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RECAP of problems in network 
biology

Biological problem
q Mapping regulatory network 

structure
q Dynamics and context 

specificity of networks
q Understanding design 

principles of biological 
networks

q Interpretation of sequence 
variants

q Identification of important 
genes

q Integrating different types of 
molecular genomic data

Computa;onal approaches
q Probabilistic graphical models
q Graph structure learning
q Multiple network learning
q Topological properties of 

graphs
q Graph clustering
q Graph alignment
q Diffusion on graphs



Topics in this sec,on
• Topological proper,es of networks
• Modules in biological networks
• Algorithms for graph clustering



Goals for today
• Commonly measured network proper2es
– Degree distribu2on
– Average shortest path length
– Network mo2fs

• Studying modularity of biological networks
– Modularity
– Clustering coefficient
– Algorithms to find modules on graphs



Why should we care about network 
measures?

• From Barabasi and Oltvai 2004:
“Probably the most important discovery of network 

theory was the realization that despite the remarkable 
diversity of networks in nature, their architecture is 
governed by a few simple principles that are common 
to most networks of major scientific and technological 
interest”

Barabasi & Oltvai 2004, Nature Gene=cs Review



Node degree
• Undirected network
– Degree, k: Number of neighbors of a node

• Directed network
– In degree, kin: Number of incoming edges
– Out degree, kout: Number of outgoing edges 

Directed Edge

A
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D
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F
In degree of F is 4
Out degree of E is 0 



Average degree
• Consider an undirected network with N nodes 
• Let ki denote the degree of node i
• Average degree is

< k >=
PN

i=1 ki

N



Degree distribu,on
• P(k) the probability that a node has k edges
• Different networks can have different degree 

distributions
• A fundamental property that can be used to 

characterize a network



Different degree distributions
• Poisson distribu,on
– The mean is a good representa,on of ki of all nodes
– Networks that have a Poisson degree distribu,on are 

called Erdos Renyi or random networks

• Power law distribu,on
– Also called scale free 
– There is no “typical” node that captures the degree of 

nodes.



Poisson distribution
• A discrete distribu,on

• The Poisson is parameterized by     which can be 
easily es,mated by maximum likelihood 

P (X = k) =
�ke��

k!

�

�MLE =
Pn

i=1 ki

n

k

P(
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k)



Power law distribu/on
• Used to capture the degree 

distribution of most real networks

• Typical value of    is between 2 and 3. 

• MLE exists but is more complicated
– See Power-Law Distributions in Empirical 

Data. Clauset, Shalizi and Newman, 2009 
for details

P (X = k) / k��
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many components that interact with each other through
pairwise interactions.At a highly abstract level, the com-
ponents can be reduced to a series of nodes that are con-
nected to each other by links, with each link representing
the interactions between two components. The nodes
and links together form a network, or, in more formal
mathematical language, a graph (BOX 1).

Establishing the identity of various cellular networks
is not trivial. Physical interactions between molecules,
such as protein–protein, protein–nucleic-acid and
protein–metabolite interactions, can easily be conceptu-
alized using the node-link nomenclature. Nevertheless,
more complex functional interactions can also be con-
sidered within this representation. For example, small-
molecule substrates can be envisioned as the nodes of a
metabolic network and the links as the enzyme-catal-
ysed reactions that transform one metabolite into
another (FIG. 1a–c).

is fundamental to our understanding of the cell as a sys-
tem, it also needs to develop relevance for the experimen-
tal biologist, helping to elucidate the role of individual
molecules in various cellular processes. Therefore, we
explore the specific biological details and the evolutionary
origins that contribute to the formation of cellular net-
works, and the impact of the network structure on exper-
imentally observable function and behavioural features.
Our goal is to help understand the large-scale characteris-
tics of cellular networks, complementing recent excellent
reviews on the function of small genetic circuits (for
example, see REFS 2,6). We also look to the future and the
uncharted territories for which these approaches might
bear further fruits.

Basic network nomenclature
The behaviour of most complex systems, from the cell to
the Internet, emerges from the orchestrated activity of
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Figure 1 | Characterizing metabolic networks. To study the network characteristics of the metabolism a graph theoretic description
needs to be established. Here, the graph theoretic description for a simple pathway (catalysed by Mg2+-dependant enzymes) is
illustrated (a). In the most abstract approach (b) all interacting metabolites are considered equally. The links between nodes represent
reactions that interconvert one substrate into another. For many biological applications it is useful to ignore co-factors, such as the high-
energy-phosphate donor ATP, which results in a second type of mapping (c) that connects only the main source metabolites to the main
products. d | The degree distribution, P(k) of the metabolic network illustrates its scale-free topology16. e | The scaling of the clustering
coefficient C(k) with the degree k illustrates the hierarchical architecture of metabolism53 (The data shown in d and e represent an
average over 43 organisms16,53). f | The flux distribution in the central metabolism of Escherichia coli follows a power law, which indicates
that most reactions have small metabolic flux, whereas a few reactions, with high fluxes, carry most of the metabolic activity91. This plot is
based on data that was collected by Emmerling et al.106. It should be noted that on all three plots the axis is logarithmic and a straight line
on such log–log plots indicates a power-law scaling. CTP, cytidine triphosphate; GLC, aldo-hexose glucose; UDP, uridine diphosphate;
UMP, uridine monophosphate; UTP, uridine triphosphate.
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Erdos Renyi random graphs
• Dates back to 1960 due to two mathematicians Paul 

Erdos and Alfred Renyi.
• Provides a probabilistic model to generate a graph
• Starts with N nodes and connects two nodes with 

probability p
• Node degrees follow a Poisson distribution
• Tail falls off exponentially, suggesting that nodes with 

degrees different from the mean are very rare



Scale free networks
• Degree distribu,on is captured by a power law 

distribu,on
• There is no “typical” node that describes the degree 

of all other nodes
• Such networks are ubiquitous in nature



Poisson versus Scale free
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Box 2 | Network models

Network models are crucial for shaping our understanding of complex networks and help to explain the origin of observed network
characteristics. There are three models that had a direct impact on our understanding of biological networks.

Random networks 
The Erdös–Rényi (ER) model of a random network14 (see figure, part A) starts with N nodes and connects each pair of nodes with probability p,
which creates a graph with approximately pN(N–1)/2 randomly placed links (see figure, part Aa). The node degrees follow a Poisson distribution
(see figure, part Ab), which indicates that most nodes have approximately the same number of links (close to the average degree <k>). The tail
(high k region) of the degree distribution P(k) decreases exponentially, which indicates that nodes that significantly deviate from the average are
extremely rare. The clustering coefficient is independent of a node’s degree, so C(k) appears as a horizontal line if plotted as a function of k (see
figure, part Ac). The mean path length is proportional to the logarithm of the network size, l ~ log N, which indicates that it is characterized by the
small-world property.

Scale-free networks
Scale-free networks (see figure, part B) are characterized by a power-law degree distribution; the probability that a node has k links follows 
P(k) ~ k –γ, where γ is the degree exponent. The probability that a node is highly connected is statistically more significant than in a random graph,
the network’s properties often being determined by a relatively small number of highly connected nodes that are known as hubs (see figure, part
Ba; blue nodes). In the Barabási–Albert model of a scale-free network15, at each time point a node with M links is added to the network, which
connects to an already existing node I with probability ΠI = kI/ΣJkJ, where kI is the degree of node I (FIG. 3) and J is the index denoting the sum over
network nodes. The network that is generated by this growth process has a power-law degree distribution that is characterized by the degree
exponent γ = 3. Such distributions are seen as a straight line on a log–log plot (see figure, part Bb). The network that is created by the
Barabási–Albert model does not have an inherent modularity, so C(k) is independent of k (see figure, part Bc). Scale-free networks with degree
exponents 2<γ<3, a range that is observed in most biological and non-biological networks, are ultra-small34,35, with the average path length
following ! ~ log log N, which is significantly shorter than log N that characterizes random small-world networks.

Hierarchical networks
To account for the coexistence of modularity, local clustering and scale-free topology in many real systems it has to be assumed that clusters
combine in an iterative manner, generating a hierarchical network47,53 (see figure, part C). The starting point of this construction is a small cluster
of four densely linked nodes (see the four central nodes in figure, part Ca). Next, three replicas of this module are generated and the three external
nodes of the replicated clusters
connected to the central node of
the old cluster, which produces a
large 16-node module. Three
replicas of this 16-node module
are then generated and the 16
peripheral nodes connected to
the central node of the old
module, which produces a new
module of 64 nodes. The
hierarchical network model
seamlessly integrates a scale-free
topology with an inherent
modular structure by generating
a network that has a power-law
degree distribution with degree
exponent γ = 1 + !n4/!n3 = 2.26
(see figure, part Cb) and a large,
system-size independent average
clustering coefficient <C> ~ 0.6.
The most important signature of
hierarchical modularity is the
scaling of the clustering
coefficient, which follows 
C(k) ~ k –1 a straight line of slope
–1 on a log–log plot (see figure,
part Cc). A hierarchical
architecture implies that sparsely
connected nodes are part of
highly clustered areas, with
communication between the
different highly clustered
neighbourhoods being
maintained by a few hubs 
(see figure, part Ca).
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Yeast protein interaction network is 
believed to be scale free
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mathematical properties of random networks14. Their
much-investigated random network model assumes that
a fixed number of nodes are connected randomly to each
other (BOX 2). The most remarkable property of the model
is its ‘democratic’or uniform character, characterizing the
degree, or connectivity (k ; BOX 1), of the individual nodes.
Because, in the model, the links are placed randomly
among the nodes, it is expected that some nodes collect
only a few links whereas others collect many more. In a
random network, the nodes degrees follow a Poisson
distribution, which indicates that most nodes have
roughly the same number of links, approximately equal
to the network’s average degree, <k> (where <> denotes
the average); nodes that have significantly more or less
links than <k> are absent or very rare (BOX 2).

