

— Clustering coefficient (also used to measure modularity of a network)
Degree distribution can be

— Poisson

— Power law
e Such networks are called scale free

Network modularity
— Clustering coefficient
Network motifs

— Building blocks of complex networks
— Over represented subgraphs of specific types



Goals for today

e Studying modularity of biological networks
— Modularity
— Clustering coefficient
— Algorithms to find modules on graphs



Different types of network modules

* Top0|0gica| mOd u |es a Topological module b Functional module

— Defined solely based on
the graph connectivity of
nodes

* Functional modules

— Based on graph
connectivity & other
node attributes

— Can be further grouped
into
e Active modules
* Integrative modules

e Disease modules

Albert-Lasz|6 Barabasi, Natali Gulbahce, and Joseph Loscalzo, Nature Review Genetics 2011, Mitra
et al., Nature Review Genetics 2014



Studying modularity in biological
systems

e Given a network is it modular?

 Given a network what are the modules in the
network?



Given a graph, is it modular?

* Given a graph, we would like to know if it is modular
* This requires us to quantify modularity

* Different measures of modularity exist
— Clustering coefficient

— Q Modularity: measures the relative density of edges
between and within the groups



Clustering coefficient

Measure of transitivity in the network that asks
— If Alis connected to B, and B is connected to C, how often is A

connected to C?
Clustering coefficient C, for each node i is
?
2712' @

ki(k; — 1)

k; Degree of node i
n;is the number of edges among neighbors of i

Average clustering coefficient gives a measure of “modularity”
of the network



Clustering coefficient example
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Q measure for modularity

e Suppose the nodes in the graph belong to K groups
(communities)

 Modularity (Q) can be assessed as follows:

— difference between within group (community) connections and
expected connections within a group

* This meals,(ure assess how good a particular grouping is

K: number of groups

Q — E 2 e;i: Fraction of total edges that link nodes
in group i to group j

6@@ - a
7’—1/ \ ai=Y e

Fraction of edges  Fraction of edges
within group i without regard to

community structure

Detecting community structure in networks. M.E. J] Newman



Studying modularity in biological
systems

 Given a network what are the modules in the
network?



Given a graph, what are the modules

* Given a graph find the modules
— Modules are represented by densely connected subgraphs
 The graph can be partitioned into modules using
“Graph clustering” or “Graph partitioning”
e Clusters, modules are also called “communities”



Problem definition of (topological)
module detection

* Given:

— A graph

— A measure of cluster quality
* Do

— Partition the vertices into groups such that they form
densely connected subgraphs (e.g. as measured by the
cluster quality)



Common graph clustering algorithms

Hierarchical or flat clustering using a notion of
similarity between nodes

Girvan-Newman algorithm
Hierarchical Agglomerative clustering
Spectral clustering

Markov clustering algorithm

Affinity propagation



Clustering

e Types of clustering

— Flat clustering

e K-means
e Gaussian mixture models

— Hierarchical clustering

e Clustering algorithms differ in the distance measure
used to group objects together



Task definition: clustering objects

* Given: attributes for a set of objects we wish to
cluster

* Do: organize objects into groups such that

— Objects in the same cluster are highly similar to each
other

— Objects from different clusters have low similarity to
each other



Flat clustering

e Cluster objects into K clusters
K :number of clusters is a user defined argument

 Two example algorithms
— K-means

— Gaussian mixture model-based clustering



Hierarchical clustering

* Hierarchical clustering is a widely used clustering
technique

* Instead of the number of clusters, it requires us to
specify how much dissimilarity we will tolerate
between groups

* The hierarchical clustering is represented by a tree
structure called a dendrogram

Slides adapted from Prof. Mark Craven; BMI 576



Types of hierarchical clustering
strategies

* Agglomerative (bottom-up)
— Start from the individual objects
— Group objects or clusters of objects
e Divisive (or top-down)
— Start from all objects in a single cluster
— Break down each cluster into smaller clusters



Hierarchical clustering

height of bar indicates
degree of distance
within cluster

distance scale

BT TR

leaves represent objects to be clustered (e.g. genes or samples)
Slides from Prof. Mark Craven



Flat clustering from a hierarchical
clustering

* We can always generate a flat clustering from a hierarchical
clustering by “cutting” the tree at some distance threshold

cutting here results
in 2 clusters

cutting here results
in 4 clusters

Slides from Prof. Mark Craven



Hierarchical clustering to find
modules on graphs

What is a good measure of similarity to cluster nodes
on a graph?
* One approach is to use local topological overlap

— Find the similarity between the local neighborhoods of
two nodes i andj

IN1(2) N N1(J)| + ayj
min(|N1(2)], [N1(7)]) + 1 — ay;

tij =

N,(i): the set of immediate neighbors of i

* a;:corresponding entry in the adjacency matrix of
the graph

Yip and Horvath, BMC Bioinformatics 2007; WGCNA: an R package for weighted correlation network
analysis. Peter Langfelder and Steve Horvath



Community structure in a graph

Communities

| / Intercommunity edges

e A graph that has a grouping (community) structure is going to have few intercommunity
edges.
 Community structure can be revealed by removing such intercommunity edges

Detecting community structure in networks, M. E. J. Newman



Girvan-Newman algorithm

* General idea: “If two communities are joined by only
a few inter-community edges, then all paths through
the network from vertices in one community to
vertices in the other must pass along one of those
few edges.”

 Community structure can be revealed by removing
edges that with high betweenness

* Algorithm is based on a divisive clustering idea

M. E. J. Newman and M. Girvan. Finding and evaluating community structure



Betweenness of an edge

 Betweenness of an edge ¢ is defined as the number of
shortest paths that include e

* Edges that lie between communities tend to have high
betweenness

Shortest path including e

B —
(€) Number of total shortest paths



Girvan-Newman algorithm

* |nitialize
— Compute betweenness for all edges
* Repeat until convergence criteria

1. Remove the edge with the highest betweenness
2. Recompute betweenness of remaining edges

 Convergence criteria can be
— No more edges
— Desired modularity

M. E. J. Newman and M. Girvan. Finding and evaluating community structure



Girvan-Newman algorithm as a
hierarchical clustering algorithm

One can view this algorithm as
a top-down (divisive)

hierarchical clustering algorithm

The root of the dendrogram

groups all nodes into one

community i l il

Each branch of the tree g@) O O O CE—CI) O
represents the order of splitting \ ¥

the network as edges are
removed

Graph vertices



Applying the Girvan-Newman
algorithm to Zachary’s karate club
network

Dataset collected by Wayne Zachary over 2 years who

observed social interactions among members of a karate
club

Zachary’s karate club network is a well-known example of
a social network with community structure

Network represents the friendships among members of a
karate club

Due to a dispute the club split into two factions

Can a graph clustering/module detection algorithm
predict the factions?
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Node grouping based on betweenness

Each node is an individual and edges represent social interactions among individuals.
The shape and colors represent different groups.



Take away points

Biological networks are modular
Modules can be topological or functional

Modularity can be measured using

— Clustering coefficient
— Q measure

We have seen one example of topological clustering
algorithms

— Girvan-Newman algorithm

* based on edge-betweenness
» Can be viewed as top-down/divisive clustering algorithm
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