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RECAP of problems in network biology
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Biological problem

Mapping regulatory network
structure

Dynamics and context
specificity of networks

Understanding design
principles of biological
networks

Interpretation of sequence
variants/perturbations

|Identification of important
genes

Integrating different types of
molecular genomic data

Smoothing noisy matrices

Computational approaches
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Probabilistic graphical models
Graph structure learning
Multiple network learning

Topological properties of
graphs

Graph clustering
Graph alignment
Diffusion on graphs



Graph diffusion based methods

Aim to use the graph structure to define similarity between
nodes on the graph

The similarity function is also sometimes referred to as a
“kernel”

— Random walk kernel, Diffusion kernel
Many applications

— Gene prioritization

— Smoothing of count matrices

— Interpreting variants on networks



Overview of network-based gene
prioritization

A Map candidates to + Map known disease genes Score candidates Set up ranking
interaction network to interaction network by distance/proximity to all  based on score
@ _ known disease genes
OMIM Entries for
#201234) [#201235) @ 0.003 T

o

This is for GeneWanderer, but other approaches are similar.



Motivation of using global distance

B ; g g,= 0.0115 C E i%= 0.0181 D % s,= 0.0346

Known gene: x
Candidate gene:y

* Global similarity is more sensitive and different for each of the above cases
* |In contrast, local shortest-path similarity is the same for all pairs
* Direct interactions will never select y as a candidate



RECAP of graph diffusion based gene
prioritization

We discussed the GeneWanderer method
Focus on global rather than local graph distances

Global distances can be obtained using random walks or a
diffusion kernel

Global distances were able to rank known disease genes much
better than shortest path based methods

Network-based prioritization can be used when we have a
small number of known genes to start with



Perturbations in networks

Understanding genetic perturbations are important in biology
Genetic perturbations are useful to identify the function of genes
— What happens if knock gene A down?
* Measure some morphological phenotype like growth rate or cell
size
* Measure global expression signatures
Perturbations can be artificial or natural
— Artificial perturbations
* Deletion strains
— Natural perturbations
* Single nucleotide polymorphisms
* Natural genetic variation
Perturbations in a network can affect
— Nodes or edges
— Edge perturbations
e Mutations on binding sites



Types of algorithms used to examine
perturbations in networks

Graph diffusion followed by subnetwork finding methods
— HOTNET

Probabilistic graphical model-based methods

— Factor graphs

— Nested Effect Models (NEMs)

Information flow-based methods (also widely used for
integrating different types of data)

— Prize collecting steiner tree
— Min cost max flow
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Identification of subnetworks perturbed
in diseases

4 Altered
Genes

Cho D-Y, Kim Y-A, Przytycka TM (2012) Chapter 5: Network Biology Approach to Complex Diseases. PLoS Comput Biol 8(12): €1002820.

doi:10.1371/journal.pcbi.1002820
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002820



http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002820

Motivation of HOTNET

* Somatic mutations play a major role in cancer
 Mutation profiles of cancers is very heterogeneous

— Tumors harbor on average approximately 80 somatic
mutations, but two tumors rarely have the same
complement of mutations

Thousands of genes can be mutated in cancer

— This makes it difficult to identify “driver” mutations vs
“passenger” mutations

— Mutations at the pathway level (group of genes) is likely
responsible for a particular type of cancer

e Can we identify subnetworks (representing new pathways)
that are significantly mutated?

F. Vandin, E. Upfal, and B. J. Raphael, "Algorithms for detecting significantly mutated pathways
in cancer." Journal of computational biology 2011



HOTNET problem setup

* Given
— A network of protein-protein interactions
— A set of patient tumor mutation profiles
* Do
— Find “significantly” mutated subgraphs
* A subgraph that best connects these genetic alterations

* Best means a subgraph that includes as many tumour
samples with as few genes

e How?
— Find the global influence of mutations on a particular gene

— Search for a subnetwork in this global influence graph that is
significantly mutated



HOTNET’s approach vs ActiveSubgraphs

* HOTNET aims to find a subnetwork that has significantly many
more mutations than random subnetworks

* This bears some resemblance to the ActiveSubgraph approach
where we were trying to find subnetworks significantly up or
down-regulated

* The key differences in HOTNET is that

— we do not have (gene expression) measurement of
mutations for all genes

— only a small number of genes maybe mutated



Key steps of HOTNET algorithm

Build an influence graph which specifies the influence of one
node over another

— Graph diffusion

— Builds a network with the tested genes as well as their
neighborhood

Find significantly mutated subnetworks (two ways)
— include genes mutated in a lot of samples