Despite its elegance, a series of recent findings indi-
cate that the random network model cannot explain
the topological properties of real networks. The 
deviations from the random model have several key
signatures, the most striking being the finding that, in
contrast to the Poisson degree distribution, for many
social and technological networks the number of nodes
with a given degree follows a power law. That is, the
probability that a chosen node has exactly k links 
follows P(k) ~ k –γ, where γ is the degree exponent, with
its value for most networks being between 2 and 3 
(REF. 15). Networks that are characterized by a power-law
degree distribution are highly non-uniform, most of
the nodes have only a few links. A few nodes with a very
large number of links, which are often called hubs, hold
these nodes together. Networks with a power degree
distribution are called scale-free15, a name that is rooted
in statistical physics literature. It indicates the absence
of a typical node in the network (one that could be
used to characterize the rest of the nodes). This is in
strong contrast to random networks, for which the
degree of all nodes is in the vicinity of the average
degree, which could be considered typical. However,
scale-free networks could easily be called scale-rich as
well, as their main feature is the coexistence of nodes of
widely different degrees (scales), from nodes with one
or two links to major hubs.

Cellular networks are scale-free. An important develop-
ment in our understanding of the cellular network
architecture was the finding that most networks within
the cell approximate a scale-free topology. The first evi-
dence came from the analysis of metabolism, in which
the nodes are metabolites and the links represent
enzyme-catalysed biochemical reactions (FIG. 1).As many
of the reactions are irreversible, metabolic networks are
directed. So, for each metabolite an ‘in’ and an ‘out’
degree (BOX 1) can be assigned that denotes the number
of reactions that produce or consume it, respectively.
The analysis of the metabolic networks of 43 different
organisms from all three domains of life (eukaryotes,
bacteria, and archaea) indicates that the cellular metabo-
lism has a scale-free topology, in which most metabolic
substrates participate in only one or two reactions, but a
few, such as pyruvate or coenzyme A, participate in
dozens and function as metabolic hubs16,17.

Depending on the nature of the interactions, net-
works can be directed or undirected. In directed
networks, the interaction between any two nodes has a
well-defined direction, which represents, for example,
the direction of material flow from a substrate to a
product in a metabolic reaction, or the direction of
information flow from a transcription factor to the gene
that it regulates. In undirected networks, the links do
not have an assigned direction. For example, in protein
interaction networks (FIG. 2) a link represents a mutual
binding relationship: if protein A binds to protein B,
then protein B also binds to protein A.

Architectural features of cellular networks
From random to scale-free networks. Probably the most
important discovery of network theory was the realiza-
tion that despite the remarkable diversity of networks
in nature, their architecture is governed by a few simple
principles that are common to most networks of major
scientific and technological interest9,10. For decades
graph theory — the field of mathematics that deals
with the mathematical foundations of networks —
modelled complex networks either as regular objects,
such as a square or a diamond lattice, or as completely
random network13. This approach was rooted in the
influential work of two mathematicians, Paul Erdös,
and Alfréd Rényi, who in 1960 initiated the study of the

Figure 2 | Yeast protein interaction network. A map of protein–protein interactions18 in
Saccharomyces cerevisiae, which is based on early yeast two-hybrid measurements23, illustrates
that a few highly connected nodes (which are also known as hubs) hold the network together.
The largest cluster, which contains ~78% of all proteins, is shown. The colour of a node indicates
the phenotypic effect of removing the corresponding protein (red = lethal, green = non-lethal,
orange = slow growth, yellow = unknown). Reproduced with permission from REF. 18 ©
Macmillan Magazines Ltd.

• “Whereas most proteins participate 
in only a few interactions, a few 
participate in dozens”

• Such high degree nodes are called 
hubs

Barabasi & Oltvai 2004, Nature GeneEcs Review



Degree of a node is correlated to 
functional importance of a node
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mathematical properties of random networks14. Their
much-investigated random network model assumes that
a fixed number of nodes are connected randomly to each
other (BOX 2). The most remarkable property of the model
is its ‘democratic’or uniform character, characterizing the
degree, or connectivity (k ; BOX 1), of the individual nodes.
Because, in the model, the links are placed randomly
among the nodes, it is expected that some nodes collect
only a few links whereas others collect many more. In a
random network, the nodes degrees follow a Poisson
distribution, which indicates that most nodes have
roughly the same number of links, approximately equal
to the network’s average degree, <k> (where <> denotes
the average); nodes that have significantly more or less
links than <k> are absent or very rare (BOX 2).

Despite its elegance, a series of recent findings indi-
cate that the random network model cannot explain
the topological properties of real networks. The 
deviations from the random model have several key
signatures, the most striking being the finding that, in
contrast to the Poisson degree distribution, for many
social and technological networks the number of nodes
with a given degree follows a power law. That is, the
probability that a chosen node has exactly k links 
follows P(k) ~ k –γ, where γ is the degree exponent, with
its value for most networks being between 2 and 3 
(REF. 15). Networks that are characterized by a power-law
degree distribution are highly non-uniform, most of
the nodes have only a few links. A few nodes with a very
large number of links, which are often called hubs, hold
these nodes together. Networks with a power degree
distribution are called scale-free15, a name that is rooted
in statistical physics literature. It indicates the absence
of a typical node in the network (one that could be
used to characterize the rest of the nodes). This is in
strong contrast to random networks, for which the
degree of all nodes is in the vicinity of the average
degree, which could be considered typical. However,
scale-free networks could easily be called scale-rich as
well, as their main feature is the coexistence of nodes of
widely different degrees (scales), from nodes with one
or two links to major hubs.

Cellular networks are scale-free. An important develop-
ment in our understanding of the cellular network
architecture was the finding that most networks within
the cell approximate a scale-free topology. The first evi-
dence came from the analysis of metabolism, in which
the nodes are metabolites and the links represent
enzyme-catalysed biochemical reactions (FIG. 1).As many
of the reactions are irreversible, metabolic networks are
directed. So, for each metabolite an ‘in’ and an ‘out’
degree (BOX 1) can be assigned that denotes the number
of reactions that produce or consume it, respectively.
The analysis of the metabolic networks of 43 different
organisms from all three domains of life (eukaryotes,
bacteria, and archaea) indicates that the cellular metabo-
lism has a scale-free topology, in which most metabolic
substrates participate in only one or two reactions, but a
few, such as pyruvate or coenzyme A, participate in
dozens and function as metabolic hubs16,17.

Depending on the nature of the interactions, net-
works can be directed or undirected. In directed
networks, the interaction between any two nodes has a
well-defined direction, which represents, for example,
the direction of material flow from a substrate to a
product in a metabolic reaction, or the direction of
information flow from a transcription factor to the gene
that it regulates. In undirected networks, the links do
not have an assigned direction. For example, in protein
interaction networks (FIG. 2) a link represents a mutual
binding relationship: if protein A binds to protein B,
then protein B also binds to protein A.

Architectural features of cellular networks
From random to scale-free networks. Probably the most
important discovery of network theory was the realiza-
tion that despite the remarkable diversity of networks
in nature, their architecture is governed by a few simple
principles that are common to most networks of major
scientific and technological interest9,10. For decades
graph theory — the field of mathematics that deals
with the mathematical foundations of networks —
modelled complex networks either as regular objects,
such as a square or a diamond lattice, or as completely
random network13. This approach was rooted in the
influential work of two mathematicians, Paul Erdös,
and Alfréd Rényi, who in 1960 initiated the study of the

Figure 2 | Yeast protein interaction network. A map of protein–protein interactions18 in
Saccharomyces cerevisiae, which is based on early yeast two-hybrid measurements23, illustrates
that a few highly connected nodes (which are also known as hubs) hold the network together.
The largest cluster, which contains ~78% of all proteins, is shown. The colour of a node indicates
the phenotypic effect of removing the corresponding protein (red = lethal, green = non-lethal,
orange = slow growth, yellow = unknown). Reproduced with permission from REF. 18 ©
Macmillan Magazines Ltd.

Red nodes on dele)on cause the 
organism to die
Red nodes also among the nodes 
with the highest degree

Yeast protein-protein 
interac)on network



Origin of scale free networks
• Scale free networks are ubiquitous is nature
• How do such networks form?
• Such networks are the result of two processes
– a growth process where new nodes join the network over 

an extended period of =me
• Think about how the internet has grown

– preferen=al a?achment: new nodes tend to connect to 
nodes with many neighbors
• Rich get richer.

Barabasi & Oltvai 2004, Nature Genetics Review



Growth and preferential attachment 
in scale free networks
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major engineer of the genomic landscape, it is likely to
be a key mechanism for generating the scale-free
topology.

Two further results offer direct evidence that net-
work growth is responsible for the observed topological
features. The scale-free model (BOX 2) predicts that the
nodes that appeared early in the history of the network
are the most connected ones15. Indeed, an inspection of
the metabolic hubs indicates that the remnants of the
RNA world, such as coenzyme A, NAD and GTP, are
among the most connected substrates of the metabolic
network, as are elements of some of the most ancient
metabolic pathways, such as glycolysis and the tricar-
boxylic acid cycle17. In the context of the protein interac-
tion networks, cross-genome comparisons have found
that, on average, the evolutionarily older proteins have
more links to other proteins than their younger coun-
terparts45,46. This offers direct empirical evidence for
preferential attachment.

Motifs, modules and hierarchical networks
Cellular functions are likely to be carried out in a highly
modular manner1. In general, modularity refers to a
group of physically or functionally linked molecules
(nodes) that work together to achieve a (relatively) dis-
tinct function1,6,8,47. Modules are seen in many systems,
for example, circles of friends in social networks or web-
sites that are devoted to similar topics on the World
Wide Web. Similarly, in many complex engineered sys-
tems, from a modern aircraft to a computer chip, a
highly modular structure is a fundamental design
attribute.

Biology is full of examples of modularity. Relatively
invariant protein–protein and protein–RNA complexes
(physical modules) are at the core of many basic biolog-
ical functions, from nucleic-acid synthesis to protein
degradation48. Similarly, temporally coregulated groups
of molecules are known to govern various stages of the
cell cycle49–51, or to convey extracellular signals in bacter-
ial chemotaxis or the yeast pheromone response path-
way. In fact, most molecules in a cell are either part of an
intracellular complex with modular activity, such as the
ribosome, or they participate in an extended (func-
tional) module as a temporally regulated element of a
relatively distinct process (for example, signal amplifica-
tion in a signalling pathway52).

