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Perturbations in networks

Understanding genetic perturbations are important in biology
Genetic perturbations are useful to identify the function of genes
— What happens if knock gene A down?
* Measure some morphological phenotype like growth rate or cell
size
* Measure global expression signatures
Perturbations can be artificial or natural
— Artificial perturbations
* Deletion strains
— Natural perturbations
* Single nucleotide polymorphisms
* Natural genetic variation
Perturbations in a network can affect
— Nodes or edges
— Edge perturbations
e Mutations on binding sites



Types of algorithms used to examine
perturbations in networks

Graph diffusion followed by subnetwork finding methods
— HOTNET

Probabilistic graphical model-based methods

— Factor graphs

— Nested Effect Models (NEMs)

Information flow-based methods (also widely used for
integrating different types of data)

— Min cost max flow
— Prize collecting steiner tree



Probabilistic graphical models for interpreting
network perturbations

* “Inference of Patient-Specific Pathway Activities from Multi-
Dimensional Cancer Genomics Data Using PARADIGM.
Bioinformatics” https://academic.oup.com/bioinformatics/article/2
6/12/i237/282591

e C.-H. H. Yeang, T. Ideker, and T. Jaakkola, "Physical network models."
Journal of computational biology : a journal of computational
molecular cell biology, vol. 11, no. 2-3, pp. 243-262, Mar. 2004.

 F. Markowetz, D. Kostka, O. G. Troyanskaya, and R. Spang, "Nested
effects models for high-dimensional phenotyping screens,"
Bioinformatics, vol. 23, no. 13, pp. i305-312, Jul. 2007.

e (.J.Vaske, C. House, T. Luu, B. Frank, C.-H. H. Yeang, N. H. Lee, and
J. M. Stuart, "A factor graph nested effects model to identify

networks from genetic perturbations.”" PLoS computational biology,
vol. 5, no. 1, pp. €1 000 274+, Jan. 2009.



https://academic.oup.com/bioinformatics/article/26/12/i237/282591

Factor graphs

A type of graphical model
A bi-partite graph with variable nodes and factor nodes

Edges connect variables to potentials that the variables are
arguments of

Represents a global function as product of smaller local
functions

Perhaps the most general graphical model

— Bayesian networks and Markov networks have factor graph
representations



Example factor graph
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Fig. 1. A factor graph for the product fa(xi)fs(xz)fc(x1, 2, x3)
- fol(xs, x4) fe(ws, xs5).

From Kschischang, Frey, Loeliger 2001



Probabilistic graphical models for interpreting
network perturbations

e (.J.Vaske, C. House, T. Luu, B. Frank, C.-H. H. Yeang, N. H. Lee, and
J. M. Stuart, "A factor graph nested effects model to identify

networks from genetic perturbations.”" PLoS computational biology,
vol. 5, no. 1, pp. €1 000 274+, Jan. 2009.


https://academic.oup.com/bioinformatics/article/26/12/i237/282591

Nested Effect Models

(a) Data (b) Clustering (c) Nested Effects Model
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Fig. 1. An introduction to Nested Effects Models. Plot (a) shows a toy dataset consisting of phenotypic profiles for eight perturbed genes (A4, ..., H).
Each profile is binary with black coding for an observed effect and white for an effect not observed. The eight profiles are hierarchically clustered,
showing that they fall into four pairs of genes with almost identical phenotypic profiles: (4, B), (C, D), (E, F) and (G, H), as shown in plot (b). An
important feature of the data missed by clustering is the subset structure visible between the profiles in the data set: the effects observed when
perturbing genes 4 or B are a superset to the effects observed for all other genes. The effects of perturbing G or H are a subset to all other genes’
effects. The pairs (C, D) and (E, F) have different but overlapping effect sets. The directed acyclic graph (DAG) shown in plot (¢) represents these
subset relations, which are shown in plot (d). Compared to the clustering result in plot (b) the NEM additionally elucidates relationships between the
clusters and thus describes the dominant features of the data set better.

Markowetz et al, 2007



Key properties of Factor Graph-NEMs (FG-
NEMs)

* NEMs assume the genes that are perturbed interact in a
binary manner

* But many interactions have sign
— inhibitory or stimulating action

* FG-NEMs capture a broader set of interactions among the
perturbed genes

* Formulation based on a Factor Graph
— Provide an efficient search over the space of NEMs



Notation

S-genes: Set of genes that have been deleted individually
E-genes: Set of effector genes that are measured

©: The attachment of an effector gene to the S-gene network
@: The interaction matrix of S-genes

X: The phenotypic profile, each column gives the difference in
expression in a knockout compared to wild type

— Rows: E-genes
— Columns: S-genes

Y: Hidden effect matrix, each entry is {-1, 0, +1} which
specifies whether an S-gene affects the E-gene



An example of 4 S-genes and 13 E-gens
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S-gene interaction modes and their
expression signatures

Interaction mode
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Probabilistic model for NEMs

e Goalisto find a network, ® and O that best fit the observed
data (X)