— Enhanced influence model where the influence edges are
weighted by the number of mutations

Test for the significance of the number of subnetworks of a
particular size



Diffusion kernel used in HOTNET

HOTNET uses a specific type of kernel called the heat diffusion
kernel

L=D-A denotes the graph Laplacian, where A is the adjacency
matrix and D is the degree matrix

Let v denote the constant rate at which heat is lost at any
nhode

— E.g. this could be proportional to the mean degree
L,is L+yl

Let s be a source node
The influence of s on all n nodes at time ¢ is denoted as

£°(t) = [fi;(t)a o fa(t)]

Influence of s on node 1



Diffusion kernel used in HOTNET

Rate at which diffusion occurs from a source node on the graph is

given by
df®(t)
= —L,f%(t) + b

where b* be a unit vector which is 1 for node s and 0 otherwise

The influence on all nodes at steady-state is given by
f$ = L 'b*
/7

This diffusion process is very similar to what we had in the Diffusion
kernel we used for ranking genes



Graph diffusion to downplay hub
intermediate nodes
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Mutations in a linear chain are more “interesting” than in a star graph



Computing the influence between vertex
pairs

Assume we have two vertices u and v
Let i(u,v) be the influence from u to v

w(u,v) is the influence between u and v and is
min[i(u,v),i(v,u)]

The influence graph is thus an n X n symmetric weighted
graph, where n is the number of tested genes

Further prune by removing edges with weight w(u,v)<o0



Key steps of HOTNET algorithm

* Find significantly mutated subnetworks (two ways)
— Set cover to include genes mutated in many samples



HOTNET’s maximal connected cover
approach

* Given
— A weighted influence network G=(V,E)
— T be a subset of V, comprising genes with a mutation
— P, :the set of samples with mutation in gene v,

* Do:

— Find a subnetwork over gene subset C that covers a
maximal number of mutated samples

— Formally, we want to find a C={v,,.. v;} such the following
is maximized:

Ui Py

;|



Heuristic algorithm to find a maximal
connected cover

* Finding the maximal connected cover set is computationally
difficult

* A heuristic algorithm is used

 Add avertex v such it is connected to the current vertex set
via a node u, and maximizes the ratio of the number of new
samples covered to the number of nodes between u and v



Heuristic algorithm to find a maximal
connected cover

Combinatorial Algorithm

Input: Influence graph G; and parameters 0 and k
Output: Connected subgraph C of G;(0) with k vertices

1 Construct G; (0) by removing from Gy all edges with weight < 0;
2 C 0
3 for each node v € V do
4 C,— {v} Exploration
5 for each u € V\{v} do p, (u) « shortest path from v to u in G; (9);
6  while |C,| <k do
/0. (u) = set of nodes in p, (u); P,(u)=elements of I covered by

¢ (u); Pc, =elements covered by C,; Pc = elements covered by C
7 U < arg Max,cy\c,:(4, (U Cv<k{ Py )\ P, }; Keep adding a neighbor that
8 C, — l,(u) U C,; [6.)\C, has the maximal coverage with
9 if |Pc | > |Pc| then C « C,; fewest additional vertices

10 return C;




Enhanced influence model

The enhanced influence model was a more computationally
efficient approach

Enhance the influence measure between genes by the
number of mutations observed in each of these genes

Specifically, let v; and v, be two genes with a mutation
h(v;,vi) = w(vj,vr) X max{|S;|, |Sk|}
Enhanced influence Set'of Samp|es with
mutation in v;

Remove edges with influence <0

Decompose the associated enhanced influence graph into
connected components



Statistical analysis for determining
significance of subnetworks

Null distribution of subnetworks
* Assign mutations uniformly at random

» Shuffle gene labels in mutation data (preserve mutation
frequencies)

