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RECAP of problems in network biology

Biological problem
q Mapping regulatory network 

structure
q Dynamics and context 

specificity of networks
q Understanding design 

principles of biological 
networks

q Interpretation of sequence 
variants/perturbations

q Identification of important 
genes

q Integrating different types of 
molecular genomic data

q Smoothing noisy matrices

Computational approaches
q Probabilistic graphical models
q Graph structure learning
q Multiple network learning
q Topological properties of 

graphs
q Graph clustering
q Graph alignment
q Diffusion on graphs



Graph diffusion based methods

• Aim to use the graph structure to define similarity between 
nodes on the graph

• The similarity function is also sometimes referred to as a 
“kernel”
– Random walk kernel, Diffusion kernel

• Many applications
– Gene prioritization
– Smoothing of count matrices
– Interpreting variants on networks



Overview of network-based gene 
prioritization

data were available were given a rank of 100 (and therefore an

enrichment score of 0.5). No correction was made for intervals

within which some proteins had no interaction data. If a particular

method assigns an identical score to more than one gene, we as-

sume the worst case, in which the true disease gene is the last to

be sequenced from the set of equally ranked genes.

Another measure of performance of the algorithm is the

receiver-operating characteristic (ROC) analysis, which plots the

true-positive rate (TPR) versus the false-positive rate (FPR) subject

to the threshold separating the prediction classes. The TPR/FPR

is the rate of correctly/incorrectly classified samples of all samples

classified to class þ1. For evaluating rankings of disease-gene pre-

dictions, ROC values can be interpreted as a plot of the frequency

of the disease genes above the threshold versus the frequency of

disease genes below the threshold, where the threshold is a specific

position in the ranking.10 In order to compare different curves ob-

tained by ROC analysis, we calculate the area under the ROC curve

(AUROC) for each curve.

Results

In this work, we constructed an interaction network based
on a total of 35,910 interactions between human proteins

as well as 38,975 mapped interactions from four other spe-
cies. Additionally predicted protein interactions from the
STRING database26 were used (Table 1). We adapted a global
distance measure based on random walk with restart
(RWR) to define similarity between genes within this inter-
action network and to rank candidates on the basis of this
similarity to known diseases genes. Intuitively, the RWR
algorithm calculates the similarity between two genes, i
and j, on the basis of the likelihood that a random walk
through the interaction network starting at gene i will
finish at gene j, whereby all possible paths between the
two genes are taken into account. In our implementation,
we let the random walk start with equal probability from
each of the known disease-gene family members in order
to search for an additional family member in the linkage
interval (Figure 1). For comparison, we also implemented
a similar global search algorithm based on the diffusion
kernel (DK), which conceptually performs a different
type of random walk calculated by matrix exponentiation
(see Material and Methods for mathematical details). In
order to compare the performance of global and local net-
work search algorithms, we implemented two previous

Figure 1. Disease-Gene Prioritization
(A) All candidate genes contained in the linkage interval are mapped to the interaction network, as are all previously known disease genes
of the family in question. Our method then assigns a score to each of the candidate genes, with investigation of the relative location of
the candidate to all of the known ‘‘disease genes’’ by the use of global network-distance measures. The genes in the linkage interval are
ranked according to the score in order to define a priority list of candidates for further biological investigation.
(B–D) Each of the three subnetworks displays a different configuration consisting of the same number of nodes. The global distance be-
tween a hypothetical disease gene (x) and a candidate gene (y) is different in each case. In (B), proteins x and y are connected via a hub
node with many other connections, so that the global similarity (sxy) is less than in (C), where x and y are connected by a protein with
fewer connections than those of the hub. On the other hand, nodes that are connected by multiple paths (D) receive a higher similarity
than do nodes connected by only one path. Note that the shortest path between x and y is identical in each case (B–D), so that distance
measures relying on such local information cannot differentiate between these three types of connection. In particular, the approach
taking only direct interactions with gene x into account would identify gene y as a candidate in none of the three cases.

The American Journal of Human Genetics 82, 949–958, April 2008 951

This is for GeneWanderer, but other approaches are similar.



Motivation of using global distance

data were available were given a rank of 100 (and therefore an
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STRING database26 were used (Table 1). We adapted a global
distance measure based on random walk with restart
(RWR) to define similarity between genes within this inter-
action network and to rank candidates on the basis of this
similarity to known diseases genes. Intuitively, the RWR
algorithm calculates the similarity between two genes, i
and j, on the basis of the likelihood that a random walk
through the interaction network starting at gene i will
finish at gene j, whereby all possible paths between the
two genes are taken into account. In our implementation,
we let the random walk start with equal probability from
each of the known disease-gene family members in order
to search for an additional family member in the linkage
interval (Figure 1). For comparison, we also implemented
a similar global search algorithm based on the diffusion
kernel (DK), which conceptually performs a different
type of random walk calculated by matrix exponentiation
(see Material and Methods for mathematical details). In
order to compare the performance of global and local net-
work search algorithms, we implemented two previous

Figure 1. Disease-Gene Prioritization
(A) All candidate genes contained in the linkage interval are mapped to the interaction network, as are all previously known disease genes
of the family in question. Our method then assigns a score to each of the candidate genes, with investigation of the relative location of
the candidate to all of the known ‘‘disease genes’’ by the use of global network-distance measures. The genes in the linkage interval are
ranked according to the score in order to define a priority list of candidates for further biological investigation.
(B–D) Each of the three subnetworks displays a different configuration consisting of the same number of nodes. The global distance be-
tween a hypothetical disease gene (x) and a candidate gene (y) is different in each case. In (B), proteins x and y are connected via a hub
node with many other connections, so that the global similarity (sxy) is less than in (C), where x and y are connected by a protein with
fewer connections than those of the hub. On the other hand, nodes that are connected by multiple paths (D) receive a higher similarity
than do nodes connected by only one path. Note that the shortest path between x and y is identical in each case (B–D), so that distance
measures relying on such local information cannot differentiate between these three types of connection. In particular, the approach
taking only direct interactions with gene x into account would identify gene y as a candidate in none of the three cases.
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• Global similarity is more sensitive and different for each of the above cases
• In contrast, local shortest-path similarity is the same for all pairs
• Direct interactions will never select y as a candidate 

Known gene: x
Candidate gene: y



RECAP of graph diffusion based gene 
prioritization

• We discussed the GeneWanderer method
• Focus on global rather than local graph distances
• Global distances can be obtained using random walks or a 

diffusion kernel
• Global distances were able to rank known disease genes much 

better than shortest path based methods
• Network-based prioritization can be used when we have a

small number of known genes to start with



Perturbations in networks
• Understanding genetic perturbations are important in biology
• Genetic perturbations are useful to identify the function of genes

– What happens if knock gene A down?
• Measure some morphological phenotype like growth rate or cell 

size
• Measure global expression signatures

• Perturbations can be artificial or natural
– Artificial perturbations

• Deletion strains
– Natural perturbations

• Single nucleotide polymorphisms
• Natural genetic variation

• Perturbations in a network can affect
– Nodes or edges
– Edge perturbations

• Mutations on binding sites



Types of algorithms used to examine 
perturbations in networks

• Graph diffusion followed by subnetwork finding methods
– HOTNET 

• Probabilistic graphical model-based methods
– Factor graphs
– Nested Effect Models (NEMs)

• Information flow-based methods (also widely used for 
integrating different types of data)
– Prize collecting steiner tree
– Min cost max flow



Identification of subnetworks perturbed 
in diseases

Cho D-Y, Kim Y-A, Przytycka TM (2012) Chapter 5: Network Biology Approach to Complex Diseases. PLoS Comput Biol 8(12): e1002820. 
doi:10.1371/journal.pcbi.1002820
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002820

mic regions that are altered in the disease
are first identified, and the genes residing
in the altered regions are mapped to an
interaction network. Both physical and
functional interaction networks can be
used, and edges might be weighted based,
for example, on the likelihood of having
the same phenotypes or influences be-
tween genes [54–56]. Next, modules are
typically defined as subsets of genetically
altered genes that are highly interconnect-
ed or within close proximity to each other
in the interaction network together with
non-altered genes necessary to mediate
these connections. Edge weights, if given,
can be used to prioritize the modules. In
many cases, finding the best subnetwork is
computationally expensive and search
algorithms such as greedy growth heuris-
tics or more sophisticated approximation
algorithms have been proposed. Finally,
rigorous statistical tests have been applied
to evaluate the significance of selected
modules.
Examples. The idea of finding genetically

altered network modules has been utilized in
various disease studies. Analyzing ovarian
cancer TCGA data (The Cancer Genome
Atlas), HOTNET identified subnetworks in
a protein interaction network in which genes
are mutated in a significant number of
patients [54]. The identified networks in-
cludes the NOTCH signaling pathway
which is indeed known to be significantly
mutated in cancer samples [57]. The
method is based on the set cover approach
(see Set cover based approach section
below), which is found to be effective in
capturing different genetic variations across
patients. In the NETBAG (NETwork-Based
Analysis of Genetic associations) method,

developed by Gilman et al. and applied to
identify a biological subnetwork affected by
rare de novo copy number variations
(CNVs) in autism [58,59], the authors first
constructed a gene network where edges
were assigned the likelihood odd ratio for
contributing to the same genetic phenotype.
Subsequently a greedy growth algorithm
was used to find clusters in this network. In
another approach, Rossin et al. [60] consid-
ered the genomic regions found to be
associated with Rheumatoid Arthritis (RA)
and Crohn’s disease (CD) in previous
GWAS studies, and connected the genes
residing in these regions based on
interaction data to obtain network mod-
ules. It was also verified that those
identified modules exhibited significant
differences in expression level in the
disease samples.

3.2 Differentially Expressed Network
Modules
Another popular and successful ap-

proach to find disease associated modules
is to search for subnetworks that are
significantly enriched with genes whose
expression levels are changed in disease
samples. Building on the observation that
a molecular perturbation typically affects
the expression levels of genes in a whole
module rather than individual genes, these
approaches identify the modules which
exhibit different expression patterns in
disease states relative to a control. Gene
expression data has been widely utilized
for identifying dys-regulated modules and
drug targets, inferring interactions be-
tween genes, and classifying diseases.
While these approaches are based on the
common idea of finding gene modules

enriched with genes that have abnormal
expression, several different computational
techniques have been used to achieve
these tasks, which we discuss shortly
below. The methods are also illustrated
in Figure 2.

3.2.1 Scoring based
methods. Suppose that there is a
subset of genes which are differentially
expressed in disease samples and they are
closely connected to each other in an
interaction network. A subnetwork
including such genes might be a good
candidate for a disease associated network
module (Figure 2A). Implementing this
idea requires a way to score candidate
modules. Various methods have been
suggested for measuring the significance
of the differential expression of genes in a
module and their connectivity (the
distances between the genes). In addition,
different methods adopt different search
algorithms to find high scoring candidate
modules. Finally, some approaches
additionally require that all genes are
either up-regulated or down-regulated in
the same direction.

Examples. Chuang et al. defined the
activity score for a subnetwork by com-
paring gene expression profiles from two
different types of samples (metastatic or
non-metastatic in their study) [61]. More
specifically, they first computed how well
the expression of a gene discriminates
between the two patient groups and then
scored candidate subnetworks based on
aggregate discriminative power over all
genes in the subnetwork. Then they
searched for the most discriminative
networks in a greedy manner. While the
method was used for disease classification

Figure 1. Identification of network modules enriched with genetic alterations. (A) Genomic regions with alterations. (B) Genes in the
altered regions are mapped to the interaction network and modules enriched with such genes are identified.
doi:10.1371/journal.pcbi.1002820.g001
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http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002820


Motivation of HOTNET

• Somatic mutations play a major role in cancer
• Mutation profiles of cancers is very heterogeneous
– Tumors harbor on average approximately 80 somatic 

mutations, but two tumors rarely have the same 
complement of mutations

• Thousands of genes can be mutated in cancer
– This makes it difficult to identify “driver” mutations vs

“passenger” mutations
– Mutations at the pathway level (group of genes) is likely 

responsible for a particular type of cancer
• Can we identify subnetworks (representing new pathways) 

that are significantly mutated?
F. Vandin, E. Upfal, and B. J. Raphael, "Algorithms for detecting significantly mutated pathways 
in cancer." Journal of computational biology 2011



HOTNET problem setup
• Given 

– A network of protein-protein interactions
– A set of patient tumor mutation profiles

• Do
– Find “significantly” mutated subgraphs

• A subgraph that best connects these genetic alterations
• Best means a subgraph that includes as many tumour

samples with as few genes
• How?