To address the modularity of networks, tools and
measures need to be developed that will allow us not
only to establish if a network is modular, but also to
explicitly identify the modules and their relationships in
a given network.

High clustering in cellular networks. In a network repre-
sentation, a module (or cluster) appears as a highly
interconnected group of nodes. Each module can be
reduced to a set of triangles (BOX 1); a high density of tri-
angles is reflected by the clustering coefficient, C (REF. 33),
the signature of a network’s potential modularity 
(BOX 1). In the absence of modularity, the clustering coef-
ficient of the real and the randomized network are com-
parable. The average clustering coefficient, <C>, of
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Figure 3 | The origin of the scale-free topology and hubs
in biological networks. The origin of the scale-free topology
in complex networks can be reduced to two basic
mechanisms: growth and preferential attachment. Growth
means that the network emerges through the subsequent
addition of new nodes, such as the new red node that is added
to the network that is shown in part a. Preferential attachment
means that new nodes prefer to link to more connected nodes.
For example, the probability that the red node will connect to
node 1 is twice as large as connecting to node 2, as the
degree of node 1 (k1=4) is twice the degree of node 2 (k2=2).
Growth and preferential attachment generate hubs through a
‘rich-gets-richer’ mechanism: the more connected a node is,
the more likely it is that new nodes will link to it, which allows
the highly connected nodes to acquire new links faster than
their less connected peers. In protein interaction networks,
scale-free topology seems to have its origin in gene
duplication. Part b shows a small protein interaction network
(blue) and the genes that encode the proteins (green). When
cells divide, occasionally one or several genes are copied twice
into the offspring’s genome (illustrated by the green and red
circles). This induces growth in the protein interaction network
because now we have an extra gene that encodes a new
protein (red circle). The new protein has the same structure as
the old one, so they both interact with the same proteins.
Ultimately, the proteins that interacted with the original
duplicated protein will each gain a new interaction to the new
protein. Therefore proteins with a large number of interactions
tend to gain links more often, as it is more likely that they
interact with the protein that has been duplicated. This is a
mechanism that generates preferential attachment in cellular
networks. Indeed, in the example that is shown in part b it does
not matter which gene is duplicated, the most connected
central protein (hub) gains one interaction. In contrast, the
square, which has only one link, gains a new link only if the hub
is duplicated.

A new node (red)  is more likely to 
connect to node 1
than 2

Barabasi & Oltvai 2004, Nature Genetics Review



Paths on a graph
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Path: a set of connected edges from one node to another 

Paths from B to D

F

There are two paths from B-D: B->A->D and B->G->H->A->D



Path lengths
• The shortest path length between two nodes A and 

B:
– The smallest number of edges that need to be traversed to 

get from A to B
• Mean path length is the average of all shortest path 

lengths
• Diameter of a graph is the longest of all shortest 

paths in the network



Scale-free networks tend to be ultra-
small

• Two nodes on the network are connected by a small 
number of edges

• Average path length is proportional to log(log(N)), 
where N is the number of nodes in the network 

• In a random network (Erdos Renyi network) the 
average path length is proportional to log(N)



Network mo*fs
• Network mo*fs are defined as small recurring subgraphs

that occur much more than a randomized network
• A subgraph is called a network mo*f of a network if its 

occurrence in  randomized networks  is significantly less 
than the original network. 

• Network mo*fs are o=en called “building blocks” of 
complex networks

• Bio-molecular networks tend to exhibit certain types of 
network mo*fs more frequently than random

• Some mo*fs are associated with specific network 
dynamics

Milo Science 2002



Network mo*fs of size 3 in a directed 
network

Cl concentrations in the Sajama ice core, and to
a number of other pedological and geomorpho-
logical features indicative of long-term dry cli-
mates (8 , 11–14, 18 ). This decline in human
activity around the Altiplano paleolakes is seen
in most caves, with early and late occupations
separated by largely sterile mid-Holocene sed-
iments. However, a few sites, including the
caves of Tulan-67 and Tulan-68, show that
people did not completely disappear from the
area. All of the sites of sporadic occupation
are located near wetlands in valleys, near
large springs, or where lakes turned into wet-
lands and subsistence resources were locally
still available despite a generally arid climate
(7 , 8 , 19 , 20 ).

Archaeological data from surrounding ar-
eas suggest that the Silencio Arqueológico
applies best to the most arid areas of the
central Andes, where aridity thresholds for
early societies were critical. In contrast, a
weaker expression is to be expected in the
more humid highlands of northern Chile
(north of 20°S, such as Salar Huasco) and
Peru (21). In northwest Argentina, the Silen-
cio Arqueológico is found in four of the six
known caves (22) [see review in (23 )]. It is
also found on the coast of Peru in sites that
are associated with ephemeral streams (24).
The southern limit in Chile and northwest
Argentina has yet to be explored.
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Network Motifs: Simple Building
Blocks of Complex Networks

R. Milo,1 S. Shen-Orr,1 S. Itzkovitz,1 N. Kashtan,1 D. Chklovskii,2

U. Alon1 *

Complex networks are studied across many fields of science. To uncover their
structural design principles, we defined “network motifs,” patterns of inter-
connections occurring in complex networks at numbers that are significantly
higher than those in randomized networks. We found such motifs in networks
from biochemistry, neurobiology, ecology, and engineering. The motifs shared
by ecological food webs were distinct from the motifs shared by the genetic
networks of Escherichia coli and Saccharomyces cerevisiae or from those found
in the World Wide Web. Similar motifs were found in networks that perform
information processing, even though they describe elements as different as
biomolecules within a cell and synaptic connections between neurons in Cae-
norhabditis elegans. Motifs may thus define universal classes of networks. This
approach may uncover the basic building blocks of most networks.

Many of the complex networks that occur in
nature have been shown to share global statis-
tical features (1–10 ). These include the “small
world” property (1–9 ) of short paths between
any two nodes and highly clustered connec-
tions. In addition, in many natural networks,
there are a few nodes with many more connec-
tions than the average node has. In these types

of networks, termed “scale-free networks” (4,
6 ), the fraction of nodes having k edges, p(k),
decays as a power law p(k) ! k–" (where " is
often between 2 and 3). To go beyond these
global features would require an understanding
of the basic structural elements particular to
each class of networks (9 ). To do this, we
developed an algorithm for detecting network
motifs: recurring, significant patterns of inter-
connections. A detailed application to a gene
regulation network has been presented (11).
Related methods were used to test hypotheses
on social networks (12, 13 ). Here we generalize
this approach to virtually any type of connec-
tivity graph and find the striking appearance of

1Departments of Physics of Complex Systems and
Molecular Cell Biology, Weizmann Institute of Sci-
ence, Rehovot, Israel 76100. 2Cold Spring Harbor Lab-
oratory, Cold Spring Harbor, NY 11724, USA.

*To whom correspondence should be addressed. E-
mail: urialon@weizmann.ac.il

Fig. 1. (A) Examples
of interactions repre-
sented by directed
edges between nodes
in some of the net-
works used for the
present study. These
networks go from the
scale of biomolecules
(transcription factor
protein X binds regu-
latory DNA regions
of a gene to regulate
the production rate
of protein Y),
through cells (neuron
X is synaptically con-
nected to neuron Y),
to organisms (X
feeds on Y). (B) All 13 types of three-node connected subgraphs.
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Additional possibilities if we consider the sign of an edge
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Different types of feed-forward mo3fs
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PAR slows the response time because at early stages, 
when levels of X are low, production is slow. Production 
picks up only when X concentration approaches the acti-
vation threshold for its own promoter. Thus, the desired 
steady state is reached in an S-shaped curve (FIG. 1d). 
The response time is longer than in a corresponding 
simple-regulation system, as shown theoretically24 and 
experimentally by Maeda and Sano25.

PAR tends to increase cell–cell variability. If PAR is 
weak (that is, X moderately enhances its own produc-
tion rate), the cell–cell distribution of X concentration 
is expected to be broader than in the case of a simply 
regulated gene (FIG. 1f). Strong PAR can lead to bimodal 
distributions, whereby the concentration of X is low 
in some cells but high in others. In cells in which the 
concentration is high, X activates its own production 
and keeps it high indefinitely. Strong PAR can therefore 
lead to a differentiation-like partitioning of cells into 
two populations25–27 (FIG. 1f). In some cases, PAR can 
be useful as a memory to maintain gene expression, as 
mentioned below (see the section on developmental 

networks). In other cases, a bimodal distribution is 
thought to help cell populations to maintain a mixed 
phenotype so that they can better respond to a stochastic 
environment (reviewed in REF. 28).

Feedforward loops
The second family of network motifs is the feedforward 
loop (FFL). It appears in hundreds of gene systems in 
E. coli6,9 and yeast7,10, as well as in other organisms11–16. 
This motif consists of three genes: a regulator, X, which 
regulates Y, and gene Z, which is regulated by both X 
and Y. Because each of the three regulatory interactions 
in the FFL can be either activation or repression, there 
are eight possible structural types of FFL (FIG. 2a).

To understand the function of the FFLs, we need to 
understand how X and Y are integrated to regulate the 
Z promoter29,30. Two common ‘input functions’ are an 
‘AND gate’, in which both X and Y are needed to activate 
Z, and an ‘OR gate’, in which binding of either regulator 
is sufficient. Other input functions are possible, such 
as the additive input function in the flagella system24,31 
and the hybrid of AND and OR logic in the lac pro-
moter32. However, much of the essential behaviour of 
FFLs can be understood by focusing on the stereotypical 
AND and OR gates. Each of the eight FFL types can thus 
appear with at least two input functions.

In the best studied transcriptional networks (E. coli 
and yeast), two of the eight FFL types occur much more 
frequently than the other six types. These common types 
are the coherent type-1 FFL (C1-FFL) and the incoherent 
type-1 FFL (I1-FFL)33,34,36. Here I discuss their dynamical 
functions in detail; the functions of all eight FFL types 
are described in REF. 34.

The C1-FFL is a ‘sign-sensitive delay’ element and a 
persistence detector. In the C1-FFL, both X and Y are 
transcriptional activators (FIG. 2b). I will first consider 
the behaviour of the FFL when the Z promoter has an 
AND input function, and then turn to the case of the 
OR input function.

