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Goals for today

* Probability primer

* |ntroduction to linear regression



A few key concepts

Sample spaces
Random variables

Discrete and continuous continuous
distributions

Joint, conditional and marginal distributions
Statistical independence



Definition of probability

* Intuitively, we use “probability” to refer to our
degree of confidence in an event of an uncertain

nature.

* Always a number in the interval [0,1]
0 means “never occurs”
1 means “always occurs”



Sample space

 Sample space: a set of possible outcomes for some experiment
 Examples
— Flight to Chicago: {on time, late}
— Lottery: {ticket 1 wins, ticket 2 wins,...,ticket n wins}
— Weather tomorrow:
{rain, not rain} or
{sun, rain, snow} or
{sun, clouds, rain, snow, sleet}
— Roll of a die: {1,2,3,4,5,6}
— Coin toss: {Heads, Tail}



Random variables

* Random variable: A variable that represents the
outcome of a uncertain experiment

* A random variable can be

— Discrete/Categorical: Outcomes take a fixed set of
values

* Roll of die, flight to Chicago, weather tomorrow

— Continuous: Outcomes take continuous values
* Height, weight



Notation

Uppercase letters and words denote random variables
- X, Y

Lowercase letters and words denote values

S x} y
Probability that X takes value x

P(X = x)
We will also use the shorthand form
P(x) for P(X=x)

For Boolean random variables, we will use the shorthand
P(fever) for P(Fever = true)
P(—=fever) for P(Fever = false)



Discrete probability distributions

A probability distribution is a mathematical function that

specifies the probability of each possible outcome of a
random variable

We denote this as P(X) for random variable X

It specifies the probability of each possible value of X, x
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Joint probability distributions

* Joint probability distribution: the function given by P(X =
X, Y=y)

* Read as “X equals x and Y equals y”

 Example
X,y PX=x,Y=y)
sun, on-time 020 + probability that it’s sunny
' . and my flight is on time
rain, on-time 0.20
snow, on-time 0.05
sun, late 0.10
rain, late 0.30
snow, late 0.15




Marginal probability distributions

 The marginal distribution of X is defined by
P(x) =Y P(x.y)
y

“the distribution of X ignoring other variables”

* This definition generalizes to more than two variables, e.g.

P(x)= ) ¥ P(x.y.2)



Marginal distribution example

joint distribution marginal distribution for X
X,y PX=x,Y=y) X P(X=Xx)
sun, on-time 0.20 sun 03
rain, on-time 0.20 rain 0.5
sSnow, on-time 0.05 SNOW 0.2
sun, late 0.10
rain, late 0.30
snow, late 0.15




Conditional distributions

The conditional distribution of X given Y is defined as:

~ ~ =P(X=x,Y=y)
P(X=xlY=y) PO = )
Or in short
P(XIY)=P(X’Y)
P(Y)

The distribution of X given that we know the value of Y

Intuitively, how much does knowing Y tell us about X?



Conditional distribution example

joint distribution

conditional distribution for X
given Y=on-time

P(X = x|Y=on-time)

X,y PX=x,Y=y)
sun, on-time 0.20
rain, on-time 0.20
snow, on-time 0.05
sun, late 0.10
rain, late 0.30
snow, late 0.15

sun
rain

SNOwW

0.20/0.45 = 0.444
0.20/0.45 = 0.444
0.05/0.45=0.111



Independence

* Two random variables, X and Y, are independent if

P(x,y)=P(x)x P(y) forallxandy

* Another way to think about this is knowing X does not tell us
anything about Y



Independence example #1

joint distribution

marginal distributions

X,y P(X=x,Y=y) X P(X=1x)
sun, on-time 0.20 sun 0.3
rain, on-time 0.20 rain 0.5
sSnow, on-time 0.05 SNOW 0.2
sun, late 0.10 ) P(Y=y)
rain, late 0.30 on-time 0.45
snow, late 0.15 late 0.55

Are X and Y independent here?

NO.




Independence example #2

joint distribution marginal distributions

X,y P(X=x,Y=Y) X P(X=1x)
sun, fly-United 0.27 sun 0.3
rain, fly-United 0.45 rain 0.5
snow, fly-United 0.18 SNOW 0.2
sun, fly-Northwest 0.03

, y P(Y=y)

rain, fly-Northwest 0.05 fly-United 0.9
snow, fly-Northwest 0.02 fly-Northwest 01

Are X and Y independent here? YES.



Conditional independence

e Two random variables X and Y are conditionally independent
given Z if

P(X1Y.Z)=P(X12Z)

“once you know the value of Z, knowing Y doesn’t tell you
anything about X ”

e Alternatively

P(x,ylz)=P(x1z) xP(ylz) forallx,y,z



Conditional independence example

Flu Fever = Headache P
true true true 0.04
true true false 0.04
true false true 0.01
true false false 0.01
false true true 0.009
false true false 0.081
false false true 0.081
false false false 0.729
Are Fever and Headache independent? NO.

e.g. P(fever,headache) = P( fever) x P(headache)



Conditional independence example

Flu Fever = Headache P

true true true 0.04

true true false 0.04

true false true 0.01

true false false 0.01

false true true 0.009
false true false 0.081
false false true 0.081
false false false 0.729

Are Fever and Headache conditionally independent given Flu: YES.