– Find the global influence of mutations on a particular gene
– Search for a subnetwork in this global influence graph that is 

significantly mutated



HOTNET’s approach vs ActiveSubgraphs

• HOTNET aims to find a subnetwork that has significantly many 
more mutations than random subnetworks

• This bears some resemblance to the ActiveSubgraph approach 
where we were trying to find subnetworks significantly up or 
down-regulated

• The key differences in HOTNET is that 
– we do not have (gene expression) measurement of 

mutations for all genes
– only a small number of genes maybe mutated



Key steps of HOTNET algorithm

• Build an influence graph which specifies the influence of one 
node over another
– Graph diffusion
– Builds a network with the tested genes as well as their 

neighborhood
• Find significantly mutated subnetworks (two ways)
– include genes mutated in a lot of samples 
– Enhanced influence model where the influence edges are 

weighted by the number of mutations
• Test for the significance of the number of subnetworks of a 

particular size



Diffusion kernel used in HOTNET

• HOTNET uses a specific type of kernel called the heat diffusion 
kernel

• L=D-A denotes the graph Laplacian, where A is the adjacency 
matrix and D is the degree matrix  

• Let γ denote the constant rate at which heat is lost at any 
node
– E.g. this could be proportional to the mean degree

• Lγ is L+γI
• Let s be a source node 
• The influence of s on all n nodes at time t is denoted as

fs(t) = [fs
1 (t), · · · , fs

n(t)]

Influence of s on node 1



Diffusion kernel used in HOTNET

• Rate at which diffusion occurs from a source node on the graph is 
given by

• where bs be a unit vector which is 1 for node s and 0 otherwise
• The influence on all nodes at steady-state is given by

• This diffusion process is very similar to what we had in the Diffusion 
kernel we used for ranking genes

dfs(t)

dt
= �L�f

s(t) + bs

fs = L�1
� bs



Graph diffusion to downplay hub 
intermediate nodes

derive the significance of a subnetwork. Considering only subnetworks of genes that are ‘‘close’’ in the
network (i.e., with small shortest path distance) is not sufficient to overcome the problems highlighted
above. Moreover, other graph mining approaches like dense subgraph identification (Feige et al., 1999) are
also not appropriate, since not all subnetworks of interest (e.g., the chain in Fig. 1) are dense in edges.

We use a diffusion process on the interaction network to define a rigorous measure of influence between
all pairs of nodes. To measure the influence of node s on all the other nodes in the graph, consider the
following process, described by Qi et al. (2008). Fluid is pumped into the source node s at a constant rate,
and fluid diffuses through the graph along the edges. Fluid is lost from each node at a constant first-order
rate g. Let f s

v (t) denote the amount of fluid at node v at time t, and let fs(t)¼ [f s
1 (t), . . . , f s

n (t)]T be the column
vector of fluid at all nodes. Let L be the Laplacian matrix of the graph,1 and let Lg¼ Lþ gI. Then the
dynamics of this continuous-time process are governed by the vector equation dfs(t)

dt ¼ # Lcf
s(t)þ bsu(t),

where bs is the elementary unit vector with 1 at the sth place and 0 otherwise, and u(t) is the unit step
function. As t??, the system reaches the steady state. The equilibrium distribution of fluid density on the
graph is fs¼ L# 1

c bs (see (Qi et al., 2008). Note that this diffusion process is related to the diffusion kernel
(Kondor and Lafferty, 2002) or heat kernel (Chung, 2007), which models the diffusion of heat on a graph,
and these diffusion processes are in turn related to certain random walks on graphs (Doyle and Snell, 1984;
Lovász, 1993). Diffusion processes and their related flow problems have been used in protein function
prediction on interaction networks (Tsuda and Noble, 2004; Nabieva et al., 2005) and to define associations
between gene expression and phenotype (Ma et al., 2007).

We interpret f s
i as the influence of gene gs on gene gi. Computing the diffusion process for all tested

genes gives us, for each pair of genes gj, gk 2 T , the influence i(gj, gk) that gene gj has on gene gk. Note that
in general the influence is not symmetric; i.e. i(gj, gk)= i(gk, gj). We define an influence graph GI ¼ (T , EI)
with the set of nodes corresponding to the set of tested genes, the weight of an edge (gj, gk) is given by w(gj,
gk)¼min[i(gk, gj), i(gj, gk)], for all pairs of tested genes. If n is the number of nodes in the interaction
network, then the cost of computing GI is dominated by the complexity of inverting the n · n matrix Lg.

2.3. Discovering significant subnetworks: combinatorial model

Given an influence measure between genes, the obvious first approach for discovering significant sub-
networks is to identify sets of nodes in the influence graph GI that are (1) connected through edges with
high influence; and (2) correspond to mutated genes in a significant number of samples. We fix a threshold
d and compute a reduced influence graph GI (d) of GI by removing all edges with w(gi, gj)< d, and all
nodes corresponding to genes with no mutations in the sample data. The computational problem is reduced
to identifying the connected subgraphs of GI (d) such that the corresponding sets of genes are altered in a
significant number of patients.

The size of the connected subgraphs we discover is controlled by the threshold d. We choose sufficiently
small d such that, in the null hypothesis, in which the mutations are placed on nodes corresponding to tested

FIG. 1. Mutation on chain versus star graph.

1L¼#AþD, where A is the adjacency matrix of the graph and D is a diagonal matrix with Di,i¼ degree(vi).

510 VANDIN ET AL.

Mutations in a linear chain are more “interesting” than in a star graph



Computing the influence between vertex 
pairs

• Assume we have two vertices u and v
• Let i(u,v) be the influence from u to v 
• w(u,v) is the influence between u and v and is 

min[i(u,v),i(v,u)]
• The influence graph is thus an n X n symmetric weighted 

graph, where n is the number of tested genes
• Further prune by removing edges with weight w(u,v)<δ



Key steps of HOTNET algorithm

• Build an influence graph which specifies the influence of one 
node over another
– Graph diffusion
– Builds a network with the tested genes as well as their 

neighborhood
• Find significantly mutated subnetworks (two ways)
– Set cover to include genes mutated in many samples 
– Enhanced influence model where the influence edges are 

weighted by the number of mutations
• Test for the significance of the number of subnetworks of a 

particular size



HOTNET’s maximal connected cover 
approach

• Given
– A weighted influence network G=(V,E)
– T be a subset of V, comprising genes with a mutation
– : the set of samples with mutation in gene vi

• Do:
– Find a subnetwork over gene subset C that covers a 

maximal number of mutated samples
– Formally, we want to find a C={v1,.. vk} such the following 

is maximized:

Pvi

| [k
j=1 Pvj |



Heuristic algorithm to find a maximal 
connected cover

• Finding the maximal connected cover set is computationally 
difficult

• A heuristic algorithm is used
• Add a vertex v such it is connected to the current vertex set 

via a node u, and maximizes the ratio of the number of new 
samples covered to the number of nodes between u and v



Heuristic algorithm to find a maximal 
connected cover

genes, it is unlikely that our procedure finds connected subgraphs with similar properties. Note that the
value of d depends only on the null hypothesis and not on the observed sample data (see Section 2.5 for
details of the statistical analysis). Finding the connected subgraph of k genes that is mutated in the largest
number of samples is equivalent to the following problem, which we define as connected maximum
coverage problem.

Computational problem. Given a graph G defined on a set of n vertices V ¼ fv1, . . . , vng, a set I, a
family of subsets P¼ fP1, . . . , Png, with Pi 2 2I associated to vi 2 V , and a value k, find the connected
subgraph C" ¼ fvi, . . . , vikg with k nodes in G that maximize j [k

j¼ 1 Pij j.
In our case, we have G¼GI (d), V is the subset of genes in T mutated in at least one sample, and for each

gi 2 V the associated set is Si. The connected maximum coverage problem is related to the maximum
coverage problem (Hochbaum, 1997), where, given a set I of elements, a family of subsets F # 2I, and a
value k, one needs to find a collection of k sets in F that covers the maximum number of elements in I. This
problem is NP-hard as set cover is reducible to it.

If the graph G is a complete graph, the connected maximum coverage problem is the same as the
maximum coverage problem. Thus, the connected maximum coverage problem is NP-hard for a general
graph. Moreover, we prove that the problem is still hard even on simple graphs such as the star graph.
(Shuai and Hu, 2006, give a similar result for the connected set cover problem.)

Theorem 1. The connected maximum coverage problem on star graphs is NP-hard.

The proof is in the appendix. Since the connected maximum coverage problem is NP-hard even for
simple graphs, we turn to approximate solutions. It is not hard to construct a polynomial time 1 $ 1

e
approximation algorithm for spider graphs (analogous to the result in Shuai and Hu [2006] for the con-
nected set cover problem). Since this algorithm cannot be applied to the network here, we construct an
alternative polynomial time algorithm that gives O (1/r) approximation when the radius of the optimal
solution C" is r. The pseudocode is shown in Figure 2.

Our algorithm obtains a solution Cv (thus, a connected subgraph) starting from each node v 2 V , and then
returns the best solution found. To obtain Cv, our algorithm executes an exploration phase, i.e., for each
node u 2 V it finds a shortest path pv(u) from v to u. Let ‘v(u) be the set of nodes in pv(u), and Pv(u) the
elements of I that they cover. After this exploration phase, the algorithm builds a connected subgraph Cv

starting from v. At the beginning we have Cv¼ fvg: PCv
is the set of elements covered by the current

connected subgraph Cv. Then, while jCvj5 k, the algorithm chooses the node u 62 Cv such that:
u¼ arg maxu2V

jPv(u)nPCv j
j‘v(u)nCvj

n o
and j‘v(u) [ Cvj % k; the new solution is then ‘v(u) [ Cv. The main computa-

tional cost of our algorithm is due to the exploration phase, that can be performed in polynomial time. We
have the following (proof in the Appendix):

Theorem 2. The combinatorial algorithm gives a 1
cr-approximation for the connected maximum cov-

erage problem on G, where c¼ 2e $ 1
e $ 1 and r is the radius of optimal solution in G.

FIG. 2. Pseudocode of the algorithm
for the combinatorial model.

Combinatorial Algorithm

Input: Influence graph GI and parameters d and k
Output: Connected subgraph C of GI(d) with k vertices

1 Construct GI (d) by removing from GI all edges with weight< d;
2 C  ;;
3 for each node v 2 V do
4 Cv  fvg;
5 for each u 2 Vnfvg do pv (u)/ shortest path from v to u in GI (d);
6 while jCvj5 k do

//‘v(u)¼ set of nodes in pv (u); Pv(u)¼ elements of I covered by
‘v(u); PCv

¼ elements covered by Cv; PC ¼ elements covered by C

7 u arg maxu2VnCv:j‘v(u)[ Cv j% k
jPv(u)nPCv

j
j‘v(u)nCvj

! "
;

8 Cv  ‘v(u) [ Cv;
9 if jPCv

j4 jPCj then C  Cv;
10 return C;

SIGNIFICANTLY MUTATED PATHWAYS IN CANCER 511

Exploration

Keep adding a neighbor that 
has the maximal coverage with 
fewest additional vertices



Enhanced influence model 

• The enhanced influence model was a more computationally 
efficient approach

• Enhance  the influence measure between genes by the 
number of mutations observed in each of these genes

• Specifically, let vj and vk be two genes with a mutation

• Remove edges with influence <δ
• Decompose the associated enhanced influence graph  into 

connected components

Enhanced influence Set of samples with 
mutation in vj

h(vj , vk) = w(vj , vk)⇥max{|Sj |, |Sk|}



Statistical analysis for determining 
significance of subnetworks

Null distribution of subnetworks
• Assign mutations uniformly at random
• Shuffle gene labels in mutation data (preserve mutation 

frequencies)
• Assess significance of the total number of subnetworks with s

or more genes



Application of HOTNET to cancer dataset

• 453 mutations in 601 genes in 91 Glioblastoma (GBM) 
samples

• 1,013 mutations in 623 genes in 189 samples of lung 
adenocarcinoma

• Protein-protein interaction network with 18796 genes and 
37,107 edges



HOTNET recovers pathways relevant to 
cancer

are interested in d that partitions the graph into a number of connected components, we choose the
maximum d such that for any node gi in GI no more than aM=jT j of the adjacent edges have weights that
satisfy smaxw(gi, gj)! d, for some fixed a< 1. For this choice of d, the expected number of connected
components of size k in !HH(d) is bounded by jT j

k

! "
kk" 2ak" 1 # M

k2 ak" 1. Since connected components are
disjoint, their occurrences are negatively correlated, and we can stochastically bound the distribution of rs

with a binomial distribution with the above expectation. A similar bound can be computed for the other
models and null hypothesis distributions, and for (somewhat) less restrictive conditions on d.

3. EXPERIMENTAL RESULTS

We applied our approach to analyze somatic mutation data from two recent studies. The first dataset is a
collection of 453 validated nonsynonymous somatic mutations identified in 601 tested genes from 91
glioblastoma multiforme (GBM) samples from The Cancer Genome Atlas (TCGA, 2008). In total, 223
genes were reported mutated in at least one sample. The second dataset is a collection of 1013 validated
nonsynonymous somatic mutations identified in 623 tested genes from 188 lung adenocarcinoma samples
from the Tumor Sequencing Project (Ding et al., 2008). In total, 356 genes were reported mutated in at least
one sample. For the Enhanced Influence model, we also considered simulated data.

We use the protein interaction network from the Human Protein Reference Database ( June 2008 version)
(Keshava Prasad et al., 2009), which consists of 18796 vertices and 37107 edges. We derive the influence
graph for each dataset by directly computing the inverse2 of Lg. The results presented below are obtained by
fixing the parameter g¼ 8, which is approximately the average degree of a node in HPRD (after the
removal of disconnected nodes). Similar results were obtained with g¼ 1 or g¼ 30.

The resulting influence graphs have weights i(gj, gk)= 0 for almost all pairs (gj, gk) of tested genes: less
than 2% of the weights are zero in the GBM graph, while all weights in the lung adenocarcinoma graph are
positive.