With an AND input function, the C1-FFL shows 
a delay after stimulation, but no delay when stimula-
tion stops. To see this, let’s follow the behaviour of the 
FFL. When the signal Sx appears, X becomes active 
and rapidly binds its downstream promoters. As a 
result, Y begins to accumulate. However, owing to the 
AND input function, Z production starts only when Y 
concentration crosses the activation threshold for the 
Z promoter. This results in a delay of Z expression fol-
lowing the appearance of Sx (FIG. 3a). In contrast, when 
the signal Sx is removed, X rapidly becomes inactive. As 
a result, Z production stops because deactivation of its 
promoter requires only one arm of the AND gate to be 
‘shut off ’. Hence, there is no delay in deactivation of Z 
after the signal Sx is removed (FIG. 3a).

This dynamic behaviour is called sign-sensitive delay; 
that is, delay depends on the sign of the Sx step. An ON 
step (addition of Sx) causes a delay in Z expression, but 
an OFF step (removal of Sx) causes no delay.

The duration of the delay is determined by the bio-
chemical parameters of the regulator Y; for example, the 

Figure 2 | Feedforward loops (FFLs). a | The eight types 
of feedforward loops (FFLs) are shown. In coherent FFLs, 
the sign of the direct path from transcription factor X to 
output Z is the same as the overall sign of the indirect 
path through transcription factor Y. Incoherent FFLs have 
opposite signs for the two paths. b | The coherent type-1 
FFL with an AND input function at the Z promoter. 
c | The incoherent type-1 FFL with an AND input function 
at the Z promoter. SX and SY are input signals for X and Y.
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Coherent: sign of the direct path is the same as the indirect path
Incoherent: sign of the direct path and indirect path are not the same 

Alon 2007, Nature Review Gene=cs

These appear 
much more in 
transcrip=onal 
networks than 
other FF mo=fs



Network motifs are associated with 
dynamics
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Figure 3 | The coherent type-1 feedforward loop (C1-FFL) and its dynamics. a | The C1-FFL with an AND input 
function shows delay after stimulus (SX) addition, and no delay after stimulus removal. It thus acts as a sign-sensitive 
filter, which responds only to persistent stimuli. b | An experimental study of the C1-FFL in the arabinose system of 
Escherichia coli, using fluorescent-reporter strains and high-resolution measurements in living cells. This system 
(represented by red circles) shows a delay after addition of the input signal (cAMP), and no delay after its removal, 
relative to a simple-regulation system that responds to the same input signal (the lac system, represented by blue 
squares). c | The C1-FFL with an OR-like input function in the flagella system of E. coli shows a delay after signal 
removal but not after the onset of signal (represented by orange circles). Deletion of the ‘Y’ gene (FliA) abolishes this 
delay (represented by purple squares). Z/Zst, Z concentration relative to the steady state Zst.
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A feed-forward mo,f with an AND gate can encode a sign sensi,ve delay

Alon 2007, Nature Review Genetics Cited >2000 times!



How to find network mo-fs?
• Given an input network G we need to address two 

problems

– Subgraph enumeration: Find which subgraphs occur in G
and how many times

– Significance of the number of occurrences: Compare to 
the number of occurrences of subgraphs in randomized 
networks

• Software to find network motifs

– FANMOD: a tool for fast network motif detection
http://bioinformatics.oxfordjournals.org/content/22/9/11
52.full

Wernicke 2005: hMp://theinf1.informaNk.uni-jena.de/publicaNons/network-moNfs-wabi05.pdf

http://bioinformatics.oxfordjournals.org/content/22/9/1152.full


Algorithm for enumera0ng 
subgraphs: Edge sampling

Proc. 5th WABI-05, Vol. 3692 in LNBI, pp. 165-177, Springer, 2005

G1 G2

Fig. 1. Graphs G1 and G2 have an equal number of (connected) size-3 subgraphs.
The subgraph occurs exactly once in each of them. As outlined in the text, esa
oversamples the subgraph in both G1 and G2. The oversampling is worse for G1.

is unbiased (with respect to A) if the expected value of Ĉi
k(R, G) equals Ci

k(G)
and biased otherwise.

2.1 The Previous Approach: Edge Sampling

For a given graph G = (V,E) and an integer k ≥ 3, Kashtan et al. [9] suggest to
sample a random subgraph by starting with a randomly chosen edge and then
adding neighboring vertices until a subgraph of the desired size k is obtained:

Algorithm: Edge Sampling(G, k) (esa)
Input: A graph G = (V,E) and an integer 2 ≤ k ≤ |V |.
Output: Vertices of a randomly chosen size-k subgraph in G.

01 {u, v}← random edge from E
02 V ′ ← {u, v}
03 while |V ′| ≠ k do
04 {u, v}← random edge from V ′ ×N(V ′)
05 V ′ ← V ′ ∪ {u} ∪ {v}
06 return V ′

As already noted in [9], esa has a bias for sampling certain subgraphs more
often than others. Figure 1 shows a concrete example we have constructed to
illustrate this. The total number of connected size-3 subgraphs both in G1 and G2

is 28. Since the subgraph occurs exactly once each in G1 and G2, we should
expect that esa samples with probability 1

28 within both graphs. However,
Pr[esa samples in G1] = 1

9 · 1 + 2
9 · 2

8 = 1
6 and Pr[esa samples in G2] =

3
12 · 2

8 = 1
16 . This illustrates some crucial problems of esa: The subgraph

is oversampled and—as a direct consequence—the only other occurring size-3
subgraph is undersampled. The oversampling of is worse for G1 than it
is for G2 and it is possible to show (using an adaption of the above example)
that the magnitude of the oversampling cannot be estimated simply from the
number of edges neighboring the oversampled subgraph. Given a set R of size-k
subgraphs that were randomly sampled using esa, the demonstrated bias can
be overcome by using the following (unbiased) estimator [9]:

Ĉi
k(R, G) :=

∑

{G′∈R | G′∈Si
k
(G)}(Pr[G′ is sampled by esa])−1

∑

G′∈R(Pr[G′ is sampled by esa])−1
. (1)

The main idea here is that each subgraph is (ex post facto) scored inversely pro-
portional to the probability that esa samples it. While it is possible to correctly
estimate Ci

k(G) in this way, several disadvantages remain:

N(V’): set of neighbors of all vertices in V’
Kashtan et al., Bioinforma7cs 2004



Assessing the significance of a 
network motif

motifs in networks representing a broad range
of natural phenomena.

We started with networks where the inter-
actions between nodes are represented by di-
rected edges (Fig. 1A). Each network was
scanned for all possible n-node subgraphs (in
the present study, n ! 3 and 4), and the number
of occurrences of each subgraph was recorded.
Each network contains numerous types of n-
node subgraphs (Fig. 1B). To focus on those
that are likely to be important, we compared the
real network to suitably randomized networks
(12–16 ) and only selected patterns appearing in
the real network at numbers significantly higher
than those in the randomized networks (Fig. 2).
For a stringent comparison, we used random-
ized networks that have the same single-node
characteristics as does the real network: Each
node in the randomized networks has the same

number of incoming and outgoing edges as the
corresponding node has in the real network.
The comparison to this randomized ensemble
accounts for patterns that appear only because
of the single-node characteristics of the network
(e.g., the presence of nodes with a large number
of edges). Furthermore, the randomized net-
works used to calculate the significance of n-
node subgraphs were generated to preserve the
same number of appearances of all (n – 1)-node
subgraphs as in the real network (17, 18 ). This
ensures that a high significance was not as-
signed to a pattern only because it has a highly
significant subpattern. The “network motifs”
are those patterns for which the probability P of
appearing in a randomized network an equal or
greater number of times than in the real network
is lower than a cutoff value (here P ! 0.01).
Patterns that are functionally important but not

statistically significant could exist, which
would be missed by our approach.

We applied the algorithm to several net-
works from biochemistry (transcriptional gene
regulation), ecology (food webs), neurobiology
(neuron connectivity), and engineering (elec-
tronic circuits, World Wide Web). The network
motifs found are shown in Table 1. Transcrip-
tion networks are biochemical networks re-
sponsible for regulating the expression of genes
in cells (11, 19 ). These are directed graphs, in
which the nodes represent genes (Fig. 1A).
Edges are directed from a gene that encodes for
a transcription factor protein to a gene transcrip-
tionally regulated by that transcription factor.
We analyzed the two best characterized tran-
scriptional regulation networks, corresponding
to organisms from different kingdoms: a eu-
karyote (the yeast Saccharomyces cerevisiae)
(20 ) and a bacterium (Escherichia coli) (11,
19 ). The two transcription networks show the
same motifs: a three-node motif termed “feed-
forward loop” (11) and a four-node motif
termed “bi-fan.” These motifs appear numerous
times in each network (Table 1), in nonhomolo-
gous gene systems that perform diverse biolog-
ical functions. The number of times they appear
is more than 10 standard deviations greater than
their mean number of appearances in random-
ized networks. Only these subgraphs, of the 13
possible different three-node subgraphs (Fig.
1B) and 199 different four-node subgraphs, are
significant and are therefore considered net-
work motifs. Many other three- and four-node
subgraphs recur throughout the networks, but at
numbers that are less than the mean plus 2
standard deviations of their appearance in ran-
domized networks.

We next applied the algorithm to ecosystem
food webs (21, 22), in which nodes represent
groups of species. Edges are directed from a
node representing a predator to the node repre-
senting its prey. We analyzed data collected by
different groups at seven distinct ecosystems
(22), including both aquatic and terrestrial hab-
itats. Each of the food webs displayed one or
two three-node network motifs and one to five
four-node network motifs. One can define the
“consensus motifs” as the motifs shared by
networks of a given type. Five of the seven food
webs shared one three-node motif, and all seven
shared one four-node motif (Table 1). In con-
trast to the three-node motif (termed “three
chain”), the three-node feedforward loop was
underrepresented in the food webs. This sug-
gests that direct interactions between species at
a separation of two layers [as in the case of
omnivores (23 )] are selected against. The bi-
parallel motif indicates that two species that are
prey of the same predator both tend to share the
same prey. Both network motifs may thus rep-
resent general tendencies of food webs (21, 22).