P( fever,headache | flu) = P(fever | flu) x P(headache | flu)
P(fever,headache | =flu) = P( fever | =flu) x P(headache | - flu)

ctc.



Chain rule of probability

* For two variables

P(X.Y)=P(X 1Y) x P(Y)

e For three variables
P(X)Y,Z)=P(X1Y,Z) xPY|1Z)x P(Z)

etc.

 To see that this is true, note that
Y.,Z

poxy 2y P2 POVZ)
P(Y.,Z) P(Z)

x P(Z)



Example discrete distributions

e Binomial distribution

e Multinomial distribution



The binomial distribution

e Two outcomes per trial of an experiment

e Distribution over the number of successes in a fixed number n of
independent trials (with same probability of success p in each)

n
P(x)=| |pd-p)""
X

e e.g. the probability of x heads in n coin flips
p=0.5
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The multinomial distribution

e A generalization of the binomial distribution to more than two outcomes
e Provides a distribution of the number of times any of the outcomes
happen.

e For example consider rolling of a die n = 100 times. Each time we can have
one of k = 6 outcomes, {1,.., 6}

e X;isthe variable representing the number of times the die landed on the
i face,i € {1,..,6}
e p; is the probability of the die landing on the i face
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Continuous random variables

When our outcome is a continuous number we need
a continuous random variable

Examples: Weight, Height
We specify a density function for random variable X

dS
(z) > 0

/ flo

Probabilities are specified over an interval

Probability of taking on a single value is 0.



Continuous random variables contd

* To define a probability distribution for a
continuous variable, we need to integrate f(x)

P(X <a)= /_a f(x)dx

P(ngga):/baf(a:)d:E



Example continuous distributions

e Uniform distribution
e Gaussian distribution

* Exponential distribution



Uniform distribution

e Avariable X is said to have a uniform
distribution, between |a, b|, where, a < b, if

f(z) = ﬁ, if x € |a, b]
0, otherwise
()
1 .
b—a
———+—

Adapted from Wikipedia



Gaussian Distribution

* The univariate Gaussian distribution is defined by
two parameters, Mean: u and Standard deviation: o
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From Wikipedia: Normal distribution, https://en.wikipedia.org/wiki/Normal distribution



https://en.wikipedia.org/wiki/Normal_distribution

Exponential Distribution

* Exponential distribution for a random variable
X is defined as

14l A=0.5 |

f(z) =Xe ™ T

From Wikipedia: Exponential distribution, https://en.wikipedia.org/wiki/Exponential distributic



https://en.wikipedia.org/wiki/Normal_distribution

Goals for today

* Probability primer
* Introduction to linear regression



Linear regression

. . :. ° y = Bx + Bo
- /]

Slope Intercept

Linear regression assumes that output (y) is a linear
function of the input (x)

Given:

Data= {(ZEl, yl), eey (xNv yN)}
Estimate: /6 — {60, 61}



Residual Sum of Squares (RSS)

y T ——— Residual
?
X

RSS(B) = ZzNzl(yz — o — 515’31)2

To find the 3, we need to minimize the Residual Sum of Squares




Minimizing RSS

T —— Residual

RSS(B) = Zfil(yz — By — fra;)?

aRSS(B) = 321 —2(ys — Bo — By)

yi—P1:)
LRSS(F) =0 => ==l

S RSS(B) = 3oL, —2wiyi — o — Prz)
f\il xz( i_BO)
G RSS(B) =0 = Bi==




Linear regression with p inputs

* Y:output
* Inputs: { X1, - p}
Y = f( 60 - Z L j ﬁj
intercept J_ Parameters/coefficients
Given: Data= {(Xl 'Jl) L (XN, !}N)}

Estimate: J — {’3(), 311 Ty 'ﬁp}



Ordinary least squares for estimating

* Pick the [ that minimizes the residual sum of
squares RSS

RSS(3) = 27{\;1(% — ]((xt))Q

RSS(B8) = %1, (yi — Bo — -1 2435)°



How to minimize RSS?

e Easier to think in matrix form

ER IR

2 _ To1  T22 Top 8,

\yN) \1 N1 XN $Np)\5p)
Y = X3

RSS(9) = (Y ~ X8)" (¥ ~ X3

This is the square of y-Xb in matrix world



Simple matrix calculus

1L I(X7) = (0X)"
2. 0( X +Y)=0X +09Y
3. 0(XY) = (0X)Y + X(9Y)



https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Estimating ff by minimizing RSS

A = —oXT(Y - XB)
OXT(Y —Xf) =0
XTYy — XTXf3 =0

XTX 3 =XTY
5= (XTX)'XTy

Works well when (X™X)1is invertible. But often this is not true. Need to regularize or add a prior
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