3.1. Combinatorial model

We used the combinatorial model to extract a subnetwork of k mutated genes that is mutated in the
highest number of samples from GBM and lung adenocarcinoma, for k¼ 10 and k¼ 20. For both datasets,
we used the procedure described in Section 2.3 to derive the threshold d¼ 10"4 for the reduced influence
graph GI (d). Table 1 shows that we find statistically significant subnetworks under both the Hgene

0 and
Hsample

0 null hypotheses ( p-values for Hsample
0 are computed without Monte-Carlo simulation). The genes in

each subnetwork are reported in Table 2.
To assess the biological significance of our findings in GBM, we compared the genes in each subnetwork

to the genes in pathways that were previously implicated in GBM and used as a benchmark in the TCGA

Table 1. Results of the Combinatorial Model

p-value Pathway enrichment p-value

Dataset k Samples Hsample
0 Hgene

0 All RTK/RAS/PI(3)K p53

GBM 10 67 <10"10 4 · 10"3 3 · 10"4 8 · 10"4 0.19
20 78 <10"10 <10"3 10"5 8 · 10"5 0.05

Lung 10 140 <10"10 0.02 8 · 10"6 /
20 151 <10"10 0.03 3 · 10"3 /

k is the number of genes in the subnetwork. Samples is the number of samples in which the subnetwork is mutated. p-value is the

probability of observing a connected subgraph of size k mutated in a number of samples! samples under the random model Hsample
0 or

Hgene
0 . enrichment p-value is the p-value of the hypergeometric test for overlap between genes in the identified subgraph and genes

reported significant pathways in TCGA (2008) or Ding et al. (2008). For GBM, enrichment p-value is the p-value of the

hypergeometric test for RTK/RAS/PI(3)K and p53 pathways.

2In contrast, Qi et al. (2008) derive a power series approximation to L" 1
c whose convergence depends on the choice

of g.

514 VANDIN ET AL.



Application of HOTNET of pan-cancer 
mutation analysis

• More recently, an updated version of HOTNET (HOTNET2) was 
applied to mutation profiles of samples from 12 different 
cancers

• Dataset description
– After data pre-processing there were 3,110 samples with 

mutations in 11,565 genes
– Genes mutation frequency varied a lot: 1-1,291 samples

M. D. M. Leiserson, F. Vandin, H.-T. Wu, J. R. Dobson, J. V. Eldridge, J. L. Thomas, A. Papoutsaki, 
Y. Kim, B. Niu, M. McLellan, M. S. Lawrence, A. Gonzalez-Perez, D. Tamborero, Y. Cheng, G. A. 
Ryslik, N. Lopez-Bigas, G. Getz, L. Ding, and B. J. Raphael, "Pan-cancer network analysis 
identifies combinations of rare somatic mutations across pathways and protein complexes," 
Nature Genetics, vol. 47, no. 2, pp. 106-114, Dec. 2014. [Online].



HOTNET versus HOTNET2 kernel

• Hotnet kernel

• Hotnet2 kernel

The Hotnet2 kernel was specifically designed to further avoid “star” subnetworks.

Rate of diffusing out

Fraction of heat that stays on a node
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mutations (P < 0.0001) or mutation clusters (P < 0.0001) in compari-
son to genes not in subnetworks (Supplementary Tables 6–18 and 
Supplementary Note). Finally, we evaluated a subset of the muta-
tions in these genes using RNA-seq and whole-genome sequencing 
data from the same samples and found RNA-seq and/or whole-
genome sequencing reads that validated 39 mutations in these genes 
(Supplementary Table 23 and Supplementary Note). These genes 
might represent new biomarkers for the classification of patients for 
treatment regimens.

Co-occurrence and mutual exclusivity of mutations in subnetworks
Cancer cells are thought to harbor multiple driver mutations that 
perturb multiple biological functions15. Consistent with this model, 
we found that four pairs of subnetworks, including TP53 and NOTCH 
signaling, TP53 and RTK signaling, PI3K signaling and the cohesin 
complex, and PI3K signaling and the ASCOM complex, exhibited 
significant co-occurrence (P < 0.05, multiple-hypotheses corrected) 
across the pan-cancer cohort (Fig. 2b) or in individual cancer types 
(Fig. 2c). Multiple pairs of genes within these subnetworks showed 
co-occurring mutations (Supplementary Table 24). In contrast, 
mutually exclusive mutations are typically expected within a pathway 
and not across pathways32,33. We observed significant mutual exclu-
sivity within four of our subnetworks (Supplementary Table 25).  
Intriguingly, the RTK signaling and NFE2L2-KEAP1 subnetworks 
were the only pair with significant mutual exclusivity across the 
pan-cancer cohort. This mutual exclusivity was largely due to lung 
adenocarcinoma (LUAD) samples with mutually exclusive EGFR and 
KEAP1  mutations (Supplementary Fig. 15). This observation is con-
sistent with reports of mutual exclusivity between EGFR mutations 
and NFE2L2 expression in LUAD34 and also with NFE2L2 expres-
sion being downstream of EGFR signaling35. Examining individual 
cancers, we found a modest but not statistically significant enrich-
ment for co-occurrence or mutual exclusivity in a few cancer types 
(Supplementary Table 26). Neither within-subnetwork mutual 

exclusivity nor across-subnetwork co-occurrence is explicitly pro-
grammed into the HotNet2 algorithm. These observations support the 
hypothesis that the HotNet2 subnetworks represent distinct biological 
functions that are mutated in samples.

TP53, PIK3CA and NOTCH networks
The three largest subnetworks—including a TP53 subnetwork, a 
PIK3CA subnetwork and a NOTCH subnetwork—contained many 
well-known cancer-related genes (Supplementary Figs. 16 and 17, 
and Supplementary Tables 8–10). Linker genes joined these three 
subnetworks, demonstrating the extensive cross-talk between well-
annotated cancer pathways. Most of these linker genes encoded  
signaling proteins that have known cancer-related functions (for 
example, WT1, NOTCH2, PIK3R1, MAP2K4, MAP3K1, HRAS, ATM 
and STK11). Taken together, 81.9% of the samples contained at least 
one mutation in these three large subnetworks and linker genes.

HotNet2 pan-cancer analyses also identified a number of newly 
involved genes (Supplementary Table 20) within these three subnet-
works. These genes have documented interactions with well-known 
cancer-relevant genes and similar functions but with somewhat lower 
mutational frequency (~1%) and were not marked as significant by 
single-gene tests20,26–29. For example, the TP53 subnetwork included 
CUL9. CUL9 sequesters p53 in the cytoplasm, and we found a cluster 
of 45 missense mutations (P = 1.32 × 10−8) as well as a cluster in the 
protein structure (false discovery rate (FDR) = 0.025). Another gene 
of interest was IWS1 , which is involved in transcriptional elonga-
tion and mRNA surveillance. Half (8/16) of the mutations in this 
gene were inactivating, and this gene also had a cluster of mutations  
(P = 0.013). This subnetwork also contained CHD8 , encoding an ATP-
dependent chromatin-remodeling factor that regulates a wide range 
of genes36. We found three independent signals of CHD8  inactiva-
tion across samples: CHD8  was deleted in 9 samples in a focal peak 
from GISTIC; 18 of 58 (31%) of its mutations were inactivating; and 
this gene had a wide cluster of missense mutations (P = 6.37 × 10−5). 
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Figure 1 HotNet2 pan-cancer analysis.  
(a) The pan-cancer mutation data comprise 
SNVs (nonsynonymous SNVs and small indels) 
and CNAs (amplifications and deletions) in 
19,459 genes in 3,281 samples. (b) Removing 
hypermutator samples and genes with few RNA-
seq reads in all tumor types leaves 11,565 
genes in 3,110 samples for analysis, with a wide 
range in the number of samples having an SNV 
(x axis) or a CNA (y axis) in these genes. The 
number of samples with SNVs and/or CNAs is 
shown for each gene, with points colored by the 
total. (c) HotNet2 finds significantly mutated 
subnetworks using a diffusion process on a 
protein-protein interaction network. Each node 
(protein) is assigned a score (heat) according to 
the frequency and significance of SNVs or CNAs 
in the corresponding gene. Heat diffuses across 
the edges of a network. Subnetworks containing 
nodes that both send and receive a significant 
amount of heat (outlined) are reported.  
(d) Subnetworks identified by HotNet2 include 
genes with a wide range of heat scores, 
including both frequently mutated, known 
cancer-related genes (hot genes) and rarely 
mutated genes (cold genes) that are implicated 
because of their interactions with other cancer 
types. Thus, HotNet2 delves into the long 
tail of rarely mutated genes by the analysis of 
combinations of interacting genes.

Leiserson et al . 2014, Nature Genetics
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mutations (P < 0.0001) or mutation clusters (P < 0.0001) in compari-
son to genes not in subnetworks (Supplementary Tables 6–18 and 
Supplementary Note). Finally, we evaluated a subset of the muta-
tions in these genes using RNA-seq and whole-genome sequencing 
data from the same samples and found RNA-seq and/or whole-
genome sequencing reads that validated 39 mutations in these genes 
(Supplementary Table 23 and Supplementary Note). These genes 
might represent new biomarkers for the classification of patients for 
treatment regimens.

Co-occurrence and mutual exclusivity of mutations in subnetworks
Cancer cells are thought to harbor multiple driver mutations that 
perturb multiple biological functions15. Consistent with this model, 
we found that four pairs of subnetworks, including TP53 and NOTCH 
signaling, TP53 and RTK signaling, PI3K signaling and the cohesin 
complex, and PI3K signaling and the ASCOM complex, exhibited 
significant co-occurrence (P < 0.05, multiple-hypotheses corrected) 
across the pan-cancer cohort (Fig. 2b) or in individual cancer types 
(Fig. 2c). Multiple pairs of genes within these subnetworks showed 
co-occurring mutations (Supplementary Table 24). In contrast, 
mutually exclusive mutations are typically expected within a pathway 
and not across pathways32,33. We observed significant mutual exclu-
sivity within four of our subnetworks (Supplementary Table 25).  
Intriguingly, the RTK signaling and NFE2L2-KEAP1 subnetworks 
were the only pair with significant mutual exclusivity across the 
pan-cancer cohort. This mutual exclusivity was largely due to lung 
adenocarcinoma (LUAD) samples with mutually exclusive EGFR and 
KEAP1  mutations (Supplementary Fig. 15). This observation is con-
sistent with reports of mutual exclusivity between EGFR mutations 
and NFE2L2 expression in LUAD34 and also with NFE2L2 expres-
sion being downstream of EGFR signaling35. Examining individual 
cancers, we found a modest but not statistically significant enrich-
ment for co-occurrence or mutual exclusivity in a few cancer types 
(Supplementary Table 26). Neither within-subnetwork mutual 

exclusivity nor across-subnetwork co-occurrence is explicitly pro-
grammed into the HotNet2 algorithm. These observations support the 
hypothesis that the HotNet2 subnetworks represent distinct biological 
functions that are mutated in samples.

TP53, PIK3CA and NOTCH networks
The three largest subnetworks—including a TP53 subnetwork, a 
PIK3CA subnetwork and a NOTCH subnetwork—contained many 
well-known cancer-related genes (Supplementary Figs. 16 and 17, 
and Supplementary Tables 8–10). Linker genes joined these three 
subnetworks, demonstrating the extensive cross-talk between well-
annotated cancer pathways. Most of these linker genes encoded  
signaling proteins that have known cancer-related functions (for 
example, WT1, NOTCH2, PIK3R1, MAP2K4, MAP3K1, HRAS, ATM 
and STK11). Taken together, 81.9% of the samples contained at least 
one mutation in these three large subnetworks and linker genes.

HotNet2 pan-cancer analyses also identified a number of newly 
involved genes (Supplementary Table 20) within these three subnet-
works. These genes have documented interactions with well-known 
cancer-relevant genes and similar functions but with somewhat lower 
mutational frequency (~1%) and were not marked as significant by 
single-gene tests20,26–29. For example, the TP53 subnetwork included 
CUL9. CUL9 sequesters p53 in the cytoplasm, and we found a cluster 
of 45 missense mutations (P = 1.32 × 10−8) as well as a cluster in the 
protein structure (false discovery rate (FDR) = 0.025). Another gene 
of interest was IWS1 , which is involved in transcriptional elonga-
tion and mRNA surveillance. Half (8/16) of the mutations in this 
gene were inactivating, and this gene also had a cluster of mutations  
(P = 0.013). This subnetwork also contained CHD8 , encoding an ATP-
dependent chromatin-remodeling factor that regulates a wide range 
of genes36. We found three independent signals of CHD8  inactiva-
tion across samples: CHD8  was deleted in 9 samples in a focal peak 
from GISTIC; 18 of 58 (31%) of its mutations were inactivating; and 
this gene had a wide cluster of missense mutations (P = 6.37 × 10−5). 
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Figure 1 HotNet2 pan-cancer analysis.  
(a) The pan-cancer mutation data comprise 
SNVs (nonsynonymous SNVs and small indels) 
and CNAs (amplifications and deletions) in 
19,459 genes in 3,281 samples. (b) Removing 
hypermutator samples and genes with few RNA-
seq reads in all tumor types leaves 11,565 
genes in 3,110 samples for analysis, with a wide 
range in the number of samples having an SNV 
(x axis) or a CNA (y axis) in these genes. The 
number of samples with SNVs and/or CNAs is 
shown for each gene, with points colored by the 
total. (c) HotNet2 finds significantly mutated 
subnetworks using a diffusion process on a 
protein-protein interaction network. Each node 
(protein) is assigned a score (heat) according to 
the frequency and significance of SNVs or CNAs 
in the corresponding gene. Heat diffuses across 
the edges of a network. Subnetworks containing 
nodes that both send and receive a significant 
amount of heat (outlined) are reported.  
(d) Subnetworks identified by HotNet2 include 
genes with a wide range of heat scores, 
including both frequently mutated, known 
cancer-related genes (hot genes) and rarely 
mutated genes (cold genes) that are implicated 
because of their interactions with other cancer 
types. Thus, HotNet2 delves into the long 
tail of rarely mutated genes by the analysis of 
combinations of interacting genes.