We next studied the neuronal connectivity
network of the nematode Caenorhabditis ele-
gans (24 ). Nodes represent neurons (or neuron

Fig. 2. Schematic view of network motif detection. Network motifs are patterns that recur much
more frequently (A) in the real network than (B) in an ensemble of randomized networks. Each
node in the randomized networks has the same number of incoming and outgoing edges as does
the corresponding node in the real network. Red dashed lines indicate edges that participate in the
feedforward loop motif, which occurs five times in the real network.

150 200 250 300 350 400
0

0.005

0.01

0.015

Subnetwork size

C
on

ce
nt

ra
tio

n 
of

 F
ee

df
or

w
ar

d 
lo

op

Real
Random

Fig. 3. Concentration C of
the feedforward loop motif
in real and randomized
subnetworks of the E. coli
transcription network (11).
C is the number of appear-
ances of the motif divided
by the total number of ap-
pearances of all connected
three-node subgraphs (Fig.
1B). Subnetworks of size S
were generated by choos-
ing a node at random and
adding to it nodes con-
nected by an incoming or
outgoing edge, until S
nodes were obtained, and
then including all of the
edges between these S
nodes present in the full
network. Each of the sub-
networks was randomized
(17, 18) (shown are mean and SD of 400 subnetworks of each size).
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The motif (red dashed edges) occurs much more frequently in the real network than 
in any randomized network



Genera&ng a randomized network
• While an Erdos Renyi network is random, it does not 

have the same degree distribution as a given 
network

• How to generate a randomized network with the 
same degree distribution?



Strategy to generate randomized 
networks
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Select two edges connec2ng four 
ver2ces and swap the end points.
Repeat.



Network motifs found in many 
complex networks

The occurrence of the feedforward loop in both networks suggests a fundamental similarity 
in the design on these networks

Milo et al., Science 2002

classes), and edges represent synaptic connec-
tions between the neurons. We found the feed-
forward loop motif in agreement with anatomi-
cal observations of triangular connectivity struc-
tures (24). The four-node motifs include the
bi-fan and the bi-parallel (Table 1). Two of
these motifs (feedforward loop and bi-fan) were

also found in the transcriptional gene regulation
networks. This similarity in motifs may point to
a fundamental similarity in the design con-
straints of the two types of networks. Both net-
works function to carry information from sen-
sory components (sensory neurons/transcription
factors regulated by biochemical signals) to ef-

fectors (motor neurons/structural genes). The
feedforward loop motif common to both types
of networks may play a functional role in infor-
mation processing. One possible function of this
circuit is to activate output only if the input
signal is persistent and to allow a rapid deacti-
vation when the input goes off (11). Indeed,
many of the input nodes in the neural feedfor-
ward loops are sensory neurons, which may
require this type of information processing
to reject transient input fluctuations that are
inherent in a variable or noisy environment.

We also studied several technological net-
works. We analyzed the ISCAS89 benchmark
set of sequential logic electronic circuits (7, 25).
The nodes in these circuits represent logic gates
and flip-flops. These nodes are linked by direct-
ed edges. We found that the motifs separate the
circuits into classes that correspond to the cir-
cuit’s functional description. In Table 1, we
present two classes, consisting of five forward-
logic chips and three digital fractional multipli-
ers. The digital fractional multipliers share three
motifs, including three- and four-node feedback
loops. The forward logic chips share the feed-
forward loop, bi-fan, and bi-parallel motifs,
which are similar to the motifs found in the
genetic and neuronal information-processing
networks. We found a different set of motifs in
a network of directed hyperlinks between
World Wide Web pages within a single domain
(4). The World Wide Web motifs may reflect a
design aimed at short paths between related
pages. Application of our approach to nondi-
rected networks shows distinct sets of motifs in
networks of protein interactions and Internet
router connections (18).

None of the network motifs shared by the
food webs matched the motifs found in the gene
regulation networks or the World Wide Web.
Only one of the food web consensus motifs also
appeared in the neuronal network. Different
motif sets were found in electronic circuits with
different functions. This suggests that motifs
can define broad classes of networks, each with
specific types of elementary structures. The
motifs reflect the underlying processes that gen-
erated each type of network; for example, food
webs evolve to allow a flow of energy from the
bottom to the top of food chains, whereas gene
regulation and neuron networks evolve to pro-
cess information. Information processing seems
to give rise to significantly different structures
than does energy flow.

We further characterized the statistical sig-
nificance of the motifs as a function of network
size, by considering pieces of various sizes
(subnetworks) of the full network. The concen-
tration of motifs in the subnetworks is about the
same as that in the full network (Fig. 3). In
contrast, the concentration of the corresponding
subgraphs in the randomized versions of the
subnetworks decreases sharply with size. In
analogy with statistical physics, the number of
appearances of each motif in the real networks

Table 1. Network motifs found in biological and technological networks. The numbers of nodes and edges
for each network are shown. For each motif, the numbers of appearances in the real network (Nreal) and
in the randomized networks (Nrand! SD, all values rounded) (17, 18) are shown. The P value of all motifs
is P " 0.01, as determined by comparison to 1000 randomized networks (100 in the case of the World
Wide Web). As a qualitative measure of statistical significance, the Z score # (Nreal – Nrand)/SD is shown.
NS, not significant. Shown are motifs that occur at least U # 4 times with completely different sets of
nodes. The networks are as follows (18): transcription interactions between regulatory proteins and genes
in the bacterium E. coli (11) and the yeast S. cerevisiae (20); synaptic connections between neurons in
C. elegans, including neurons connected by at least five synapses (24); trophic interactions in ecological
food webs (22), representing pelagic and benthic species (Little Rock Lake), birds, fishes, invertebrates
(Ythan Estuary), primarily larger fishes (Chesapeake Bay), lizards (St. Martin Island), primarily inverte-
brates (Skipwith Pond), pelagic lake species (Bridge Brook Lake), and diverse desert taxa (Coachella
Valley); electronic sequential logic circuits parsed from the ISCAS89 benchmark set (7, 25), where nodes
represent logic gates and flip-flops (presented are all five partial scans of forward-logic chips and three
digital fractional multipliers in the benchmark set); and World Wide Web hyperlinks between Web pages
in a single domain (4) (only three-node motifs are shown). e, multiplied by the power of 10 (e.g., 1.46e6
# 1.46$ 106).

*Has additional four-node motif: (X3Z, W; Y3Z, W; Z3W), Nreal# 150, Nrand# 85! 15, Z# 4. †Has additional
four-node motif: (X3Y, Z; Y3Z; Z3W), Nreal# 204, Nrand# 80! 20, Z# 6. The three-node pattern (X3Y, Z; Y3Z;
Z3Y) also occurs significantly more than at random. It is not a motif by the present definition because it does not
appear with completely distinct sets of nodes more than U # 4 times. ‡Has additional four-node motif: (X3Y;
Y3Z, W; Z3X; W3X), Nreal # 914, Nrand # 500 ! 70, Z # 6. §Has two additional three-node motifs: (X3Y, Z;
Y3Z; Z3Y), Nreal # 3e5, Nrand # 1.4e3 ! 6e1, Z # 6000, and (X3Y, Z; Y3Z), Nreal # 5e5, Nrand # 9e4 ! 1.5e3,
Z # 250.

Network Nodes Edges Nreal Nrand ± SD Z score Nreal Nrand ± SD Z score Nreal Nrand ± SD Z score
Gene regulation
(transcription)

            X

            Y

            Z

Feed-
forward
loop

    X           Y

     Z         W

Bi-fan

E. coli   424    519 40   7 ± 3 10   203   47 ± 12 13
S. cerevisiae* 685 1,052 70 11 ± 4 14 1812 300 ± 40 41
Neurons              X

             Y

             Z

Feed-
forward
loop

    X           Y

     Z          W

Bi-fan           X

  Y              Z

          W

Bi-
parallel

 C. elegans† 252 509 125 90 ± 10 3.7 127 55 ± 13 5.3 227 35 ± 10 20
Food webs             X

            Y

             Z

Three
chain

          X

  Y              Z

         W

Bi-
parallel

Little Rock 92 984 3219 3120 ± 50 2.1 7295 2220 ± 210 25
Ythan 83 391 1182 1020 ± 20 7.2 1357 230 ± 50 23
St. Martin 42 205   469   450 ± 10 NS   382 130 ± 20 12
Chesapeake 31   67     80     82 ± 4       NS     26     5 ± 2      8
Coachella 29 243   279   235 ± 12 3.6   181   80 ± 20   5
Skipwith 25 189   184   150 ± 7 5.5   397   80 ± 25 13

 B. Brook 25 104   181   130 ± 7 7.4   267   30 ± 7    32
Electronic circuits
(forward logic chips)

             X

             Y

             Z

Feed-
forward
loop

Bi-fan           X

  Y              Z

          W

Bi-
parallel

s15850 10,383 14,240 424   2 ± 2 285 1040 1 ± 1 1200 480 2 ± 1 335
s38584 20,717 34,204 413 10 ± 3 120 1739 6 ± 2   800 711 9 ± 2 320
s38417 23,843 33,661 612   3 ± 2 400 2404 1 ± 1 2550 531 2 ± 2 340
s9234   5,844   8,197 211   2 ± 1 140   754 1 ± 1 1050 209 1 ± 1 200
s13207   8,651 11,831 403   2 ± 1 225 4445 1 ± 1 4950 264 2 ± 1 200
Electronic circuits
(digital fractional multipliers)

         X

Y                Z

Three-
node
feedback
loop

Bi-fan      X            Y

     Z             W

Four-
node
feedback
loop

s208 122 189 10 1 ± 1   9   4 1 ± 1   3.8   5 1 ± 1   5
s420 252 399 20 1 ± 1 18 10 1 ± 1 10 11 1 ± 1 11
s838‡ 512 819 40 1 ± 1 38 22 1 ± 1 20 23 1 ± 1 25
World Wide Web              X

             Y

             Z

Feedback
with two
mutual
dyads

         X

Y                Z

Fully
connected
triad

        X

Y                Z

Uplinked
mutual
dyad

nd.edu§ 325,729 1.46e6 1.1e5 2e3 ± 1e2 800 6.8e6 5e4±4e2 15,000 1.2e6 1e4 ± 2e2 5000