* Thisis an inference problem
e Use a Maximum a posterior (MAP) approach

J(X) = maxy 9 P(0,0|X)
J(X)=maxgg Y P(¢,0,Y|X)
Y

* Y encodes the “true” expression state of effector genes (X).
* Xis anoisy measurement of Y. Y is the quantity we need to
sum over



Probabilistic model continued

J(X) =max@,@{p(cp) T1 P(Y.[®,0.)P(X,| Ye)}

Independence over all E-genes

E
el =

=max@,@{P(CD) I1 ZP( Ye(D,Qe)P(XeYe)}

Re-arranging the terms

= IMaXp,e {P((D) ele_% Le }



Digging inside the L, term

* Note: Y.={Yor,Yeps Yec-- Yen), Where N is the total number of S-
genes

* Define ', proportional to L, using a set of pairwise potentials

. ¢A73 The S- gene interaction
° HeAB Attachment of gene e with respectto A or B



Digging inside the L, term

. ¢A73 The S- gene interaction
. QeAB Attachment of gene e with respectto A or B

Now the joint can be written in a more tractable way
(

J(X)=maxep{ P(®) Il max
eeE,  O.4p
\ A,BES

> P(Yeu,Yen|d 45.048) P(Xea| Yeu) P(Xea| Yeu) }
Y€A3Y€B

Each of these conditional distributions will correspond to a factor



Defining the factors

P( YeAa YeB‘¢AB>HeAB)P(XeA‘ YeA)P(XeA| YeA)

N N/

Modeled as Gaussian distributions
Four variable factor, over discrete variables

Y, 4: binary variables

¢AB Four values for each possible type of interaction: inhibitory, activating, equivalent
no interaction

QGAB Interaction of e with A or B: inhibited or activated by A or B or no action

This factor has value=1 if the E-gene ¢ is attached to either A or B and ¢’s state is consistent
with the interaction mode between A and B.



The prior over S-gene graph

* The prior P(® ) can incorporate prior knowledge of
interactions among genes in pathways

e Atits simplest, it should encode a transitivity relationship to

force all pairwise interactions to be consistent among all
triples

A,B,CeS A,BeS
Transitivity constraint for triples Physical network
constraints

P@)oc (11 tanc(bandscac) ) (L pan(ban))

Example transitivity: If A4 B, B -4 C, Then, A->C



Prior
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Inference on the factor graph

Find most likely configurations for ¢A,B

Use a message passing algorithm called the Max-Product
algorithm (standard for factor graphs)

Message passing happens in two steps
— Messages are passed from observations X, to the QbA B
Y

— Messages are passed between the interaction and
transitivity factors until convergence



Does FG-NEM capture activating and
inhibitory relationships?
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Pathway expansion

Attach new E-genes to S-gene network

An attached gene e to S-gene s asserts that e is directly
downstream of s

All E-genes attached to the S-gene network are called frontier
genes

An E-gene’s connectivity is examined based on the Log-

likelihood Attachment Ratio
One of the S genes

max P(X,|®,0, =i

i#0
LAR(e)=log P(X.[®.0,=0)




FG-NEM based pathway expansion in
yeast
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FG-NEM infers a more accurate network
than the unsigned version in yeast
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* FG-NEM and uFG-NEM networks inferred in

the ion-homeostasis pathway

* FG-NEM inferred more genes associated with

ion homeostatis compared to uFG-NEM



Egene Expression Changes
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Summary

FG-NEMs: A general approach to infer an ordering of genes
from knock-down phenotypes

Strengths

— FG-NEMs could be used in an iterative computational-
experimental framework

— Handles signed interactions between S-genes
Weaknesses
— Computational complexity of the inference procedure
might be high
* Required independence among E-genes
* Model pairs of S-genes at a time



Overall conclusion

Networks are powerful models for interpreting sequence
variants or genetic perturbations as such
We have see two classes of methods
— Extract a weighted graph based on the influence of a
mutation on one node to another
— Probabilistic approaches

A systematic comparison of these two classes of methods has
not been done so far.



Data integration strategies



Biological data is of many different types
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We are getting better at collecting lots of
different types of biological datasets
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Need for systematic approaches for data
integration

* The approach to integrate different data types depends upon
the end goal and the types of data available

* Three considerations
— Number of samples per data type
— Supervised or unsupervised
— Types of measurements
* Gene sets versus quantitative profiles



Network-based approaches for integrating
data

e Network-inference based

— Learning mixed graphical models where different variable types
(different probability distribution families) represent different
omic data types

e Diffusion based
— Similarity Network Fusion (Wang et al., Nature Methods 2014)
— MASHUP (Cho et al., Cell Systems 2016)
— GeneMania (Mostafavi et al, Genome Biology 2008)
* Information flow based methods
— Especially suited if we have a small number of samples
* Max flow
* Steiner tree



Similarity Network Fusion

* Given N different types of measurements for different
individuals

* Do
— Construct a similarity matrix of individuals for each data
type
— Integrate the networks using a single similarity matrix
using an iterative algorithm

— Cluster the network into a groups of individuals



Similarity network fusion with two data
types
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Problem definition of information flow

e @Given

— two node sets and a weighted directed network with edge
weights corresponding to the flow between two nodes