Leiserson et al . 2014, Nature Genetics

HOTNET2 subnetworks include genes with a 
wide range of mutation frequency
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In the NOTCH subnetwork, we found rare mutations in JAG1 and 
DLL1, whose gene products interact with the NOTCH receptors and 
have some reports of a role in cancer37. Moreover, 11 of 24 mutations 
in JAG1 were inactivating. The NOTCH subnetwork also included 
SHPRH, which had a significant (P < 8 × 10−5) cluster of missense 
mutations (Supplementary Fig. 18).

SWI/SNF complex
The sixth most mutated HotNet2 pan-cancer subnetwork (16.8% 
of samples) included multiple members of the SWI/SNF chroma-
tin-remodeling complex (Fig. 3a and Supplementary Table 12). 
Mutations in this complex have previously been reported in several 
cancers38,39, including TCGA samples40. Our HotNet2 pan-cancer 
analysis demonstrated the prevalence of mutations in SWI/SNF  
components: at least 1.5% of the samples from each of the 12 cancer 
types contained a mutation in this subnetwork. Kidney renal clear 

cell carcinoma (KIRC) (P < 1 × 10−15), uterine corpus endometrial 
carcinoma (UCEC) (P = 7 × 10−10) and bladder urothelial carcinoma  
(BLCA) (P = 1.8 × 10−8) were enriched for mutations in this sub-
network, and several genes were enriched for mutations in specific 
cancer types, including PBRM1 in KIRC (P < 1 × 10−15) and ARID1A 
in both BLCA (P = 4.8 × 10−8) and UCEC (P < 1 × 10−15). The sub-
network also contained ARID1B, which has been reported to have 
somatic mutations in juvenile neuroblastoma41 and germline muta-
tions in Coffin-Siris syndrome42.

In addition to known members of the SWI/SNF complex, the 
subnetwork included ADNP. ADNP mutations have not previously 
been reported in cancer and were not considered significant by the 
three individual gene-scoring methods applied. However, ADNP 
has a known interaction with the SWI/SNF complex43 and protects 
against oxidative stress in neuronal cells44, suggesting that in rare 
cases ADNP mutations contribute to tumorigenesis. Thus, HotNet2 
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Figure 3 HotNet2 pan-cancer subnetworks overlapping SWI/SNF and BAP1 complexes. (a) Subnetwork containing members of the SWI/SNF complex, 
including the BAF proteins ARID1A and ARID1B, the PBAF proteins PBRM1 and ARID2, the catalytic core member SMARCA4, SMARCB1 and 
ADNP. (a) Top, mutation matrix showing the samples (colored by cancer type) with a mutation of the indicated type: full ticks represent SNVs, indels 
and splice-site mutations; upticks and downticks represent amplifications and deletions, respectively. A black dot corresponds to samples with an 
inactivating mutation in the gene and indicates that the genes contain at least one of the following mutations: nonsense, frameshift indel, nonstop 
or splice site. The number of samples with mutations in a gene is given in parentheses; marks are defined as in Figure 2a. Bottom left, interactions 
between proteins in the subnetwork from each interaction network are colored according to mutually enriched cancer type with corresponding P values. 
PPI, protein-protein interaction. Bottom right, the PBRM1 protein sequence exhibited significant clustering of missense alterations (P = 1.6 × 10−5) 
in a 105-amino-acid bromodomain, a region that was reported to be mutated in a different renal clear cell carcinoma cohort39 but not in the TCGA 
KIRC publication3. Splice-site mutations are annotated with the nearest exon, where +1 and +2 refer to the adjacent 3` splice donor and −1 and −2 
refer to the adjacent 5` splice acceptor. (b) Subnetwork containing members of the BAP1 complex, including the core PR-DUB complex, comprised 
of the deubiquitinating enzyme BAP1 and the Polycomb group proteins ASXL1 and ASXL2, as well as the BAP1-interacting proteins: ANKRD17, 
FOXK1, FOXK2 and KDM1B. Colors, marks and panel organization are as in a. (c) Inactivating mutations across samples (columns) in the SWI/SNF and 
BAP1 complexes (rows) in KIRC. The bottom row shows the mRNA expression classification of each sample3. The mutations in these complexes are 
surprisingly mutually exclusive in KIRC (P < 3.6 × 10−4, Fisher’s exact test, corrected), and the BAP1 complex is significantly enriched in mutations in 
the third expression subtype (P < 3.4 × 10−8, Fisher’s exact test).

Number of samples

Sixth most mutated Hotnet2 subnetwork.



HOTNET summary

• An algorithm to find significantly mutated subnetworks
• Based on creating an “influence graph”, followed by 

identification of “interesting” subnetworks
• Non-local, less sensitive to network hubs
• Note: the subgraph detection component could be also 

addressed using module detection algorithms
• Post diffusion the graph could be used also for network-based 

stratification
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knowledge, we were able to cluster somatic mutation profiles into 
robust tumor subtypes that are biologically informative and have 
a strong association to clinical outcomes such as patient survival 
time and emergence of drug resistance. As a proof of principle, 
we applied this method to stratify the somatic mutation profiles 
of three major cancers cataloged in TCGA: ovarian, uterine and 
lung adenocarcinoma.

RESULTS
Overview of network-based stratification
NBS combines genome-scale somatic mutation profiles with 
a gene interaction network to produce a robust subdivision of 
patients into subtypes (Fig. 1a). Briefly, somatic mutations for 
each patient are represented as a profile of binary (1, 0) states on 
genes, in which a ‘1’ indicates a gene for which mutation (a single- 
nucleotide base change or the insertion or deletion of bases) has 
occurred in the tumor relative to germ line. For each patient,  
we project the mutation profile onto a human gene interaction 
network obtained from public databases28–30. Next we apply 
network propagation31 to spread the influence of each mutation 
over its network neighborhood (Fig. 1b). The resulting matrix 
of ‘network-smoothed’ patient profiles is clustered into a pre-
defined number of subtypes (k = 2, 3, … 12) via non-negative 
matrix factorization32 (NMF, Fig. 1c), an unsupervised technique. 
Finally, to promote robust cluster assignments, we use consensus 
clustering33, aggregating the results of 1,000 different subsamples 
from the entire data set into a single clustering result (Fig. 1d). 
For further details, see Online Methods. To evaluate the impact 
of different sources of network data, we used three interaction 
databases for this analysis: search tool for the retrieval of inter-
acting genes (STRING)29, HumanNet28 or PathwayCommons30. 
Supplementary Table 1 summarizes the number of genes and 
interactions used in our analysis from each of these three net-
works. Our implementation of NBS is available as Supplementary 

Software; for updated versions, NBS may be downloaded from 
http://idekerlab.ucsd.edu/software/NBS/.

Benchmarking and performance analysis
In an initial exploration of NBS, we simulated a somatic mutation 
data set using the structure of the TCGA ovarian tumor muta-
tion data and the STRING gene interaction network (Fig. 2a).  
Mutation profiles were permuted, and patients were divided 
randomly and uniformly into a predefined number of subtypes  
(k = 4). Next we reassigned a fraction of mutations in each patient 
to fall within genes of a single ‘network module’ characteristic of 
that patient’s subtype (the ‘driver’ mutation frequency f, varied 
from 0% to 15%); the remaining mutations were left to occur 
randomly. We selected the network modules randomly from the 
set of all network modules in STRING, defined as sets of densely 
interacting genes with size range s = 10–250 (see Online Methods 
for details and justification for the ranges of k, f and s). Although 
it is unknown whether these assumptions completely mirror the 
biology of cancer, they provide a reasonable model of a pathway-
based genetic disease that is (i) driven by genetic circuits cor-
responding to a molecular network whose activity can be altered 
by mutations at multiple genes and (ii) characterized by many 
additional mutations that are noncausal ‘passengers’.

Using this simulation framework, we measured the ability of 
NBS to recover the correct subtype assignments in comparison to 
a standard consensus clustering approach not based on network 
knowledge (Online Methods). NBS showed a striking improve-
ment in performance, especially for large network modules, as 
these can be associated with any of numerous different mutations 
across the patient population (Fig. 2b). As module size decreased, 
the chance of observing the same mutated gene in patients of the 
same subtype increased, and the standard clustering algorithm 
performed increasingly well. We found that the high performance 
of NBS depended not only on network smoothing but also on the 
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Figure 1 | Overview of network-based stratification (NBS). (a) Flowchart of the approach. (b) Example illustrating smoothing of patient somatic mutation profiles 
over a molecular interaction network. Mutated genes are shown in yellow (patient 1) and blue (patient 2) in the context of a gene interaction network. Following 
smoothing, the mutational activity of a gene is a continuous value reflected in the intensity of yellow or blue; genes with high scores in both patients appear 
in green (dashed oval). (c) Clustering mutation profiles using non-negative matrix factorization (NMF) regularized by a network. The input data matrix (F) is 
decomposed into the product of two matrices: one of subtype prototypes (W) and the other of assignments of each mutation profile to the prototypes (H). The 
decomposition attempts to minimize the objective function shown, which includes a network influence constraint L on the subtype prototypes. k, predefined 
number of subtypes. (d) The final tumor subtypes are obtained from the consensus (majority) assignments of each tumor after 1,000 applications of the 
procedures in b and c to samples of the original data set. A darker blue color in the matrix coincides with higher co-clustering for pairs of patients.

Input: Patient tumour mutation profiles, skeleton network
Output: Patient groups
How: (1) Smooth mutation profile using network smoothing; (2) Use Non-negative Matrix 
Factorization to cluster samples
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(Fig. 4e; CNVs had highest predictive power overall) and also had 
very high overlap with NBS subtype assignments (Fig. 4f).

Distinct network modules associate with each tumor subtype
We next sought to identify the regions of the network that are 
most responsible for discriminating the somatic mutation pro-
files of tumors of different subtypes. Focusing on ovarian cancer 
as a proof of principle, for each subtype we identified genes for 
which the network-smoothed mutation state differs significantly 
for patients of that subtype versus the others (false discovery rate 
<0.05; Online Methods). This set of genes was projected onto 
the HumanNet network and visualized using Cytoscape35. The 
network for subtype 1 (Fig. 5), which had the worst overall sur-
vival and shortest platinum-free interval, contained over 20 genes 
in the fibroblast growth factor (FGF) signaling pathway, which 
has previously been implicated as a driver of tumor progression 
and associated with resistance to platinum and anti-VEGF ther-
apy36. The network for subtype 2 was enriched in DNA damage–
response genes including ATM, ATR, BRCA1, BRCA2, RAD51 and 
CHEK2 (Supplementary Fig. 7). Collectively these highlighted 
pathways are characteristic of a functional deficit in response 
to DNA damage, which has been referred to as ‘BRCAness’7,37. 
Consistent with this finding, this subtype also included the vast 
majority of patients with BRCA1 and BRCA2 germ-line mutations 
(15 of 20 and 5 of 6 patients in the cohort, respectively). The net-
work for subtype 3 was enriched for genes in the NF-KB pathway 
(Supplementary Fig. 8), whereas subtype 4 was enriched for genes 
involved in cholesterol transport and fat and glycogen metabolism 
(Supplementary Fig. 9). A similar analysis in uterine and lung 
cancers produced other subnetworks with unique characteris-
tics, including enrichments for DNA-damage response, WNT sig-
naling and histone modification (Supplementary Figs. 10–16).  
Thus, the NBS approach not only can stratify patients into clini-
cally informative subtypes but may help identify the molecular 
network regions commonly mutated in each subtype.

Translation to predictive signatures
For NBS to be applicable to new patients not in the TCGA, it 
is necessary to complement it with a procedure for assigning a 
patient to one of the existing NBS subtypes. For this purpose, we 
explored the nearest shrunken centroid approach38, a standard 
method for sample classification that summarizes each subtype 
with a class ‘centroid’ and assigns new samples to the subtype with 
closest centroid. We found that this method was able to classify 
the network-smoothed mutation profile of an individual patient 
with over 95% accuracy (Fig. 6a; tenfold cross-validation).

However, mRNA expression data are presently much more widely 
available than are full genome or exome sequences: there are numerous  
existing cohorts of cancer patients that have been profiled in mRNA 
expression but not in somatic mutations7,39–42. We therefore sought 
to test whether, having used NBS to define subtypes within TCGA 
somatic mutation data, we could assign a new patient to these 
subtypes using an expression signature. To explore this idea, we 
used the mRNA expression profiles available for the TCGA ovar-
ian tumor cohort to learn an expression signature for each subtype 
defined earlier by NBS, again using the nearest shrunken centroid 
approach38. We found that expression performed as an adequate 
surrogate for mutation profile, albeit at a reduced accuracy (Fig. 6a; 
>95% for mutations, ~60% for expression and ~30% at random). 
This expression signature was nonetheless able to recover stratifica-
tion predictive of survival (Fig. 6b).