* Assess significance of the total number of subnetworks with s
or more genes



Application of HOTNET to cancer dataset

453 mutations in 601 genes in 91 Glioblastoma (GBM)
samples

1,013 mutations in 623 genes in 189 samples of lung
adenocarcinoma

Protein-protein interaction network with 18796 genes and
37,107 edges



HOTNET recovers pathways relevant to

cancer

TABLE 1. RESULTS OF THE COMBINATORIAL MODEL
p-value Pathway enrichment p-value
Dataset k Samples Hymve HE™ All RTK/RAS/PI(3)K p53
GBM 10 67 <1010 4%1073 3x10°4 8x 104 0.19
20 78 <1010 <1073 1073 8x 107> 0.05
Lung 10 140 <1071 0.02 8x10°° /
20 151 <1010 0.03 3%x107° /

k is the number of genes in the subnetwork. Samples is the number of samples in which the subnetwork is mutated. p-value is the
probability of observing a connected subgraph of size k mutated in a number of samples > samples under the random model H}"™" or
HS™™. enrichment p-value is the p-value of the hypergeometric test for overlap between genes in the identified subgraph and genes
reported significant pathways in TCGA (2008) or Ding et al. (2008). For GBM, enrichment p-value is the p-value of the
hypergeometric test for RTK/RAS/PI(3)K and p53 pathways.



Application of HOTNET of pan-cancer
mutation analysis

* More recently, an updated version of HOTNET (HOTNET2) was
applied to mutation profiles of samples from 12 different

cancers

* Dataset description
— After data pre-processing there were 3,110 samples with
mutations in 11,565 genes

— Genes mutation frequency varied a lot: 1-1,291 samples

M. D. M. Leiserson, F. Vandin, H.-T. Wu, J. R. Dobson, J. V. Eldridge, J. L. Thomas, A. Papoutsaki,
Y. Kim, B. Niu, M. McLellan, M. S. Lawrence, A. Gonzalez-Perez, D. Tamborero, Y. Cheng, G. A.
Ryslik, N. Lopez-Bigas, G. Getz, L. Ding, and B. J. Raphael, "Pan-cancer network analysis
identifies combinations of rare somatic mutations across pathways and protein complexes,"
Nature Genetics, vol. 47, no. 2, pp. 106-114, Dec. 2014. [Online].



HOTNET versus HOTNET2 kernel

e Hothet kernel Rate of diffusing out

(L+{I)—1

 Hotnet2 kernel
Fraction of heat that stays on a node

/
BI—(1-pW)™

The Hotnet2 kernel was specifically designed to further avoid “star” subnetworks.



HOTNET2 for pan-cancer mutation
analysis

a b

Input mutation data

SNVs and small indels Filtered mutation data

2 NVs in 20,47
93,863 SNVs in 20,473 genes 3,110 samples from 12 cancer types
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Leiserson et al . 2014, Nature Genetics



HOTNET2 for pan-cancer mutation
analysis

HotNet2 algorithm Significantly mutated subnetworks and complexes
16 subnetworks containing 147 genes

SWI/SNF complex

SMARCA4

- » :
/ 7\ (0} : : :
: c : : :
/ g : : E
/ (@] : : :
| - u= : :
\ /’/ 8 Y
: \4 : :
e P 8 Vv
."II %\1 g — e M M

I\\___ /"I pZe H Ot

0 Heat

HOTNET2 subnetworks include genes with a
wide range of mutation frequency

Leiserson et al . 2014, Nature Genetics



Overview of HOTNET2 results

Which cancer types?
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SWI/SNF complex pathways identified by
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HOTNET summary

An algorithm to find significantly mutated subnetworks

Based on creating an “influence graph”, followed by
identification of “interesting” subnetworks

Non-local, less sensitive to network hubs

Note: the subgraph detection component could be also
addressed using module detection algorithms

Post diffusion the graph could be used also for network-based
stratification



Network-based stratification of patient
samples

Input: Patient tumour mutation profiles, skeleton network

Output: Patient groups

How: (1) Smooth mutation profile using network smoothing; (2) Use Non-negative Matrix
Factorization to cluster samples

R it
a b C  Network NMF: minllF — WHIl + W LIl

Somatic mutation matrix

. Network smoothing:
(patients x genes)

Patients
Draw a sample of genes

. 00— X \ ' L = network influence
and patients v interaction_ () i |

constraint
Network smoothing:
for each patient, project mutations
onto a network and propagate

!

/Network clustering:
cluster smoothed (patients x genes)
Kmatrix using network NMF Y,

O Patient
genotype 1 O

Repeat N times

v @ Patient
genotype 2

Aggregate consensus matrix

(patient x patient) @ Co-occurrence of
genotype 1 and 2

Patients

Hofree et al. 2013, Nature methods



Network-based stratification of patient

Uterine cancer

NBS subtypes
associated with
different
histological types

Ovarian cancer

NBS subtypes
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survival
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Types of algorithms used to examine
perturbations in networks

* Probabilistic graphical model-based methods
— Factor graphs
— Nested Effect Models (NEMs)



Probabilistic graphical models for interpreting
network perturbations

* “Inference of Patient-Specific Pathway Activities from Multi-
Dimensional Cancer Genomics Data Using PARADIGM.
Bioinformatics” https://academic.oup.com/bioinformatics/article/2
6/12/i237/282591

e C.-H. H. Yeang, T. Ideker, and T. Jaakkola, "Physical network models."
Journal of computational biology : a journal of computational
molecular cell biology, vol. 11, no. 2-3, pp. 243-262, Mar. 2004.