* Do

— Find the subnetwork that maximizes the flow between the
two node sets



Information flow between sink to source
nodes
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Information flow-based methods

* Used for integrating different types of data, as well as for
examining perturbations and their effect

* Integration of different types of “omics” data
— Min cost max flow (ResponseNet; Yeger-Lotem et al 2008)

— Prize-collecting Steiner tree variants (Huang & Fraenkel
2009, Omicsintegrator)



Notation

A flow network is defined as directed graph G=(V,E), with
capacities for each edge

— V: vertex set
— E: edge set
§: source node
t: sink node
c(u,v)>0: Capacity of edge (u,v)



Flow in agraph G

* Aflowin Gis defined by a function fthat has the following
properties for each edge (u,v):

f(u, ’U) S C(u, ’U) Capacity constraint

Z f(u U) — 0 Conservation of flow
9

veV,v#s,t

* The value of a flow is defined as

fl= f(sv)

veV



An example flow network

Flow network G

A flow of 19 on G

Only positive flows are shown



Max-flow problem

* @Given
— A flow network G, source s and sink ¢

* Do
— find a flow f with maximum value
* How

— Ford-Fulkerson algorithm



Variation: Min cost max flow

Often the question is not to maximize flow, but to find the
most efficient/least expensive away of doing this

In addition to the flow, there is also a cost associated with
each edge

— For example, the cost might be inversely proportional to
the edge confidence

So we would try to maximize the overall flow at the smallest
cost



Min cost max flow

Define cost of each edge as a(u,v)

Overall cost: Z a(u, v)f(u, v)

(u,v)EE
Minimize cost while maximize flow as follows:

Z a(uav)f(uvv) - Z f(S,”U)

(u,v)eE veV

This idea was used in ResponseNet tool

— E. Yeger-Lotem, L. Riva, L. J. J. Su, A. D. Gitler, A. G. Cashikar,
O. D. King, P. K. Auluck, M. L. Geddie, J. S. Valastyan, D. R. Karger,
S. Lindquist, and E. Fraenkel, "Bridging high-throughput genetic
and transcriptional data reveals cellular responses to alpha-
synuclein toxicity." Nature genetics, vol. 41, no. 3, pp. 316-323,
Mar. 2009.



Alternate problem definition of
information flow

* Given

— A node set

— A weighted network
* Do

— Find the minimal graph connecting the nodes, where
minimal is defined by the graph with the lowest total
weight

 We will use a Steiner tree approach to address this problem



Steiner tree

Let’s start by defining a Steiner tree
Given
— edge-weighted graph G={V, E, w}
— Asubset Sof V

A Steiner tree is a minimal length tree connecting §, including
potentially intermediate nodes

This problem is NP-complete



Steiner tree examples
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Prize-collecting Steiner tree objective
function

p(i): Define prize of node i as

y(i): include a node i

a(i,j): Define cost of edge (i)

x(1,j): include an edge

Constrain that subnetwork must be a tree
PCST objective

max ¥ p(i)y(i)- A ¥, (i, j)x(i. /)
i Oy

Trade-off between cost and prize

Solve using variety of optimization techniques

— E.g. integer linear programming-based method (Ljubic et al,
2006)



Prize-collecting Steiner trees (PCST)
connect signaling proteins to gene
regulation

* Top: functional screen hits,
bottom: mRNA response

Steiner Tree solution

* Predicts relevant nodes,
paths, transcription factors

* Cannot directly predict
transcriptome effect from
perturbations; edges are not
oriented

. Terminal protein . Target gene Excluded edge
A Transcription Factor O Nodata w=|ncluded edge

Image from Tuncbag et al, 2012



PCST to phosphoproteomic and
transcriptomic data to find genes relevant
to glioblastoma multiforme
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Types of approaches

* Network-based approaches
— Network inference
— Similarity network fusion
— Information flow based methods

* Matrix factorization based approaches

— Also known as clustering/dimensionality reduction based
approaches

— Multi-omics factor analysis

— Non-negative matrix tri-factorization



Multi-omics Factor Analysis (MOFA)
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Using MOFA for Chronic Lymphocytic
Leukaemia
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Non-negative Matrix Tri Factorization for
predicting gene drug interactions

relation matrix:

genes
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Web and software resources

GeneMANIA (Network integration and diffusion-based
subnetworks)

— http://www.genemania.org

HOTNET (Diffusion-based subnetworks)

— http://compbio.cs.brown.edu/projects/hotnet2/
ResponseNet (flow network)

— http://netbio.med.ad.bgu.ac.il/respnet/
OmicslIntegrator (PCST)

— http://fraenkel-nsf.csbi.mit.edu/omicsintegrator/



http://fraenkel-nsf.csbi.mit.edu/omicsintegrator/

Concluding remarks

We have seen a suite of problems, algorithms and
applications in a real setting

These ranged from network inference, dynamic network
inference, network modules, network alignment and network-
based interpretation

We saw less of
— Integration of different types of networks
— Experimental design for better learning of networks

If you remain interested in these topics or would like to learn
more, feel free to reach out to me.