We examined the predictive value of this gene expression sig-
nature in two independent studies of serous ovarian tumors by 
Tothill et al.40 and Bonome et al.42 as well as in a meta-analysis 
including over 1,000 patients, which subsumes Tothill, Bonome 
and TCGA samples that included expression profiles but lacked 
somatic mutation profiles41 (Fig. 6c and Supplementary Fig. 17) 
and incorporates an unknown number of nonserous ovarian cancer 
samples. Using the expression signature we had learned from NBS 
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Figure 3 | NBS of somatic tumor mutations. (a) Co-clustering matrices 
for uterine cancer patients, comparing NBS (STRING) (top) to standard 
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Types of algorithms used to examine 
perturbations in networks

• Graph diffusion followed by subnetwork finding methods
– HOTNET 

• Probabilistic graphical model-based methods
– Factor graphs
– Nested Effect Models (NEMs)

• Information flow-based methods (also widely used for 
integrating different types of data)
– Min cost max flow
– Prize collecting steiner tree



Probabilistic graphical models for interpreting 
network perturbations

• “Inference of Patient-Specific Pathway Activities from Multi-
Dimensional Cancer Genomics Data Using PARADIGM. 
Bioinformatics” https://academic.oup.com/bioinformatics/article/2
6/12/i237/282591

• C.-H. H. Yeang, T. Ideker, and T. Jaakkola, "Physical network models." 
Journal of computational biology : a journal of computational 
molecular cell biology, vol. 11, no. 2-3, pp. 243-262, Mar. 2004.

• F. Markowetz, D. Kostka, O. G. Troyanskaya, and R. Spang, "Nested 
effects models for high-dimensional phenotyping screens," 
Bioinformatics, vol. 23, no. 13, pp. i305-312, Jul. 2007.

• C. J. Vaske, C. House, T. Luu, B. Frank, C.-H. H. Yeang, N. H. Lee, and 
J. M. Stuart, "A factor graph nested effects model to identify 
networks from genetic perturbations." PLoS computational biology, 
vol. 5, no. 1, pp. e1 000 274+, Jan. 2009.

https://academic.oup.com/bioinformatics/article/26/12/i237/282591


PARADIGM for detecting pathway 
activities

Overview of paradigm

Encode pathways as factor graphs



Factor graphs

• A type of graphical model
• A bi-partite graph with variable nodes and factor nodes
• Edges connect variables to potentials that the variables are 

arguments of
• Represents a global function as product of smaller local 

functions
• Perhaps the most general graphical model
– Bayesian networks and Markov networks have factor graph 

representations
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Fig. 1. A factor graph for the product
.

of five factors, so that , ,
, , , and

. The factor graph that corresponds to (2) is shown in
Fig. 1.

A. Expression Trees
In many situations (for example, when rep-

resents a joint probability mass function), we are interested in
computing the marginal functions . We can obtain an ex-
pression for each marginal function by using (2) and exploiting
the distributive law.
To illustrate, we write from Example 1 as

or, in summary notation

(3)

Similarly, we find that

(4)

In computer science, arithmetic expressions like the
right-hand sides of (3) and (4) are often represented by or-
dered rooted trees [28, Sec. 8.3], here called expression trees,
in which internal vertices (i.e., vertices with descendants)
represent arithmetic operators (e.g., addition, multiplication,
negation, etc.) and leaf vertices (i.e., vertices without descen-
dants) represent variables or constants. For example, the tree of
Fig. 2 represents the expression . When the operators
in an expression tree are restricted to those that are completely
symmetric in their operands (e.g., multiplication and addition),

Fig. 2. An expression tree representing .

it is unnecessary to order the vertices to avoid ambiguity in
interpreting the expression represented by the tree.
In this paper, we extend expression trees so that the leaf ver-

tices represent functions, not just variables or constants. Sums
and products in such expression trees combine their operands in
the usual (pointwise) manner in which functions are added and
multiplied. For example, Fig. 3(a) unambiguously represents the
expression on the right-hand side of (3), and Fig. 4(a) unambigu-
ously represents the expression on the right-hand side of (4). The
operators shown in these figures are the function product and the
summary, having various local functions as their arguments.
Also shown in Figs. 3(b) and 4(b), are redrawings of the factor

graph of Fig. 1 as a rooted tree with and as root vertex,
respectively. This is possible because the global function de-
fined in (2) was deliberately chosen so that the corresponding
factor graph is a tree. Comparing the factor graphs with the cor-
responding trees representing the expression for the marginal
function, it is easy to note their correspondence. This observa-
tion is simple, but key: when a factor graph is cycle-free, the
factor graph not only encodes in its structure the factorization
of the global function, but also encodes arithmetic expressions
by which the marginal functions associated with the global func-
tion may be computed.
Formally, as we show in Appendix A, to convert a cycle-free

factor graph representing a function to the cor-
responding expression tree for , draw the factor graph as
a rooted tree with as root. Every node in the factor graph
then has a clearly defined parent node, namely, the neighboring
node through which the unique path from to must pass. Re-
place each variable node in the factor graph with a product op-
erator. Replace each factor node in the factor graph with a “form
product and multiply by ” operator, and between a factor node
and its parent , insert a summary operator. These

local transformations are illustrated in Fig. 5(a) for a variable
node, and in Fig. 5(b) for a factor node with parent . Trivial
products (those with one or no operand) act as identity opera-
tors, or may be omitted if they are leaf nodes in the expression
tree. A summary operator applied to a function with a
single argument is also a trivial operation, andmay be omitted.
Applying this transformation to the tree of Fig. 3(b) yields the
expression tree of Fig. 3(a), and similarly for Fig. 4. Trivial op-
erations are indicated with dashed lines in these figures.

B. Computing a Single Marginal Function
Every expression tree represents an algorithm for computing

the corresponding expression. One might describe the algorithm
as a recursive “top-down” procedure that starts at the root vertex
and evaluates each subtree descending from the root, combining
the results as dictated by the operator at the root. Equivalently,
we prefer to describe the algorithm as a “bottom-up” procedure
that begins at the leaves of the tree, with each operator vertex

From Kschischang, Frey, Loeliger 2001

Variable nodes
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that begins at the leaves of the tree, with each operator vertex

Factor nodes
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Motivation of nested effect models

• Perturbation of genes followed by high-throughput profiling 
of different phenotypes can be used to characterize functions 
of genes

• However, most genes do not function independently but 
interact in a network to drive a particular function

• Phenotypic measurements (e.g. mRNA levels) are indirect 
measurements of the underlying network structure
– Includes direct and indirect effects

• Given perturbation data from multiple genes, can we more 
systematically identify the functions of these genes and how 
they interact at a pathway level?



Problem overview

• Given 
– global measurements of gene expression after single gene 

deletions of multiple genes
• Do
– Infer interactions between genes with deletions to enable 

further characterization of these genes 
• Nested Effect Models are probabilistic model-based 

approaches to solve this problem



Nested Effect Models

Clustering defines groups of genes with similar phenotypic
profiles, but may miss the hierarchy in the observed perturba-
tion effects, as is exemplified in Figure 1. Perturbing some genes
may have an influence on a global process, while perturbing
others affects subprocesses of it. Imagine, e.g. a signaling
pathway activating several transcription factors (TFs). Blocking
the entire pathway will affect all targets of the TFs, while
perturbing a single downstream TF will only affect its direct
targets, which are a subset of the phenotype obtained by
blocking the complete pathway. Boutros et al. (2002) show that
by this reasoning non-transcriptional features of signaling
pathways can be recovered from gene-expression profiles.
However, no previous computational method is applicable to
infer models from biological subset relations on data sets
screening whole pathways.
Nested effects models. We will call a model encoding the

(noisy) subset relations between the effects observed after
perturbing the target genes a Nested Effects Model (NEM).
It can be seen as a generalization of similarity-based clustering,
which orders (clusters of) genes according to subset relation-
ships between the sets of phenotypes. In this article, we develop
a Bayesian method to infer NEM from large-scale data sets.
Our method builds on preliminary work by Markowetz et al.,

(2005), which is specifically designed for inference from indirect
information and also takes the imbalance between spurious
and missed effects into account. Previously, this method was
limited to small-scale scenarios of up to six genes, where model
search can be done by exhaustive enumeration. Scaling upmodel
search to larger numbers of perturbed genes is a non-trivial

problem due to the constraints imposed on the model by
having only indirect information of the underlying genetic
network. Here, we approach the problem of inferring a hierarchy
on the set of all perturbed genes by constructing it from smaller
sub-models containing only pairs or triples of genes. Such ‘divide-
and-conquer’-like approaches are regularly used in high-
dimensional statistical inference, e.g. for estimating large
phylogenetic trees (Strimmer and von Haeseler, 1996) or
learning Gaussian graphical models for regulatory networks
(Wille et al., 2004). Our resulting method is the first one to make
inference of NEMs feasible on a pathway-wide scale.
The next section introduces our novel methodology in detail.

In Section 3, we demonstrate the applicability of our methods
in a controlled simulation study, and in Section 4 we describe
results for two experimental data sets. We show that the subset
relations retrieved actually reflect the regulatory functions of
the genes involved.

2 ALGORITHM

Data. We assume that data is given in the form of a binary
matrix D with columns corresponding to perturbation experi-
ments on one of n genes (replicates are possible) and rows to
one of m possible effects E1, . . . ,Em. A phenotypic profile Px of
gene x consists of a binary vector of length m with a PxðEiÞ ¼ 1
denoting that effect Ei occurred after perturbing gene x, and
PxðEiÞ ¼ 0 denoting that it did not.
Subset relations between phenotypic profiles. Instead of

similarity, we will consider subset relations between phenotypic
profiles. We say that gene x is upstream of gene y

(c) Nested Effects Model(a) Data (b) Clustering

A B C D GFE H

A B

C D E F

G H

A B

C D

E F

(d) Subset structure

G H

G HA B C D EF

Fig. 1. An introduction to Nested Effects Models. Plot (a) shows a toy dataset consisting of phenotypic profiles for eight perturbed genes (A, . . . ,H).
Each profile is binary with black coding for an observed effect and white for an effect not observed. The eight profiles are hierarchically clustered,
showing that they fall into four pairs of genes with almost identical phenotypic profiles: (A,B), (C,D), (E,F) and (G,H), as shown in plot (b). An
important feature of the data missed by clustering is the subset structure visible between the profiles in the data set: the effects observed when
perturbing genes A or B are a superset to the effects observed for all other genes. The effects of perturbing G or H are a subset to all other genes’
effects. The pairs (C,D) and (E,F) have different but overlapping effect sets. The directed acyclic graph (DAG) shown in plot (c) represents these
subset relations, which are shown in plot (d). Compared to the clustering result in plot (b) the NEM additionally elucidates relationships between the
clusters and thus describes the dominant features of the data set better.
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Nested Effect Models Key properties

• A generalization of similarity based clustering
• Orders the clusters according to subset relationships
– A gene A is upstream of another gene B if B’s effects are a 

subset of A’s effects
• Build a hierarchy of all perturbed genes by constructing from 

smaller sub-models of pairs and triplets of genes



Subset relationships to order genes

(and write x! y) if the set of effects in Py is a subset of the set
of effects in Px:

x! y , fi : PyðEiÞ ¼ 1g $ fi : PxðEiÞ ¼ 1g: ð1Þ

A subset relation is reflexive and transitive, and thus defines
a quasi-order on phenotypic profiles. We depict the quasi-order
in a directed graph in which nodes correspond to gene
perturbations and edges indicate subset relations according to
Equation (1). The reflexive self-loops at nodes are usually
omitted. Transitivity is the key feature of our model: whenever
there is a path from one node to another, we also have a
directed edge between these two nodes in the graph.

2.1 Bayesian inference for NEM models

Posterior probability A Bayesian score to evaluate how well a
candidate NEM fits to the observed data can be obtained in
two steps (Markowetz et al., 2005). First, assume that it is
known which effect is specific for which perturbed gene. We call
this the complete model, and an example is given in Figure 2.
A complete model M0 ¼ ðM,!Þ consists of a transitively closed
graph, M, and parameters ! ¼ f!1, . . . , !mg. The nodes of M
correspond to perturbed genes, and the parameters ! describe
the allocation of specific effects to perturbed genes (i.e. the
dashed arrows in the left plot of Fig. 2). The complete model
defines which effects we expect to observe (see the middle plot
of Fig. 2). We can directly compute the complete likelihood of
the actually observed data D under the model ðM,!Þ by:

PðDjM,!Þ ¼
Ym

i¼1

Yl

k¼1
PðeikjM, !iÞ, ð2Þ

where, the first product is over all effects E1, . . . ,Em and the
second over all replicates of gene perturbation experiments. The
probability PðeikjM, !iÞ depends on two parameters: a FP rate
of seeing a spurious effect, " (type-I error rate), and a FN rate
of missing an effect, # (type-II error rate).
However, in real data, it is not known which effect is specific

for which intervention, i.e. ! is unknown. Thus, in a second
step, we average over ! to gain the likelihood of the data,
which is proportional to the posterior probability of the NEM
and can be written as:

PðDjMÞ /
Ym

i¼1

Xn

j¼1

Yl

k¼1
PðeikjM, !i ¼ jÞ, ð3Þ

where the two products are the same as in Equation (2), and the
sum is due to marginalization over !.
Size of model space. NEMs are defined in terms of quasi-

orders, i.e. transitively closed graphs. The number of quasi-
orders is known for up to 16 nodes (Sloane, 2007, seq. A000798).
For n¼ 7, we already have almost 107 possible quasi-orders and
for n¼ 8 the number is > 6 % 109. Thus, exhaustive enumeration
is infeasible even for medium-sized studies. For large-scale
screens, we need search heuristics to explore model space. Our
approach to this problem is to concentrate on small sub-models
involving only pairs or triples of nodes.