 F. Markowetz, D. Kostka, O. G. Troyanskaya, and R. Spang, "Nested
effects models for high-dimensional phenotyping screens,"
Bioinformatics, vol. 23, no. 13, pp. i305-312, Jul. 2007.

e (.J.Vaske, C. House, T. Luu, B. Frank, C.-H. H. Yeang, N. H. Lee, and
J. M. Stuart, "A factor graph nested effects model to identify

networks from genetic perturbations.”" PLoS computational biology,
vol. 5, no. 1, pp. €1 000 274+, Jan. 2009.



https://academic.oup.com/bioinformatics/article/26/12/i237/282591

PARADIGM for detecting pathway
activities

@1om2) Inferred
—» | PARADIGM \  hetivites Encode pathways as factor graphs

vl 11111 18 110 (AT
xpression iy YT RR
Sample 1 E‘ili}*?lljm

| Sample 2 Samples
| Sample 3 Apoptosis

5
]

-
*
] '..‘

P
' 1]

s
"t

Pathway Entities

Overview of paradigm




Factor graphs

A type of graphical model
A bi-partite graph with variable nodes and factor nodes

Edges connect variables to potentials that the variables are
arguments of

Represents a global function as product of smaller local
functions

Perhaps the most general graphical model

— Bayesian networks and Markov networks have factor graph
representations



Example factor graph

Variable nodes

\
[ |
OYS ®\@ D
Ja B fe b [,
FactorLodes

Fig. 1. A factor graph for the product fa(xi)fs(xz)fc(x1, 2, x3)
- fol(xs, x4) fe(ws, xs5).

From Kschischang, Frey, Loeliger 2001



Probabilistic graphical models for interpreting
network perturbations

 F. Markowetz, D. Kostka, O. G. Troyanskaya, and R. Spang, "Nested
effects models for high-dimensional phenotyping screens,"
Bioinformatics, vol. 23, no. 13, pp. i305-312, Jul. 2007.


https://academic.oup.com/bioinformatics/article/26/12/i237/282591

Motivation of nested effect models

Perturbation of genes followed by high-throughput profiling
of different phenotypes can be used to characterize functions
of genes

However, most genes do not function independently but
interact in a network to drive a particular function

Phenotypic measurements (e.g. mRNA levels) are indirect
measurements of the underlying network structure

— Includes direct and indirect effects

Given perturbation data from multiple genes, can we more
systematically identify the functions of these genes and how
they interact at a pathway level?



Problem overview

Given

— global measurements of gene expression after single gene
deletions of multiple genes

Do

— Infer interactions between genes with deletions to enable
further characterization of these genes

Nested Effect Models are probabilistic model-based
approaches to solve this problem



Nested Effect Models

(a) Data (b) Clustering (c) Nested Effects Model

/\

'\/

(d) Subset structure

)
(e

A B C D E F G H

Fig. 1. An introduction to Nested Effects Models. Plot (a) shows a toy dataset consisting of phenotypic profiles for eight perturbed genes (A4, ..., H).
Each profile is binary with black coding for an observed effect and white for an effect not observed. The eight profiles are hierarchically clustered,
showing that they fall into four pairs of genes with almost identical phenotypic profiles: (4, B), (C, D), (E, F) and (G, H), as shown in plot (b). An
important feature of the data missed by clustering is the subset structure visible between the profiles in the data set: the effects observed when
perturbing genes 4 or B are a superset to the effects observed for all other genes. The effects of perturbing G or H are a subset to all other genes’
effects. The pairs (C, D) and (E, F) have different but overlapping effect sets. The directed acyclic graph (DAG) shown in plot (¢) represents these
subset relations, which are shown in plot (d). Compared to the clustering result in plot (b) the NEM additionally elucidates relationships between the
clusters and thus describes the dominant features of the data set better.