    X           Y

     Z         W

    X           Y

     Z         W
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Structural common motifs seen in the yeast 
regulatory network

Lee et.al. 2002, Mangan & Alon, 2003

Auto-regulation Mul8-component Feed-forward loop

Single Input Mul8 Input

Regulatory Chain

Feed-forward loops involved in speeding up in response of target gene



Modularity in networks
• Modularity “refers to a group of physically or functionally 

linked nodes that work together to achieve a distinct 
function” -- Barabasi & Oltvai

• Modularity is an important principle of biological systems
• Genes tend to interact with a select set of other genes 

exhibiting a clustering of interactions
• Module detection can help to

– Understand the organizational properties of the network
– Can be used to predict function of genes based on their 

grouping behavior



A modular network
Modularity and community structure in networks
M. E. J. Newman*

Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109
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Many networks of interest in the sciences, including social net-
works, computer networks, and metabolic and regulatory net-
works, are found to divide naturally into communities or modules.
The problem of detecting and characterizing this community struc-
ture is one of the outstanding issues in the study of networked
systems. One highly effective approach is the optimization of the
quality function known as ‘‘modularity’’ over the possible divisions
of a network. Here I show that the modularity can be expressed in
terms of the eigenvectors of a characteristic matrix for the net-
work, which I call the modularity matrix, and that this expression
leads to a spectral algorithm for community detection that returns
results of demonstrably higher quality than competing methods in
shorter running times. I illustrate the method with applications to
several published network data sets.

clustering ! partitioning ! modules ! metabolic network ! social network

Many systems of scientific interest can be represented as
networks, sets of nodes or vertices joined in pairs by lines

or edges. Examples include the internet and the worldwide web,
metabolic networks, food webs, neural networks, communica-
tion and distribution networks, and social networks. The study of
networked systems has a history stretching back several centu-
ries, but it has experienced a particular surge of interest in the
last decade, especially in the mathematical sciences, partly as a
result of the increasing availability of accurate large-scale data
describing the topology of networks in the real world. Statistical
analyses of these data have revealed some unexpected structural
features, such as high network transitivity (1), power-law degree
distributions (2), and the existence of repeated local motifs (3);
see refs. 4–6 for reviews.

One issue that has received a considerable amount of attention
is the detection and characterization of community structure in
networks (7, 8), meaning the appearance of densely connected
groups of vertices, with only sparser connections between groups
(Fig. 1). The ability to detect such groups could be of significant
practical importance. For instance, groups within the worldwide
web might correspond to sets of web pages on related topics (9);
groups within social networks might correspond to social units
or communities (10). Merely the finding that a network contains
tightly knit groups at all can convey useful information: if a
metabolic network were divided into such groups, for instance,
it could provide evidence for a modular view of the network’s
dynamics, with different groups of nodes performing different
functions with some degree of independence (11, 12).

Past work on methods for discovering groups in networks
divides into two principal lines of research, both with long
histories. The first, which goes by the name of graph partitioning,
has been pursued particularly in computer science and related
fields, with applications in parallel computing and integrated
circuit design, among other areas (13, 14). The second, identified
by names such as block modeling, hierarchical clustering, or
community structure detection, has been pursued by sociologists
and more recently by physicists, biologists, and applied mathe-
maticians, with applications especially to social and biological
networks (7, 15, 16).

It is tempting to suggest that these two lines of research are
really addressing the same question, albeit by somewhat different
means. There are, however, important differences between the

goals of the two camps that make quite different technical
approaches desirable. A typical problem in graph partitioning is
the division of a set of tasks between the processors of a parallel
computer so as to minimize the necessary amount of interpro-
cessor communication. In such an application the number of
processors is usually known in advance and at least an approx-
imate figure for the number of tasks that each processor can
handle. Thus we know the number and size of the groups into
which the network is to be split. Also, the goal is usually to find
the best division of the network regardless of whether a good
division even exists; there is little point in an algorithm or
method that fails to divide the network in some cases.

Community structure detection, by contrast, is perhaps best
thought of as a data analysis technique used to shed light on the
structure of large-scale network data sets, such as social net-
works, internet and web data, or biochemical networks. Com-
munity structure methods normally assume that the network of
interest divides naturally into subgroups and the experimenter’s
job is to find those groups. The number and size of the groups
are thus determined by the network itself and not by the
experimenter. Moreover, community structure methods may
explicitly admit the possibility that no good division of the
network exists, an outcome that is itself considered to be of
interest for the light it sheds on the topology of the network.

This article focuses on community structure detection in
network data sets representing real-world systems of interest.
However, both the similarities and differences between commu-
nity structure methods and graph partitioning will motivate
many of the developments that follow.

Conflict of interest statement: No conflicts declared.

This paper was submitted directly (Track II) to the PNAS office.

*E-mail: mejn@umich.edu.

© 2006 by The National Academy of Sciences of the USA

Fig. 1. The vertices in many networks fall naturally into groups or commu-
nities, sets of vertices (shaded) within which there are many edges, with only
a smaller number of edges between vertices of different groups.

www.pnas.org"cgi"doi"10.1073"pnas.0601602103 PNAS ! June 6, 2006 ! vol. 103 ! no. 23 ! 8577–8582

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

Module 1

Module 2

Module 3

M. E. J. Newman, Modularity and community structure in networks, PNAS 2006



Clustering coefficient
• Measure of transi-vity in the network that asks

– If A is connected to B, and B is connected to C, how o:en is A 
connected to C?

• Clustering coefficient Ci for each node i is

• ki Degree of node i
• ni is the number of edges among neighbors of i
• Average clustering coefficient gives a measure of “modularity” 

of the network

A

B
C

?

Ci =
2ni

ki(ki � 1)



Summary of topological proper1es of 
networks

• Given a network, its topology can be characterized using 
different measures
– Degree distribution
– Average path length
– Clustering coefficient (also used to measure modularity of a network)

• Degree distribution can be
– Poisson
– Power law 

• Such networks are called scale free
• Network modularity

– Clustering coefficient
• Network motifs

– Building blocks of complex networks
– Over represented subgraphs of specific types



Goals for today
• Commonly measured network proper2es
– Degree distribu2on
– Average shortest path length
– Network mo2fs

• Studying modularity of biological networks
– Modularity
– Clustering coefficient
– Algorithms to find modules on graphs



Different types of network modules
• Topological modules

– Defined solely based on 
the graph connec7vity of 
nodes

• Func7onal modules
– Based on graph 

connec7vity & other 
node a=ributes

– Can be further grouped 
into
• Ac7ve modules
• Integra7ve modules
• Disease modules

Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo, Nature Review Gene7cs 2011, Mitra
et al., Nature Review Gene7cs 2014
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Edgetic
Edgetic perturbations denote 
mutations that do not result  
in the complete loss of a  
gene product, but affect one 
or several interactions (and 
thus functions) of a protein. 
From a network perspective, 
an edgetic perturbation 
removes one or several links, 
but leaves the other links  
and the node unaffected.

Shared gene hypothesis and the human disease network. 
The linkage of a gene to different disease pathopheno-
types often indicates that these diseases have a common 
genetic origin. Motivated by this hypothesis, Goh et al.42 
used the gene–disease associations that are collected 
in the OMIM database to build a network of diseases 
that are linked if they share one or more genes. In the 
obtained human disease network (HDN), 867 of 1,284 
diseases with an associated gene are connected to at least 
one other disease, and 516 of them belong to a single 
disease cluster (FIG. 5). The clustering of nodes of similar 
colour in FIG. 5, denoting the disease class, reflects the 
fact that similar pathophenotypes have a higher likeli-
hood of sharing genes than do pathophenotypes that 
belong to different disease classes. For example, cancers 
form a tightly interconnected and easily detectable clus-
ter, which is held together by a small group of genes that 
are associated with multiple cancers.

To determine whether the sharing of genes has con-
sequences for disease occurrence in populations, the 
comorbidity between linked disease pairs has been 
examined90 (FIG. 5). This analysis indicates that a patient 
is twice as likely to develop a particular disease if that 
disease shares a gene with the patient’s primary disease. 
But many disease pairs that share genes do not show sig-
nificant comorbidity. One explanation is that different 
mutations in the same gene can have different effects on 
the gene product, and therefore different pathological 
consequences91 that are organ and context dependent. 
Such ‘edgetic’ alleles affect a specific subset of links in 
the interactome92. Consistent with this view, disease 
pairs that are associated with mutations that affect 

the same functional domain of a protein show higher 
comorbidity than do disease pairs with mutations that 
occur in different functional domains90 (FIG. 5).

Shared metabolic pathway hypothesis and the meta-
bolic disease network. An enzymatic defect that affects 
the flux of one reaction can potentially affect the 
fluxes of all downstream reactions in the same path-
way, leading to disease phenotypes that are normally 
associated with these downstream reactions. Thus,  
for metabolic diseases, links that are induced by shared 
metabolic pathways are expected to be more relevant 
than are links based on shared genes. In support of 
this hypothesis, Lee et al.93 constructed a metabolic 
disease network (MDN) in which two disorders are 
connected if the enzymes associated with them cata-
lyse adjacent reactions (FIG. 5b). The visually apparent 
clustering of the MDN mirrors distinct metabolic path-
ways. For example, purine metabolism consists of 62 
reactions associated with 33 diseases, including nucle-
oside phosphorylase deficiency and congenital dys-
erythropoietic anaemia, which form a visually distinct 
cluster. Comorbidity analysis confirms the functional 
relevance of metabolic coupling: disease pairs that are 
linked in the MDN have a 1.8-fold increased comor-
bidity compared to disease pairs that are not linked 
metabolically93. Comorbidity is even more pronounced 
if the fluxes of the reactions that are catalysed by the 
respective disease genes are themselves coupled; that 
is, changes in one flux induce significant changes in 
the other flux, even if the corresponding reactions are 
not adjacent.