2.2 Inference of pairwise relations

The smallest possible sub-model consists of pairs of genes. We
infer pairwise relations by choosing between four models for
each gene pair (x, y): either x! y (‘‘upstream’’, effects of x are
a superset of the effects of y), or x y (‘‘downstream’’, effects
of x are a subset of the effects of y), or x$ y (the effects of x
and y are undistinguishable) or x % % y (x and y are unrelated).
For every pair (x, y), we compute the Bayesian score detailed
above and select the maximum aposteriori (MAP) model
Mxy 2 fx y, x! y, x$ y, x % % yg.
The greatest advantage of this procedure is the increase in

speed. The number of models we have to score for n genes is
n
2

! "
% 4, which grows quadratically in the number of perturbed

genes and remains feasible even for hundreds of genes.
Additionally, building up the final graph is easy, since it is
defined by the set of all pairwise MAP models.
These advantages come at a cost. The most serious problem

is that pairwise learning treats all edges independently of each
other. But in a transitive graph, there must be a shortcut x! y
whenever there exists a longer path from x to y. To see how
easily mistakes can be introduced in pairwise inference,
consider the example in Figure 2. In the observed data
(rightmost plot), the profiles of x and z seem non-overlapping
(because of the FNs at E5 and E6), so the edge x! z could be
missed. One can also think of scenarios, where noise in
the data induces spurious edges in pairwise inference. To
address these problems, we concentrate on triples of nodes in
the next section.

2.3 Inference of triple relations

Inference from triples of genes instead of pairs is a natural way
to extend our inference method beyond the independence

M′xyz:

X Y Z

Expected Observed

X X

E1 E2 E3 E4 E5 E6E1E1 E2E2 E3E3 E4E4 E5E5 E6E6

FN FN

FN
FPY Y

Z Z

Fig. 2. A complete model. The left part of the figure shows a complete model M0xyz consisting of a transitively closed graph between genes and
assignments of genes to specific effects (the dashed arrows). Given the complete model, we can formulate a prediction of what effects to expect:
perturbing x should cause all effects, while perturbing y should only cause E3–E6, and perturbing z only E5 and E6 (middle plot). In reality, our
observations will be noisy: there can be false positive (FP) and false negative (FN) effect observations (right plot).
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A complete model. The left part of the figure shows a complete model M’xyz consisting 
of a transitively closed graph between genes and assignments of genes to specific 
effects (the dashed arrows). Given the complete model, we can formulate a prediction 
of what effects to expect: perturbing x should cause all effects, while perturbing y 
should only cause E3–E6, and perturbing z only E5 and E6 (middle plot). In reality, our 
observations will be noisy: there can be false positive (FP) and false negative (FN) effect 
observations (right plot). 
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Key properties of Factor Graph-NEMs (FG-
NEMs)

• NEMs assume the genes that are perturbed interact in a 
binary manner

• But many interactions have sign
– inhibitory or stimulating action

• FG-NEMs capture a broader set of interactions among the 
perturbed genes

• Formulation based on a Factor Graph
– Provide an efficient search over the space of NEMs



Notation

• S-genes: Set of genes that have been deleted individually
• E-genes: Set of effector genes that are measured
• Θ: The attachment of an effector gene to the S-gene network
• Φ: The interaction matrix of S-genes
• X: The phenotypic profile, each column gives the difference in 

expression in a knockout compared to wild type
– Rows: E-genes
– Columns: S-genes

• Y: Hidden effect matrix, each entry is {-1, 0, +1} which 
specifies whether an S-gene affects the E-gene



are listed from top to bottom according to where they are attached
to the network. Depending on the connections of the S-genes to
one another and to the E-genes, a disruption in an S-gene will
cause E-genes to either increase or decrease in expression relative
to wild-type. For example, E-gene E7 decreases under DB relative
to wild-type because the wild-type activation by B is absent in the
deletion. On the other hand, the expression of E10 also decreases
under DB relative to wild-type but as a result of a different
mechanism. In wild-type, E10 is expressed at a baseline level
because its repressor, the product of gene D, is inhibited by B’s
product. However, in the B deletion, D is derepressed, leading to
inhibition of E10. This toy example illustrates that the disambig-
uation of inhibition and activation, both for S-gene interactions
and E-gene attachments, make it possible to account for an

expanded set of mechanisms leading to the observed expression
changes.

The E-gene expression changes are available in a data matrix X
where each column gives the difference in expression of each E-
gene under the deletion of a single S-gene relative to wild-type. X
may also contain replicates in the form of repeated S-gene knock-
downs. The entry XeAr represents e’s expression change under the
rth replicate of DA. Furthermore, we assume that an unknown
expression ‘‘state’’ for each E-gene under each knock-down,
determines its set of expression changes observed across the {XeAr}
replicates in the microarray data. The matrix, Y, records a hidden
state for each E-gene under each knock-down, where entry YeA is
the state of E-gene e under DA. We allow the states to be ternary-
valued {+1, 21, 0} representing whether e is up-regulated, down-

Figure 1. Predicting Pair-wise Interaction Using Quantitative Nested Effects. (A) Hypothetical example with four S-genes, A, B, C, and D. The
graph contains one inhibitory link, BxD (left). A heatmap of E-gene expression under knockdown of each S-gene shows both inhibitory and
stimulatory effects (middle). Scatter plots of the C, A, B, and D knock-outs show that expression fits in the shaded preferred regions of each interaction
(right). The inhibitory link explains some of the ‘‘observed’’ data: expression changes under DD (bright red or bright green entries in the heatmap)
occur in a subset of the E-genes for which the opposite changes occur in DB. (B) Data from a known inhibitory interaction. Expression levels of effect
genes under the DIG1/DIG2 knock-out (y-axis) plotted against their levels under the STE2 knock-out (x-axis) as detected in [17]. Expression changes
significant at a = 0.05 indicated in gray lines. DIG1/DIG2 is known to inhibit STE12. (C) Interaction modes. Observed E-gene expression changes are
compared to five possible types of interactions between two S-genes, A and B (i–v). The top row illustrates the expected nested effects relationship
for each type of interaction mode: circles represent sets of E-genes with expression changes consistent with either activation (blue circles) or
inhibition (yellow circles). Scatter-plots for each interaction mode show the hypothetical expression changes under DA (x-axis) and DB (y-axis) for all E-
genes (circles). E-gene levels are either consistent (filled) or inconsistent (open) with the mode. Shaded regions demark expression levels consistent
with each interaction model. The example shows expression changes that most closely match the inhibition mode (indicated by the greatest number
of closed circles).
doi:10.1371/journal.pcbi.1000274.g001
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S-gene interaction modes and their 
expression signatures

are listed from top to bottom according to where they are attached
to the network. Depending on the connections of the S-genes to
one another and to the E-genes, a disruption in an S-gene will
cause E-genes to either increase or decrease in expression relative
to wild-type. For example, E-gene E7 decreases under DB relative
to wild-type because the wild-type activation by B is absent in the
deletion. On the other hand, the expression of E10 also decreases
under DB relative to wild-type but as a result of a different
mechanism. In wild-type, E10 is expressed at a baseline level
because its repressor, the product of gene D, is inhibited by B’s
product. However, in the B deletion, D is derepressed, leading to
inhibition of E10. This toy example illustrates that the disambig-
uation of inhibition and activation, both for S-gene interactions
and E-gene attachments, make it possible to account for an

expanded set of mechanisms leading to the observed expression
changes.

The E-gene expression changes are available in a data matrix X
where each column gives the difference in expression of each E-
gene under the deletion of a single S-gene relative to wild-type. X
may also contain replicates in the form of repeated S-gene knock-
downs. The entry XeAr represents e’s expression change under the
rth replicate of DA. Furthermore, we assume that an unknown
expression ‘‘state’’ for each E-gene under each knock-down,
determines its set of expression changes observed across the {XeAr}
replicates in the microarray data. The matrix, Y, records a hidden
state for each E-gene under each knock-down, where entry YeA is
the state of E-gene e under DA. We allow the states to be ternary-
valued {+1, 21, 0} representing whether e is up-regulated, down-

Figure 1. Predicting Pair-wise Interaction Using Quantitative Nested Effects. (A) Hypothetical example with four S-genes, A, B, C, and D. The
graph contains one inhibitory link, BxD (left). A heatmap of E-gene expression under knockdown of each S-gene shows both inhibitory and
stimulatory effects (middle). Scatter plots of the C, A, B, and D knock-outs show that expression fits in the shaded preferred regions of each interaction
(right). The inhibitory link explains some of the ‘‘observed’’ data: expression changes under DD (bright red or bright green entries in the heatmap)
occur in a subset of the E-genes for which the opposite changes occur in DB. (B) Data from a known inhibitory interaction. Expression levels of effect
genes under the DIG1/DIG2 knock-out (y-axis) plotted against their levels under the STE2 knock-out (x-axis) as detected in [17]. Expression changes
significant at a = 0.05 indicated in gray lines. DIG1/DIG2 is known to inhibit STE12. (C) Interaction modes. Observed E-gene expression changes are
compared to five possible types of interactions between two S-genes, A and B (i–v). The top row illustrates the expected nested effects relationship
for each type of interaction mode: circles represent sets of E-genes with expression changes consistent with either activation (blue circles) or
inhibition (yellow circles). Scatter-plots for each interaction mode show the hypothetical expression changes under DA (x-axis) and DB (y-axis) for all E-
genes (circles). E-gene levels are either consistent (filled) or inconsistent (open) with the mode. Shaded regions demark expression levels consistent
with each interaction model. The example shows expression changes that most closely match the inhibition mode (indicated by the greatest number
of closed circles).
doi:10.1371/journal.pcbi.1000274.g001
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Factor graph representation of NEMs

expression state of effect gene e under knock-down A, (Figure 2,
‘‘E-gene Expression State’’ level). Third, every observed expres-
sion value is associated with a continuous variable, XeAr, where r
indexes over replications of DA (Figure 2, ‘‘E-gene Expression
Observation’’ level). Figure 2 also shows the expression factors,
interaction factors, and transitivity factors of Eqs. (9–10).

Inference with message passing. The W that maximizes
the posterior is found using max-sum message passing using all
terms from Eqs. (9–10) in log space. For acyclic graphs, the
marginal, max-marginal and conditional probabilities of single or
multiple variables can be exactly calculated by the max-sum
algorithms [19]. Message-passing algorithms demonstrate
excellent empirical results in various practical problems even on
graphs containing cycles such as feed-forward and feed-back loops
[20–23].

Here, the message passing schedule performs inference in two
steps. In the first step, messages from observations nodes XeAr are
passed through the expression factors and hidden E-gene state
variables, to calculate all messages m(YARwAB) in a single upward
pass. In the second step, messages are passed between only the
interaction variables and transitivity factors until convergence (see
Text S1). In the example shown in Figure 2, running inference
results in assignments of activation for wAB and wBC (shaded red),
inhibition for wBD and wAD (shaded green), and non-interaction for
wAB and wBC (unshaded), which match the NEM structure from
Figure 1A. For display of inferred S-gene networks, we compute
the transitive reduction of W by removing all links for which there
is a longer redundant path [24].

Pathway expansion with FG-NEMs. Once a signaling
network is identified using the message passing inference
procedure above, the network can be used to search for new
genes that may be part of the pathway. The NEM and FG-NEM

framework predict new members that act in the pathway by
‘‘attaching’’ E-genes to S-genes in the network, or leaving them
detached if their expression data does not fit the model. Attaching
E-gene, e, to S-gene, s, asserts that the expression changes of e over
all knock-downs are best explained by a network in which e is
directly downstream of s. The E-genes attached to the network are
collectively referred to as the frontier. Frontier genes may be good
candidates for further characterization (e.g. knock-down and
expression profiling) in subsequent experiments.

To gain a global picture for where e is connected, we use a
modified NEM scoring from Markowetz et al. (2005). The pair-
wise attachments for a single E-gene connection variable heAB,
provide local ‘‘best guesses’’ for e’s attachment. Rather than
aggregate e’s collection of local attachments, we use NEM scoring,
modified to incorporate both stimulatory and inhibitory attach-
ments, to estimate the attachment point using the full network
learned in the previous step (see Text S1).