Markowetz et al, 2007



Nested Effect Models Key properties

A generalization of similarity based clustering
Orders the clusters according to subset relationships

— A gene A is upstream of another gene B if B’s effects are a
subset of A’s effects

Build a hierarchy of all perturbed genes by constructing from
smaller sub-models of pairs and triplets of genes



M/

Subset relationships to order genes
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A complete model. The left part of the figure shows a complete model M’,,, consisting
of a transitively closed graph between genes and assignments of genes to specific
effects (the dashed arrows). Given the complete model, we can formulate a prediction
of what effects to expect: perturbing x should cause all effects, while perturbing y
should only cause E3—-E6, and perturbing z only E5 and E6 (middle plot). In reality, our
observations will be noisy: there can be false positive (FP) and false negative (FN) effect

observations (right plot).
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Probabilistic graphical models for interpreting
network perturbations

e (.J.Vaske, C. House, T. Luu, B. Frank, C.-H. H. Yeang, N. H. Lee, and
J. M. Stuart, "A factor graph nested effects model to identify

networks from genetic perturbations.”" PLoS computational biology,
vol. 5, no. 1, pp. €1 000 274+, Jan. 2009.


https://academic.oup.com/bioinformatics/article/26/12/i237/282591

Key properties of Factor Graph-NEMs (FG-
NEMs)

* NEMs assume the genes that are perturbed interact in a
binary manner

* But many interactions have sign
— inhibitory or stimulating action

* FG-NEMs capture a broader set of interactions among the
perturbed genes

* Formulation based on a Factor Graph
— Provide an efficient search over the space of NEMs



Notation

S-genes: Set of genes that have been deleted individually
E-genes: Set of effector genes that are measured

©: The attachment of an effector gene to the S-gene network
@: The interaction matrix of S-genes

X: The phenotypic profile, each column gives the difference in
expression in a knockout compared to wild type

— Rows: E-genes
— Columns: S-genes

Y: Hidden effect matrix, each entry is {-1, 0, +1} which
specifies whether an S-gene affects the E-gene



An example of 4 S-genes and 13 E-gens

E-gene Expression
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o e gt
I I

Q | 1
|

A->C is reflected
in the scatter
plot.

When X, is up, X
cisup. When X,
is down, Xc is
down or no
change

B-D is also
reflected in the
scatter plot.
Xpis a subset of
opposite
changes from Xg



S-gene interaction modes and their
expression signatures

Interaction mode
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Prior
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Probabilistic model for NEMs

Goal is to find a network, @ and O that best fit the observed
data (X)

This is an inference problem
Use a Maximum a posterior (MAP) approach

J(X) = maxy 9 P(0,0|X)
J(X)=maxgg Y P(¢,0,Y|X)
Y

Makes use pairwise potentials to make the computation
tractable

X is a noisy measurement of Y. Y is the quantity we need to sum over



Inference on the factor graph

Find most likely configurations for ¢A73
Use a message passing algorithm (standard for factor graphs)
Called the Max-Product algorithm
Message passing happens in two steps
— Messages are passed from observations X, to the QbA,B

— Messages are passed between the interaction and
transitivity factors until convergence



Does FG-NEM capture activating and
inhibitory relationships?
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Does FG-NEM expand pathways better
than the baseline approach
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Pathway expansion

Attach new E-genes to S-gene network

An attached gene e to S-gene s asserts that e is directly
downstream of s

All E-genes attached to the S-gene network are called frontier
genes

An E-gene’s connectivity is examined based on the Log-

likelihood Attachment Ratio
One of the S genes

max P(X,|®,0, =i

i#0
LAR(e)=log P(X.[®.0,=0)




FG-NEM based pathway expansion in
yeast
A. B..
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Template matching: rank E genes based on similarity in expression to an “idealized template”



FG-NEM infers a more accurate network
than the unsigned version in yeast
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* FG-NEM and uFG-NEM networks inferred in

the ion-homeostasis pathway

* FG-NEM inferred more genes associated with

ion homeostatis compared to uFG-NEM



Egene Expression Changes
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Summary

FG-NEMs: A general approach to infer an ordering of genes
from knock-down phenotypes

Strengths

— FG-NEMs could be used in an iterative computational-
experimental framework

— Handles signed interactions between S-genes
Weaknesses
— Computational complexity of the inference procedure
might be high
* Required independence among E-genes
* Model pairs of S-genes at a time



Overall conclusion

Networks are powerful models for interpreting sequence
variants or genetic perturbations as such
We have see two classes of methods
— Extract a weighted graph based on the influence of a
mutation on one node to another
— Probabilistic approaches

A systematic comparison of these two classes of methods has
not been done so far.