Figure 2 | Disease modules. Schematic diagram of the three modularity concepts that are discussed in this Review.  
a | Topological modules correspond to locally dense neighbourhoods of the interactome, such that the nodes of  
the module show a higher tendency to interact with each other than with nodes outside the module. As such, 
topological modules represent a pure network property. b | Functional modules correspond to network neighbourhoods 
in which there is a statistically significant segregation of nodes of related function. Thus, a functional module requires us 
to define some nodal characteristics (shown as grey nodes) and relies on the hypothesis that nodes that are involved in 
closely related cellular functions tend to interact with each other and are therefore located in the same network 
neighbourhood. c | A disease module represents a group of nodes whose perturbation (mutations, deletions, copy 
number variations or expression changes) can be linked to a particular disease phenotype, shown as red nodes. The tacit 
assumption in network medicine is that the topological, functional and disease modules overlap, so that functional 
modules correspond to topological modules and a disease can be viewed as the breakdown of a functional module.
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Studying modularity in biological 
systems

• Given a network is it modular?
• Given a network what are the modules in the 

network?



Given a graph, is it modular?
• Given a graph, we would like to know if it is modular
• This requires us to quan9fy modularity
• Different measures of modularity exist
– Clustering coefficient
– Q Modularity: measures the rela9ve density of edges 

between and within the groups



Clustering coefficient
• Measure of transitivity in the network that asks

– If A is connected to B, and B is connected to C, how often is A 
connected to C?

• Clustering coefficient Ci for each node i is

• ki Degree of node i
• ni is the number of edges among neighbors of i
• Average clustering coefficient gives a measure of “modularity” 

of the network

A

B
C

?

Ci =
2ni

ki(ki � 1)



Clustering coefficient example

A

C

B
G

D

CA =
2 ⇤ 1
4 ⇤ 3

CG = 0



Q measure for modularity
• Suppose the nodes in the graph belong to K groups 

(communi5es)
• Modularity (Q) can be assessed as follows:

– difference between within group (community) connec5ons and 
expected connec5ons within a group

• This measure assess how good a par5cular grouping is

Q =
KX

i=1

(eii � a2
i )

K: number of groups
eij: Fraction of total edges that link nodes 
in group i to group j

ai =
X

j

eij

Detec5ng community structure in networks. M.E. J Newman

Frac5on of edges 
within group i

Fraction of edges 
without regard to 
community structure



Studying modularity in biological 
systems

• Given a network is it modular?
• Given a network what are the modules in the 

network?



Given a graph, what are the modules

• Given a graph find the modules
– Modules are represented by densely connected subgraphs

• The graph can be par99oned into modules using 
“Graph clustering” or “Graph par99oning”

• Clusters, modules are also called “communi9es”



Problem definition of (topological) 
module detection 

• Given:
– A graph 
– A measure of cluster quality

• Do
– Par::on the ver:ces into groups such that they form 

densely connected subgraphs (e.g. as measured by the 
cluster quality)



Common graph clustering algorithms

• Hierarchical or flat clustering using a notion of 
similarity between nodes

• Girvan-Newman algorithm
• Hierarchical Agglomerative clustering
• Spectral clustering
• Markov clustering algorithm
• Affinity propagation



Clustering 
• Types of clustering
– Flat clustering

• K-means
• Gaussian mixture models

– Hierarchical clustering
• Clustering algorithms differ in the distance measure 

used to group objects together



Task definition: clustering objects

• Given: a)ributes for a set of objects we wish to 
cluster

• Do: organize objects into groups such that
– Objects in the same cluster are highly similar to each 

other
– Objects from different clusters have low similarity to 

each other



Flat clustering
• Cluster objects into K clusters
• K : number of clusters is a user defined argument
• Two example algorithms
– K-means
– Gaussian mixture model-based clustering



Hierarchical clustering
• Hierarchical clustering is a widely used clustering 

technique
• Instead of the number of clusters, it requires us to 

specify how much dissimilarity we will tolerate 
between groups

• The hierarchical clustering is represented by a tree 
structure called a dendrogram

Slides adapted from Prof. Mark Craven; BMI 576



Types of hierarchical clustering 
strategies

• Agglomerative (bottom-up)
– Start from the individual objects
– Group objects or clusters of objects

• Divisive (or top-down)
– Start from all objects in a single cluster
– Break down each cluster into smaller clusters



Hierarchical clustering

leaves represent objects to be clustered (e.g. genes or samples)

height of bar indicates 
degree of distance 
within cluster
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Slides from Prof. Mark Craven



Flat clustering from a hierarchical 
clustering

cutting here results
in 2 clusters

cu.ng here results
in 4 clusters

• We can always generate a flat clustering from a hierarchical 
clustering by “cutting” the tree at some distance threshold

Slides from Prof. Mark Craven



Hierarchical clustering to find 
modules on graphs

• What is a good measure of similarity to cluster nodes 
on a graph?

• One approach is to use local topological overlap
– Find the similarity between the local neighborhoods of 

two nodes i and j

• N1(i): the set of immediate neighbors of i
• aij: corresponding entry in the adjacency matrix of 

the graph
Yip and Horvath, BMC BioinformaCcs 2007; WGCNA: an R package for weighted correlaCon network 
analysis. Peter Langfelder and Steve Horvath



Community structure in a graph

Detecting community structure in networks

M. E. J. Newman
Department of Physics and Center for the Study of Complex Systems,

University of Michigan, Ann Arbor, MI 48109–1120

There has been considerable recent interest in algorithms for finding communities in networks—
groups of vertices within which connections are dense, but between which connections are sparser.
Here we review the progress that has been made towards this end. We begin by describing some
traditional methods of community detection, such as spectral bisection, the Kernighan–Lin algorithm
and hierarchical clustering based on similarity measures. None of these methods, however, is ideal
for the types of real-world network data with which current research is concerned, such as Internet
and web data and biological and social networks. We describe a number of more recent algorithms
that appear to work well with these data, including algorithms based on edge betweenness scores,
on counts of short loops in networks and on voltage differences in resistor networks.

I. INTRODUCTION

In the continuing flurry of research activity within
physics and mathematics on the properties of networks,
a particular recent focus has been the analysis of com-
munities within networks [1–10]. In the simplest case, a
network or graph can be represented as a set of points,
or vertices, joined in pairs by lines, or edges. Many net-
works, it is found, are inhomogeneous, consisting not
of an undifferentiated mass of vertices, but of distinct
groups. Within these groups there are many edges be-
tween vertices, but between groups there are fewer edges,
producing a structure like that sketched in Fig. 1.

The ability to find communities within large networks
in some automated fashion could be of considerable use.
Communities in a web graph for instance might cor-
respond to sets of web sites dealing with related top-
ics [11, 12], while communities in a biochemical network
or an electronic circuit might correspond to functional
units of some kind [4, 5, 13, 14]. In this paper we discuss
computer algorithms for the extraction of communities
from raw network data.

FIG. 1: A small network with community structure of the
type considered in this paper. In this case there are three
communities, denoted by the dashed circles, which have dense
internal links but between which there are only a lower density
of external links.

The outline of the paper is as follows. In Sec. II we de-
scribe some of the historical approaches to finding com-
munities including spectral partitioning and hierarchical
clustering. Then in Sec. III we describe some newer meth-
ods that have appeared in the last few years, including
the edge betweenness method of Girvan and Newman and
a number of variations on it proposed by other authors.
In Sec. IV we give our conclusions.

II. TRADITIONAL APPROACHES

The methods described in this paper all assume that
we are given a network structure that we wish to divide
into communities in such a way that every vertex belongs
to one of the communities. We assume that the network
is of the simplest kind possible, with a single type of
undirected, unweighted edge connecting unweighted ver-
tices of a single type, although generalizations to more
sophisticated network types have been given for some of
the algorithms described.

The problem of finding good divisions of networks has
been studied for some decades now in two fields in par-
ticular, computer science and sociology, which have de-
veloped quite different approaches as we now describe.

A. Computer science approaches

The typical problem in computer science is that of
dividing the vertices of a network into some number g
of groups with roughly equal size, while minimizing the
number of edges that run between vertices in different
groups. Computer scientists refer to this task as graph
partitioning. Graph partitioning problems arise for ex-
ample in the optimal allocation of processes to proces-
sors in a parallel computer. In practice, most approaches
to graph partitioning have been based on iterative bi-
section: we find the best division we can of the com-
plete graph into two groups, and then further subdivide
those two until we have the required number of groups.
Among the many algorithms suggested for the problem,

• A graph that has a grouping (community) structure is going to have few intercommunity 
edges.

• Community structure can be revealed by removing such intercommunity edges

Detec=ng community structure in networks, M. E. J. Newman

Communities 

Intercommunity edges



Girvan-Newman algorithm
• General idea: “If two communities are joined by only 

a few inter-community edges, then all paths through 
the network from vertices in one community to 
vertices in the other must pass along one of those 
few edges.” 

• Community structure can be revealed by removing 
edges that with high betweenness

• Algorithm is based on a divisive clustering idea

M. E. J. Newman and M. Girvan. Finding and evaluaHng community structure 



Betweenness of an edge

B(e) =
Shortest path including e

Number of total shortest paths

• Betweenness of an edge e is defined as the number of 
shortest paths that include e

• Edges that lie between communities tend to have high 
betweenness



Girvan-Newman algorithm
• Initialize
– Compute betweenness for all edges

• Repeat until convergence criteria
1. Remove the edge with the highest betweenness
2. Recompute betweenness of remaining edges

• Convergence criteria can be
– No more edges
– Desired modularity

M. E. J. Newman and M. Girvan. Finding and evaluaEng community structure 



Girvan-Newman algorithm as a 
hierarchical clustering algorithm

• One can view this algorithm as 
a top-down (divisive) 
hierarchical clustering algorithm

• The root of the dendrogram
groups all nodes into one 
community

• Each branch of the tree 
represents the order of splitting 
the network as edges are 
removed

2

FIG. 2: A hierarchical tree or dendrogram illustrating the
type of output generated by the algorithms described here.
The circles at the bottom of the figure represent the indi-
vidual vertices of the network. As we move up the tree the
vertices join together to form larger and larger communities,
as indicated by the lines, until we reach the top, where all are
joined together in a single community. Alternatively, we the
dendrogram depicts an initially connected network splitting
into smaller and smaller communities as we go from top to
bottom. A cross-section of the tree at any level, as indicated
by the dotted line, will give the communities at that level.
The vertical height of the split-points in the tree are indica-
tive only of the order in which the splits (or joins) took place,
although it is possible to construct more elaborate dendro-
grams in which these heights contain other information.

ious metrics of similarity or strength of connection be-
tween vertices. They fall into two broad classes, agglom-
erative and divisive [19], depending on whether they fo-
cus on the addition or removal of edges to or from the net-
work. In an agglomerative method, similarities are cal-
culated by one method or another between vertex pairs,
and edges are then added to an initially empty network
(n vertices with no edges) starting with the vertex pairs
with highest similarity. The procedure can be halted at
any point, and the resulting components in the network
are taken to be the communities. Alternatively, the en-
tire progression of the algorithm from empty graph to
complete graph can be represented in the form of a tree
or dendrogram such as that shown in Fig. 2. Horizontal
cuts through the tree represent the communities appro-
priate to different halting points.