We calculate a log-likelihood ratio that measures the degree to
which e’s expression data is explained by the network if it is
attached to one of the S-genes compared to being disconnected
from the network, i.e. its likelihood was generated entirely by the
background Gaussian distribution. For E-gene e, we compute the
log-likelihood of attachment ratio (LAR):

LAR eð Þ~log
max
i=0

P XejW,he~ið Þ

P XejW,he~0ð Þ

0

@

1

A,

where he here represents Markowetz et. al’s attachment parameter
expanded to include inhibitory and stimulatory attachments. We
rank all of the E-genes according to their LAR scores. Top-scoring
genes have data that is more likely to have arisen from the model
than a null background. Any E-gene that has a positive LAR score
is included as a frontier gene.

Experimental Validation Procedure for Newly Predicted
Cancer Invasion Genes

To validate the involvement of predicted invasiveness frontier
genes, HT29 colon cancer cells were resuspended in DMEM
medium containing 0.1% FBS and seeded into the top wells
(26105 per well) containing individual Matrigel inserts (BD
Biosciences, San Jose, CA) according to manufacturer’s protocol.
The lower wells were filled with 800 ml medium with 10% fetal
bovine serum as chemoattractant. Six to ten hours following
seeding, the cells in the upper wells were transfected with the
appropriate shRNA-expressing pSuper constructs [25] using
Lipofectamine 2000 (Invitrogen, Carlsbad, CA). Final concentra-
tion of pSuper constructs was 1.6 mg/ml. The transfected cells
were incubated at 37uC for 48 hours before assaying for invasion.
Media was aspirated from the top wells and non-invading cells
were scraped from the upper side of the inserts with a cotton swab
and invading cells on the lower side were fixed and stained using
DiffQuick (IMEB, Inc. San Marcos, CA). Total number of
invading cells was counted for each insert using a light microscope.
Invasion was assessed in quadruplicate and independently
repeated at least five times. The shRNA-expressing portion of
the construct was designed using the siRNA Selection Program of
the Whitehead Institute for Biomedical Research (http://jura.wi.
mit.edu/bioc/siRNAext/), synthesized by Invitrogen and sub-
cloned into the XhoI and BamHI sites of pSuper plasmid.
Sequences for shRNA constructs are available in the Text S1.
shRNA construct MYO1G targets the myosin 1G mRNA
(GenBank accession number NM _033054). shRNA construct

Figure 2. Structure of the factor graph for network inference.
The factor graph consists of three classes of variables (circles) and three
classes of factors (squares). XeAr is a continuous observation of E-gene
e’s expression under DA and replicate r. YeA is the hidden state of E-
gene e under DA, and is a discrete variable with domain {up, , down}. wAB

is the interaction between two S-genes A and B. Expression Factors
model expression as a mixture of Gaussian distributions. Interaction
Factors constrain E-gene states to the allowed regions shown in
Figure 1C. Transitivity Factors constrain pair-wise interactions to form
consistent triangles. The arrows labeled m and m9 are messages
encoding local belief potentials on wAB and are propagated during
factor graph inference.
doi:10.1371/journal.pcbi.1000274.g002
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Probabilistic model for NEMs

• Goal is to find a network, Φ and Θ that best fit the observed 
data (X)

• This is an inference problem
• Use a Maximum a posterior (MAP) approach

• Makes use pairwise potentials to make the computation 
tractable

J(X) = max�,✓P (�, ✓|X)

J(X) = max�,✓
X

Y

P (�, ✓, Y |X)

X is a noisy measurement of Y. Y is the quantity we need to sum over



Inference on the factor graph

• Find most likely configurations for
• Use a message passing algorithm (standard for factor graphs)
• Called the Max-Product algorithm
• Message passing happens in two steps
– Messages are passed from observations XeA to the 
– Messages are passed between the interaction and 

transitivity factors until convergence

�A,B

�A,B



Does FG-NEM capture activating and 
inhibitory relationships?

BMPR1A targets the bone morphogenetic protein receptor, type
IA mRNA (NM_004329). shRNA construct COLEC12 targets the
collectin sub-family member 12 mRNA (NM_130386). shRNA
construct AA099748 targets an expressed sequence tag mRNA
(AA099748). shRNA construct CAPN12 targets the calpain 12
mRNA (NM_144691). shRNA construct scrambled serves as a
nonsense sequence negative control.

Results

Results on Artificial Networks
Data. We evaluated FG-NEMs ability to recover artificial

networks from simulated data. Data was generated by propagating
signals in networks containing simulated knock-downs and then
sampling expression data from activated, inhibited, or unaffected
expression change distributions (see Text S1 and Figure S3). We
focused on how the FG-NEM approach increased recovery of
networks that contain both activation and inhibition. Because FG-
NEMs explicitly incorporate inhibition, we hypothesized that they
would recover networks containing an appreciable amount of
inhibition more accurately than an approach lacking separate
modes for inhibition and activation. We implemented a version of
FG-NEM in which inhibition encoded in the FG-NEM model was
removed (see Methods). We refer to this version as the ‘‘unsigned’’
FG-NEM (uFG-NEM). We compared uFG-NEM to the original
NEM approach and found that the results were comparable on
small synthetic networks of four S-genes and their associated data
(see Figure S2). We therefore used uFG-NEMs as a surrogate for
NEMs for the tests on larger networks on which NEM was not
efficient enough to run.

To make the comparison of FG-NEM to uFG-NEM fair, we
measured network recovery in two ways. 1) We calculated a
measure of structure recovery: a predicted interaction was called
correct if it matched an interaction (of either sign) in the simulated

network. In this case, whether the interaction was inhibitory or
stimulatory was ignored. 2) We measured sign recovery: a predicted
interaction was recorded as correct if it matched an interaction in
the simulated network and had the matching sign.

Influence of inhibition extent on network recovery. We
tested the ability of FG-NEMs and uFG-NEMs to recover the
structure of networks simulated with varying fractions of
inhibition, 0#l#0.75, for both the amount of inhibitory
connections between S-genes and inhibitory attachments of E-
genes. We simulated and predicted 500 networks, calculated the
area under the precision-recall curve (AUC) for each predicted
network (see Text S1), and recorded the mean and standard
deviation of these AUCs. As expected, when no inhibition was
present, FG-NEM and uFG-NEM were equivalent in terms of
AUC when run on non-transformed data (Figure 3A).
Surprisingly, FG-NEM run on the AVT data performs much
worse than FG-NEM even with no inhibition. This may be due to
its interpretation of unaffected E-gene changes as affected changes
which adds noise to its estimates of hierarchical nesting. As
increasing amounts of inhibition is added into simulated networks,
the performance of uFG-NEM degrades precipitously for structure
recovery, underperforming FG-NEM by a margin of more than
0.20 units of AUC at the highest levels of simulated inhibition
(Figure 3A). Even at moderate levels of inhibition, for example at
the 15% inhibition level, FG-NEM’s AUC is already significantly
higher than uFG-NEM’s AUC. We also calculated the AUC for
recovering the correct sign of the interactions for the unsigned
models. In this case, unsigned interactions were interpreted to be
activating interactions. As expected, the AUC decreases
quadratically since both the precision and recall decrease
linearly with increasing fraction of inhibition. Given these
results, we expect FG-NEMs to have significantly better
performance on real genetic networks where appreciable
amounts of inhibition exist (see Figure S1). We also varied other

Figure 3. Accuracy of artificial network recovery and expansion. (A) Influence of inhibition on network recovery. AUC (y-axis) plotted as a
function of the percent of inhibitory links (x-axis). Four replicate hybridizations were used in all simulations. Points and error bars represent means
and standard deviations computed across 500 synthetically generated networks respectively. Lines in each plot represent the performance of FG-
NEM (red) and uFG-NEM run on the original data (green) or on AVT data (blue) for both structure recovery (solid lines) and sign recovery (dotted
lines). (B) Accuracy of FG-NEM network expansion compared to Template Matching. The percentile of an S-gene obtained from Template Matching
was subtracted from the percentile of the LAR score (see Methods) assigned by FG-NEM and uFG-NEM obtained from the leave-one-out expansion
test. A smoothed histogram for FG-NEM (red), uFG-NEM run on the original data (green) and the AVT data (blue) was plotted and shows the
proportion of S-genes (y-axis) with a particular difference in method percentile (x-axis). The underlying simulated network had 32 S-genes, eight S-
genes were used for network recovery, and twenty E-genes were attached to each S-gene.
doi:10.1371/journal.pcbi.1000274.g003
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Does FG-NEM expand pathways better 
than the baseline approach

BMPR1A targets the bone morphogenetic protein receptor, type
IA mRNA (NM_004329). shRNA construct COLEC12 targets the
collectin sub-family member 12 mRNA (NM_130386). shRNA
construct AA099748 targets an expressed sequence tag mRNA
(AA099748). shRNA construct CAPN12 targets the calpain 12
mRNA (NM_144691). shRNA construct scrambled serves as a
nonsense sequence negative control.

Results

Results on Artificial Networks
Data. We evaluated FG-NEMs ability to recover artificial

networks from simulated data. Data was generated by propagating
signals in networks containing simulated knock-downs and then
sampling expression data from activated, inhibited, or unaffected
expression change distributions (see Text S1 and Figure S3). We
focused on how the FG-NEM approach increased recovery of
networks that contain both activation and inhibition. Because FG-
NEMs explicitly incorporate inhibition, we hypothesized that they
would recover networks containing an appreciable amount of
inhibition more accurately than an approach lacking separate
modes for inhibition and activation. We implemented a version of
FG-NEM in which inhibition encoded in the FG-NEM model was
removed (see Methods). We refer to this version as the ‘‘unsigned’’
FG-NEM (uFG-NEM). We compared uFG-NEM to the original
NEM approach and found that the results were comparable on
small synthetic networks of four S-genes and their associated data
(see Figure S2). We therefore used uFG-NEMs as a surrogate for
NEMs for the tests on larger networks on which NEM was not
efficient enough to run.

To make the comparison of FG-NEM to uFG-NEM fair, we
measured network recovery in two ways. 1) We calculated a
measure of structure recovery: a predicted interaction was called
correct if it matched an interaction (of either sign) in the simulated

network. In this case, whether the interaction was inhibitory or
stimulatory was ignored. 2) We measured sign recovery: a predicted
interaction was recorded as correct if it matched an interaction in
the simulated network and had the matching sign.

Influence of inhibition extent on network recovery. We
tested the ability of FG-NEMs and uFG-NEMs to recover the
structure of networks simulated with varying fractions of
inhibition, 0#l#0.75, for both the amount of inhibitory
connections between S-genes and inhibitory attachments of E-
genes. We simulated and predicted 500 networks, calculated the
area under the precision-recall curve (AUC) for each predicted
network (see Text S1), and recorded the mean and standard
deviation of these AUCs. As expected, when no inhibition was
present, FG-NEM and uFG-NEM were equivalent in terms of
AUC when run on non-transformed data (Figure 3A).
Surprisingly, FG-NEM run on the AVT data performs much
worse than FG-NEM even with no inhibition. This may be due to
its interpretation of unaffected E-gene changes as affected changes
which adds noise to its estimates of hierarchical nesting. As
increasing amounts of inhibition is added into simulated networks,
the performance of uFG-NEM degrades precipitously for structure
recovery, underperforming FG-NEM by a margin of more than
0.20 units of AUC at the highest levels of simulated inhibition
(Figure 3A). Even at moderate levels of inhibition, for example at
the 15% inhibition level, FG-NEM’s AUC is already significantly
higher than uFG-NEM’s AUC. We also calculated the AUC for
recovering the correct sign of the interactions for the unsigned
models. In this case, unsigned interactions were interpreted to be
activating interactions. As expected, the AUC decreases
quadratically since both the precision and recall decrease
linearly with increasing fraction of inhibition. Given these
results, we expect FG-NEMs to have significantly better
performance on real genetic networks where appreciable
amounts of inhibition exist (see Figure S1). We also varied other

Figure 3. Accuracy of artificial network recovery and expansion. (A) Influence of inhibition on network recovery. AUC (y-axis) plotted as a
function of the percent of inhibitory links (x-axis). Four replicate hybridizations were used in all simulations. Points and error bars represent means
and standard deviations computed across 500 synthetically generated networks respectively. Lines in each plot represent the performance of FG-
NEM (red) and uFG-NEM run on the original data (green) or on AVT data (blue) for both structure recovery (solid lines) and sign recovery (dotted
lines). (B) Accuracy of FG-NEM network expansion compared to Template Matching. The percentile of an S-gene obtained from Template Matching
was subtracted from the percentile of the LAR score (see Methods) assigned by FG-NEM and uFG-NEM obtained from the leave-one-out expansion
test. A smoothed histogram for FG-NEM (red), uFG-NEM run on the original data (green) and the AVT data (blue) was plotted and shows the
proportion of S-genes (y-axis) with a particular difference in method percentile (x-axis). The underlying simulated network had 32 S-genes, eight S-
genes were used for network recovery, and twenty E-genes were attached to each S-gene.
doi:10.1371/journal.pcbi.1000274.g003
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Pathway expansion

• Attach new E-genes to S-gene network
• An attached gene e to S-gene s asserts that e is directly 

downstream of s
• All E-genes attached to the S-gene network are called frontier 

genes
• An E-gene’s connectivity is examined based on the Log-

likelihood Attachment Ratio 

expression state of effect gene e under knock-down A, (Figure 2,
‘‘E-gene Expression State’’ level). Third, every observed expres-
sion value is associated with a continuous variable, XeAr, where r
indexes over replications of DA (Figure 2, ‘‘E-gene Expression
Observation’’ level). Figure 2 also shows the expression factors,
interaction factors, and transitivity factors of Eqs. (9–10).