Agglomerative methods based on a wide variety of sim-
ilarity measures have been applied to different networks.
Some networks have natural similarity metrics built in.
For example, in the widely studied network of collabo-
rations between film actors [21, 22], in which two actors
are connected if they have appeared in the same film, one
could quantify similarity by how many films actors have
appeared in together [23]. Other networks have no natu-
ral metric, but suitable ones can be devised using correla-
tion coefficients, path lengths, or matrix methods. A well
known example of an agglomerative clustering method is
the Concor algorithm of Breiger et al. [24].

Agglomerative methods have their problems however.
One concern is that they fail with some frequency to find
the correct communities in networks were the commu-
nity structure is known, which makes it difficult to place
much trust in them in other cases. Another is their ten-

FIG. 3: Agglomerative clustering methods are typically good
at discovering the strongly linked cores of communities (bold
vertices and edges) but tend to leave out peripheral vertices,
even when, as here, most of them clearly belong to one com-
munity or another.

dency to find only the cores of communities and leave
out the periphery. The core nodes in a community of-
ten have strong similarity, and hence are connected early
in the agglomerative process, but peripheral nodes that
have no strong similarity to others tend to get neglected,
leading to structures like that shown in Fig. 3. In this
figure, there are a number of peripheral nodes whose com-
munity membership is obvious to the eye—in most cases
they have only a single link to a specific community—
but agglomerative methods often fail to place such nodes
correctly.

In this paper, therefore, we focus on divisive meth-
ods. These methods have been relatively little studied
in the previous literature, either in social network the-
ory or elsewhere, but, as we will see, seem to offer a
lot of promise. In a divisive method, we start with the
network of interest and attempt to find the least similar
connected pairs of vertices and then remove the edges
between them. By doing this repeatedly, we divide the
network into smaller and smaller components, and again
we can stop the process at any stage and take the com-
ponents at that stage to be the network communities.
Again, the process can be represented as a dendrogram
depicting the successive splits of the network into smaller
and smaller groups.

The approach we take follows roughly these lines,
but adopts a somewhat different philosophical viewpoint.
Rather than looking for the most weakly connected ver-
tex pairs, our approach will be to look for the edges in the
network that are most “between” other vertices, meaning
that the edge is, in some sense, responsible for connect-
ing many pairs of others. Such edges need not be weak
at all in the similarity sense. How this idea works out in
practice will become clear in the course of the presenta-
tion.

Briefly then, the outline of this paper is as follows.
In Sec. II we describe the crucial concepts behind our
methods for finding community structure in networks and
show how these concepts can be turned into a concrete
prescription for performing calculations. In Sec. III we
describe in detail the implementation of our methods. In
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Applying the Girvan-Newman 
algorithm to Zachary’s karate club 

network
• Dataset collected by Wayne Zachary over 2 years who 

observed social interactions among members of a karate 
club

• Zachary’s karate club network is a well-known example of 
a social network with community structure

• Network represents the friendships among members of a 
karate club

• Due to a dispute the club split into two factions
• Can a graph clustering/module detection algorithm 

predict the factions?
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FIG. 8: The network of friendships between individuals in
the karate club study of Zachary [35]. The administrator and
the instructor are represented by nodes 1 and 33 respectively.
Shaded squares represent individuals to who ended up align-
ing with the club’s administrator after the fission of the club,
open circles those who aligned with the instructor.

trator and its principal karate teacher over whether to
raise club fees, and as a result the club eventually split
in two, forming two smaller clubs, centered around the
administrator and the teacher.

In Fig. 8 we show a consensus network structure ex-
tracted from Zachary’s observations before the split.
Feeding this network into our algorithms we find the re-
sults shown in Fig. 9. In the left-most two panels we
show the dendrograms generated by the shortest-path
and random-walk versions of our algorithm, along with
the modularity measures for the same. As we see, both
algorithms give reasonably high values for the modularity
when the network is split into two communities—around
0.4 in each case—indicating that there is a strong nat-
ural division at this level. What’s more, the divisions
in question correspond almost perfectly to the actual di-
visions in the club revealed by which group each club
member joined after the club split up. (The shapes of
the vertices representing the two factions are the same as
those of Fig. 8.) Only one vertex, vertex 3, is misclassi-
fied by the shortest-path version of the method, and none
are misclassified by the random-walk version—the latter
gets a perfect score on this test. (On the other hand, the
two-community split fails to produce a local maximum in
the modularity for the random-walk method, unlike the
shortest-path method for which there is a local maximum
precisely at this point.)

In the last panel of Fig. 9 we show the dendrogram
and modularity for an algorithm based on shortest-path
betweenness but without the crucial recalculation step
discussed in Sec. II. As the figure shows, without this
step, the algorithm fails to find the division of the net-
work into the two known groups. Furthermore, the mod-
ularity doesn’t reach nearly such high values as in the
first two panels, indicating that the divisions suggested

are much poorer than in the cases with the recalculation.

C. Collaboration network

For our next example, we look at a collaboration net-
work of scientists. Figure 10a shows the largest com-
ponent of a network of collaborations between physi-
cists who conduct research on networks. (The authors
of the present paper, for instance, are among the nodes
in this network.) This network (which appeared previ-
ously in Ref. 36) was constructed by taking names of
authors appearing in the lengthy bibliography of Ref. 4
and cross-referencing with the Physics E-print Archive at
arxiv.org, specifically the condensed matter section of
the archive where, for historical reasons, most papers on
networks have appeared. Authors appearing in both were
added to the network as vertices, and edges between them
indicate coauthorship of one or more papers appearing
in the archive. Thus the collaborative ties represented in
the figure are not limited to papers on topics concerning
networks—we were interested primarily in whether peo-
ple know one another, and collaboration on any topic is
a reasonable indicator of acquaintance.

The network as presented in Fig. 10a is difficult to in-
terpret. Given the names of the scientists, a knowledge-
able reader with too much time on their hands could, no
doubt, pick out known groupings, for instance at partic-
ular institutions, from the general confusion. But were
this a network about which we had no a priori knowledge,
we would be hard pressed to understand its underlying
structure.

Applying the shortest-path version of our algorithm
to this network we find that the modularity, Eq. (5),
has a strong peak at 13 communities with a value of
Q = 0.72 ± 0.02. Extracting the communities from the
corresponding dendrogram, we have indicated them with
colors in Fig. 10b. The knowledgeable reader will again
be able to discern known groups of scientists in this ren-
dering, and more easily now with the help of the colors.
Still, however, the structure of the network as a whole
and the of the interactions between groups is quite un-
clear.

In Fig. 10c we have reduced the network to only the
groups. In this panel, we have drawn each group as a
circle, with size varying roughly with the number of indi-
viduals in the group. The lines between groups indicate
collaborations between group members, with the thick-
ness of the lines varying in proportion to the number of
pairs of scientists who have collaborated. Now the over-
all structure of the network becomes easy to see. The
network is centered around the middle group shown in
cyan (which consists of researchers primarily in southern
Europe), with a knot of inter-community collaborations
going on between the groups on the lower right of the
picture (mostly Boston University physicists and their
intellectual descendants). Other groups (including the
authors’ own) are arranged in various attitudes further

Each node is an individual and edges represent social interactions among individuals. 
The shape and colors represent  different groups.

Node grouping based on betweenness
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FIG. 9: Community structure in the karate club network. Left: the dendrogram extracted by the shortest-path betweenness
version of our method, and the resulting modularity. The modularity has two maxima (dotted lines) corresponding to splits
into two communities (which match closely the real-world split of the club, as denoted by the shapes of the vertices) and five
communities (though one of those five contains only one individual). Only one individual, number 3, is incorrectly classified.
Center: the dendrogram for the random walk version of our method. This version classifies all 34 vertices correctly into the
factions that they actually split into (first dotted line), although the split into four communities gets a higher modularity score
(second dotted line). Right: the dendrogram for the shortest-path algorithm without recalculation of betweennesses after each
edge removal. This version of the calculation fails to find the split into the two factions.

out.
One of the problems created by the sudden availability

in recent years of large network data sets has been our
lack of tools for visualizing their structure [4]. In the
early days of network analysis, particularly in the social
sciences, it was usually enough simply to draw a picture
of a network to see what was going on. Networks in those
days had ten or twenty nodes, not 140 as here, or several
billion as in the world wide web. We believe that methods
like the one presented here, of using community structure
algorithms to make a meaningful “coarse graining” of a
network, thereby reducing its level of complexity to one
that can be interpreted readily by the human eye, will
be invaluable in helping us to understand the large-scale
structure of these new network data.

D. Other examples

In this section, we briefly describe example applica-
tions of our methods to three further networks. The first
is a non-human social network, a network of dolphins, the
second a network of fictional characters, and the third not
a social network at all, but a network of web pages and
the links between them.

In Fig. 11 we show the social network of a community
of 62 bottlenose dolphins living in Doubtful Sound, New
Zealand. The network was compiled by Lusseau [37] from
seven years of field studies of the dolphins, with ties be-
tween dolphin pairs being established by observation of
statistically significant frequent association. The network
splits naturally into two large groups, represented by the

Modularity



Take away points
• Biological networks are modular
• Modules can be topological or func7onal
• Modularity can be measured using
– Clustering coefficient
– Q measure

• We have seen one example of topological clustering 
algorithms
– Girvan-Newman algorithm 

• based on edge-betweenness
• Can be viewed as top-down/divisive clustering algorithm
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