Inference with message passing. The W that maximizes
the posterior is found using max-sum message passing using all
terms from Eqs. (9–10) in log space. For acyclic graphs, the
marginal, max-marginal and conditional probabilities of single or
multiple variables can be exactly calculated by the max-sum
algorithms [19]. Message-passing algorithms demonstrate
excellent empirical results in various practical problems even on
graphs containing cycles such as feed-forward and feed-back loops
[20–23].

Here, the message passing schedule performs inference in two
steps. In the first step, messages from observations nodes XeAr are
passed through the expression factors and hidden E-gene state
variables, to calculate all messages m(YARwAB) in a single upward
pass. In the second step, messages are passed between only the
interaction variables and transitivity factors until convergence (see
Text S1). In the example shown in Figure 2, running inference
results in assignments of activation for wAB and wBC (shaded red),
inhibition for wBD and wAD (shaded green), and non-interaction for
wAB and wBC (unshaded), which match the NEM structure from
Figure 1A. For display of inferred S-gene networks, we compute
the transitive reduction of W by removing all links for which there
is a longer redundant path [24].

Pathway expansion with FG-NEMs. Once a signaling
network is identified using the message passing inference
procedure above, the network can be used to search for new
genes that may be part of the pathway. The NEM and FG-NEM

framework predict new members that act in the pathway by
‘‘attaching’’ E-genes to S-genes in the network, or leaving them
detached if their expression data does not fit the model. Attaching
E-gene, e, to S-gene, s, asserts that the expression changes of e over
all knock-downs are best explained by a network in which e is
directly downstream of s. The E-genes attached to the network are
collectively referred to as the frontier. Frontier genes may be good
candidates for further characterization (e.g. knock-down and
expression profiling) in subsequent experiments.

To gain a global picture for where e is connected, we use a
modified NEM scoring from Markowetz et al. (2005). The pair-
wise attachments for a single E-gene connection variable heAB,
provide local ‘‘best guesses’’ for e’s attachment. Rather than
aggregate e’s collection of local attachments, we use NEM scoring,
modified to incorporate both stimulatory and inhibitory attach-
ments, to estimate the attachment point using the full network
learned in the previous step (see Text S1).

We calculate a log-likelihood ratio that measures the degree to
which e’s expression data is explained by the network if it is
attached to one of the S-genes compared to being disconnected
from the network, i.e. its likelihood was generated entirely by the
background Gaussian distribution. For E-gene e, we compute the
log-likelihood of attachment ratio (LAR):

LAR eð Þ~log
max
i=0

P XejW,he~ið Þ

P XejW,he~0ð Þ

0

@

1

A,

where he here represents Markowetz et. al’s attachment parameter
expanded to include inhibitory and stimulatory attachments. We
rank all of the E-genes according to their LAR scores. Top-scoring
genes have data that is more likely to have arisen from the model
than a null background. Any E-gene that has a positive LAR score
is included as a frontier gene.

Experimental Validation Procedure for Newly Predicted
Cancer Invasion Genes

To validate the involvement of predicted invasiveness frontier
genes, HT29 colon cancer cells were resuspended in DMEM
medium containing 0.1% FBS and seeded into the top wells
(26105 per well) containing individual Matrigel inserts (BD
Biosciences, San Jose, CA) according to manufacturer’s protocol.
The lower wells were filled with 800 ml medium with 10% fetal
bovine serum as chemoattractant. Six to ten hours following
seeding, the cells in the upper wells were transfected with the
appropriate shRNA-expressing pSuper constructs [25] using
Lipofectamine 2000 (Invitrogen, Carlsbad, CA). Final concentra-
tion of pSuper constructs was 1.6 mg/ml. The transfected cells
were incubated at 37uC for 48 hours before assaying for invasion.
Media was aspirated from the top wells and non-invading cells
were scraped from the upper side of the inserts with a cotton swab
and invading cells on the lower side were fixed and stained using
DiffQuick (IMEB, Inc. San Marcos, CA). Total number of
invading cells was counted for each insert using a light microscope.
Invasion was assessed in quadruplicate and independently
repeated at least five times. The shRNA-expressing portion of
the construct was designed using the siRNA Selection Program of
the Whitehead Institute for Biomedical Research (http://jura.wi.
mit.edu/bioc/siRNAext/), synthesized by Invitrogen and sub-
cloned into the XhoI and BamHI sites of pSuper plasmid.
Sequences for shRNA constructs are available in the Text S1.
shRNA construct MYO1G targets the myosin 1G mRNA
(GenBank accession number NM _033054). shRNA construct

Figure 2. Structure of the factor graph for network inference.
The factor graph consists of three classes of variables (circles) and three
classes of factors (squares). XeAr is a continuous observation of E-gene
e’s expression under DA and replicate r. YeA is the hidden state of E-
gene e under DA, and is a discrete variable with domain {up, , down}. wAB

is the interaction between two S-genes A and B. Expression Factors
model expression as a mixture of Gaussian distributions. Interaction
Factors constrain E-gene states to the allowed regions shown in
Figure 1C. Transitivity Factors constrain pair-wise interactions to form
consistent triangles. The arrows labeled m and m9 are messages
encoding local belief potentials on wAB and are propagated during
factor graph inference.
doi:10.1371/journal.pcbi.1000274.g002
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FG-NEM based pathway expansion in 
yeast

Figure 4. Yeast knock-out compendium predictions. (A) Precision/recall comparison. Each method’s ability to expand a pathway was
compared. Thick lines indicate mean precision and shaded regions represent standard error of mean calculated over the networks with the five
highest AUCS from any of the tested methods. (B) Network expansion comparison. Networks were predicted for a non-redundant set of GO
categories containing four or more S-genes in the Hughes et al. (2000) compendium and used to predict held-out genes from the same category (see
Methods). The area under the curve (AUC) for each pathway was calculated for each method. AUC ratios (y-axis) were calculated for each method
relative to the lowest AUC. (C) Compatibility of physical evidence and predicted S-gene interactions. Each point is the margin of compatibility (MOC,
see Methods) of a predicted genetic interaction to high-throughput physical interaction data when physical interaction evidence was used (y-axis)
and when it was not used (x-axis). Coloring indicates two-dimensional density estimation of points. Inset shows detail of the highest density region.
Prediction methods that are significantly better than the lowest performing method, excluding random, at the 0.05 level (*) and 0.01 level (**) were
determined by a proportions test on the top 30 predictions from each method. (D) Predicted S-gene networks for the ion homeostasis pathway.
Shown are predicted networks from the FG-NEM method (Signed) and the uFG-NEM method (Unsigned). Arrows indicate activating interactions and
tees indicate inhibiting interactions. The absence of a link between a pair of S-genes indicates the most likely mode for the pair was the non-
interaction mode. Equivalence interactions are indicated with double lines and S-genes connected by equivalence are grouped into dashed ovals.
doi:10.1371/journal.pcbi.1000274.g004

Factor Graph Nested Effects Model

PLoS Computational Biology | www.ploscompbiol.org 9 January 2009 | Volume 5 | Issue 1 | e1000274

Template matching: rank E genes based on similarity in expression to an “idealized template”



FG-NEM infers a more accurate network 
than the unsigned version in yeast

• FG-NEM and uFG-NEM networks inferred in 
the ion-homeostasis pathway

• FG-NEM inferred more genes associated with 
ion homeostatis compared to uFG-NEM

Figure 4. Yeast knock-out compendium predictions. (A) Precision/recall comparison. Each method’s ability to expand a pathway was
compared. Thick lines indicate mean precision and shaded regions represent standard error of mean calculated over the networks with the five
highest AUCS from any of the tested methods. (B) Network expansion comparison. Networks were predicted for a non-redundant set of GO
categories containing four or more S-genes in the Hughes et al. (2000) compendium and used to predict held-out genes from the same category (see
Methods). The area under the curve (AUC) for each pathway was calculated for each method. AUC ratios (y-axis) were calculated for each method
relative to the lowest AUC. (C) Compatibility of physical evidence and predicted S-gene interactions. Each point is the margin of compatibility (MOC,
see Methods) of a predicted genetic interaction to high-throughput physical interaction data when physical interaction evidence was used (y-axis)
and when it was not used (x-axis). Coloring indicates two-dimensional density estimation of points. Inset shows detail of the highest density region.
Prediction methods that are significantly better than the lowest performing method, excluding random, at the 0.05 level (*) and 0.01 level (**) were
determined by a proportions test on the top 30 predictions from each method. (D) Predicted S-gene networks for the ion homeostasis pathway.
Shown are predicted networks from the FG-NEM method (Signed) and the uFG-NEM method (Unsigned). Arrows indicate activating interactions and
tees indicate inhibiting interactions. The absence of a link between a pair of S-genes indicates the most likely mode for the pair was the non-
interaction mode. Equivalence interactions are indicated with double lines and S-genes connected by equivalence are grouped into dashed ovals.
doi:10.1371/journal.pcbi.1000274.g004
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FG-NEM application to colon cancer

Cancer invasion network identification. We applied FG-
NEMs to recover a network for the second-tier genes. We included
E-genes that demonstrate a robust and significant effect under at
least two of the knock-downs included in the Irby et al. (2005)
study. We selected genes whose log2 ratios differ by less than 0.5 in
replicate arrays and had an absolute log2 expression change at
least equal to the mean absolute level of the activated distribution
(1.75) in at least two arrays. Using these criteria, we identified 185
E-genes to use for model inference. Figure 5A shows the
expression data of these E-genes plotted in order of their
predicted attachment points as identified by FG-NEMs. For the
most part, E-gene expression changes moved in the same direction
following knock-down across the panel of five S-genes, indicating
the presence of mostly stimulatory links among the S-genes
(Figure 5A). This is in contrast to Figure 1A, where expression
changes of a single E-gene move in the opposite direction
following knock-down of S-genes connected by an inhibitory link.

The absence of inhibitory links among S-genes is expected since,
according to the selection criteria, all of the S-genes were found
previously to act in the same direction (invasion promotion). The
method does find many inhibitory links to E-genes, which
dramatically increases the fit of the model on the data points.
These predicted attachment signs provide information about how
an E-gene’s involvement in the invasion process can be tested in
follow-up experiments. The model predicts that invasion can be
suppressed by knocking down genes connected by stimulatory
attachments or by over-expressing genes connected by inhibitory
attachments.

FG-NEM recovered the network shown in Figure 5B. KRT20
and RPL32 are predicted to be equivalent. Also, the model
predicts TFDP1 and DHX32 are downstream of KRT20 and
RPL32. The equivalent interaction of KRT20 and RPL32
received significantly high likelihoods (P,0.001) as well as a
strong excitatory downstream connection to TFDP1 (P,0.001).

Figure 5. Invasive colon cancer network predictions. (A) Expression changes of selected E-genes following targeted S-gene knock-downs in
HT29 colon cancer cells. Gene expression was measured in HT29 cells treated with a shRNA specifically targeting an S-gene (column of the matrix)
relative to cells treated with a scrambled control shRNA (Irby et al., 2005). Colors indicate putatively inhibited E-genes (rows of the matrix) with up-
regulated levels relative to control (red), activated E-genes with down-regulated levels relative to control (green), and unaffected E-genes with
expression levels not significantly different from control (black). Biological replicates were available for KRT20, TFDP1, and GLS knock-downs. Genes
were sorted by their attachment point and then by their LAR scores. (B) Cancer invasion network predicted by FG-NEM. For each pair of S-genes, the
most likely interaction mode is shown. The same conventions used for illustrating interactions predicted for the yeast networks were used here. Some
interactions were found to be significant at the 0.05 level (*) or 0.01 level (**) using a permutation test (see Methods). KRT20 and RPL32 were
predicted to be equivalent and are therefore grouped together in a dashed oval. (C) Matrigel invasion assay in HT29 colon cancer cells. Genes
predicted to be significantly attached to the network, CAPN12 and expressed sequence tag AA099748, resulted in a loss of the invasiveness
phenotype when knocked-down by RNA interference. Genes not significantly attached to the network, MYO1G, BMPR1A, and COLEC12, did not result
in significant loss of the invasive phenotype. A scrambled non-sense sequence also served as a negative control and did not result in a loss of HT29
cell invasiveness. Gene knock-downs in HT29 cells were validated by quantitative real time RT-PCR where mRNA levels of targeted genes were
decreased by 70–80% compared to scrambled control shRNA-treated cells (data not shown). Data shown are the mean6S.E. of five independent
experiments performed in quadruplicate. *Significantly different from scrambled control shRNA-treated cells (P,0.05) by ANOVA and post hoc Tukey
test.
doi:10.1371/journal.pcbi.1000274.g005
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Summary 

• FG-NEMs: A general approach to infer an ordering of genes 
from knock-down phenotypes

• Strengths
– FG-NEMs could be used in an iterative computational-

experimental framework
– Handles signed interactions between S-genes

• Weaknesses
– Computational complexity of the inference procedure 

might be high
• Required independence among E-genes
• Model pairs of S-genes at a time



Overall conclusion

• Networks are powerful models for interpreting sequence 
variants or genetic perturbations as such

• We have see two classes of methods
– Extract a weighted graph based on the influence of a 

mutation on one node to another
– Probabilistic approaches

• A systematic comparison of these two classes of methods has 
not been done so far.


