Introduction to graph theory and molecular networks

Sushmita Roy

sroy@biostat.wisc.edu

Computational Network Biology

Biostatistics & Medical Informatics 826

https://compnetbiocourse.discovery.wisc.edu

Sep 11th 2018

Some of these materials are from Introduction to Bioinformatics, BMI/CS 576.

Goals for today

- Introductory Graph theory
- Molecules of life
- Different types of molecular networks

A network

- Describes connectivity patterns between the parts of a system
 - Vertex/Nodes: parts, components
 - Edges/Interactions/links: relationships
- Edges can have signs, directions, and/or weight
- A network is represented as a graph
 - Node and vertex are used interchangeably
 - Edge, link, and interaction are used interchangeably

Notation

- u, v, v_i, s, t : A vertex of a graph
- G: A graph defined by a tuple (V,E)
- V: set of vertices, {v₁,.., v_N} where N is the number of nodes
- E: set of edges, each edge is defined by a pair (v_i, v_j) representing a link between these two vertices
- For an edge (v_i, v_j) , v_j is said to be adjacent to v_i

A few graph-theoretic concepts

- Representing a graph
 - Directed/Undirected/Weighted graph
- Connectivity on a graph
- Subnetworks/subgraphs
- Traversal on a graph

Representing a graph

- Adjacency matrix
- Adjacency list

Adjacency matrix

Matrix-based representation; dense

G

Η

V={A, B, C, D, E, F, G, H} E= {(A,B),(A,C),(A,D),(A,E),(A,H),(B,C),(B,G),(D,A),(E,A),(E,F),(F,G),(G,H)}

Adapted from Barabasi & Oltvai, Nature Reviews Genetics 2004

Adjacency list

List based representation; sparse, space efficient

- $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow H$ $B \rightarrow A \rightarrow C \rightarrow G$ $C \rightarrow A \rightarrow B$ $D \rightarrow A$ $E \rightarrow A \rightarrow F$
- $F \rightarrow G \rightarrow E$
- $G \rightarrow B \rightarrow F \rightarrow H$
- $H \rightarrow A \rightarrow G$

Adjacency list versus matrix

- Adjacency list
- Space efficient
- Asking if there is an edge can be slow
- Preferred when the graph is sparse

- Adjacency matrix
- Very fast to ask if there is an edge
- Storage is N^{2,} where N is the number of nodes in the graph
- Preferred when the graph is dense

Directed graphs

- Edges have directionality on them
- Adjacency matrix is no longer symmetric

Weighted graphs

- Edges have weights on them.
- We can have directed and undirected weighted graphs.
- The example shown is that of a directed weighted graph

Node degree

- Undirected network
 - Degree, k: Number of neighbors of a node
- Directed network
 - In degree, k_{in} : Number of incoming edges
 - Out degree, k_{out} : Number of outgoing edges

Paths and cycles

• Path:

- a path from vertex s to t in G is a sequence of vertices $(v_0, ..., v_k)$ such that $s=v_0$ and $t=v_k$ and (v_i, v_{i+1}) are edges in E.
- A path is **simple** if there are no repetitions of a vertex.
- **Reachable**: A vertex *t* is **reachable** from vertex *s* if there is a path from *s* to *t*
- **Path length**: The total number of edges in a path
- Shortest path: The path between two vertices with the shortest path length
- **Cycle**: A path where v_0 and v_k are the same

Paths and cycles

- There are two paths from B to D
- Which is the shortest path?

Connected components

- **Connected components**: The set of vertices that are reachable from one node to another
- Strongly connected components: The set of vertices that are reachable from one vertex to another in a directed graph.
- **Connected graph**: An undirected graph is connected if every pair of vertices is connected by a path
- Strongly connected graph: A directed graph where all vertices are reachable from each other

Connected components

Connected components in an undirected graph

Connected components in a directed graph

Two connected components

Four strongly connected components

Special types of graphs

- **Complete graph**: an undirected graph where all vertices are neighbors of each other
- Bipartite graph: a graph G=(V,E) whose vertex set is divided into to sets, V₁ and V₂ such that for every edge (u,v) in E, u is in V₁ and v is in V₂
- Directed acyclic graph: A directed graph that has no cycles
- **Tree**: A graph where every pair of vertices are connected by a unique simple path

Subgraph

- A graph G'=(V,'E') is a subgraph of a graph G=(V,E) if V'⊆V (V' is a subset of V) and E'⊆E.
- Given a subset $V' \subseteq V$, G' = (V', E') is a subgraph induced by V' if $E' = \{(u, v) \in E; u, v \in V'\}$.
- We will use subgraph and subnetwork interchangeably
- Subgraphs we just saw:
 - Cycle, path, connected component

Common graph traversal algorithms

- Breadth-first search
- Depth-first search

Breadth-first search (BFS)

- Given a graph G = (V, E) and a source vertex *s*, BFS explores *G* to
 - find every vertex that is reachable from s
 - Computes the shortest path length from s to all reachable vertices
- BFS explores all vertices at a particular distance before the next
 - So it uniformly accesses all vertices across the "breadth" of the frontier

Breadth first search algorithm sketch

- We will need two types of data structures
 - Three arrays: color *color*, distance *d*, predecessor π
 - A queue, queue Q, used for doing the traversal of nodes in a first in first out order
- Color: A node is white, black or gray
 - White: as yet undiscovered
 - Black: all neighbors have been discovered
 - Gray: some neighbors may not have been discovered
- Distance keeps track of the shortest path length
- Predecessor is used to produce the path

Breadth first search algorithm

1:	procedure BFS(G,s)	
2:	for each vertex $u \in V(G) \setminus \{s\}$ do	
3:	color[u]=WHITE	
4:	$\pi[u]$ =NIL	
5:	$d[u] = \infty$	
6:	end for	
7:	color[s]=GRAY	
8:	d[s] = 0	
9:	$\pi[s]$ =NIL	
10:	$Q = \emptyset$	
11:	Push(Q, s)	,

13:	while $Q eq \emptyset$ do
14:	$u = \operatorname{Pop}(Q)$
15:	for each $v \in Adj[u]$ do
16:	if color[v]==WHITE then
17:	color[v]=GRAY
18:	d[v] = d[u] + 1
19:	$\pi[v] = u$
20:	Push(Q, v)
21:	end if
22:	end for
23:	color[u] = BLACK
24:	end while
25:	end procedure

Breadth first search example

Adapted from Introduction to Algorithms, 2nd Edition, Cormen, Leiserson, Rivest, Stein

Breadth first search continued

 $Q=\{t,x,v\}$

 $Q=\{r,t,x\}$

Iteration 2

Iteration 3

Depth first search

- Searches deeper in the graph whenever possible
- Edges are explored from the most recently discovered vertex with unexplored edges leaving it
- DFS is used for "topological sort" and to find "strongly connected components"
- Like BFS needs color, predecessor
- Additionally stores start (d) and end time (f) of a node's discovery

Depth first search algorithm

- 1: procedure DFS(G)
- 2: for each vertex $u \in V(G)$ do
- 3: $\operatorname{color}[u] = WHITE$
- 4: $\pi[u]=NIL$
- 5: **end for**
- 6: time=0
- 7: for each vertex $u \in V(G)$ do
- 8: DFS-VIST(u)
- 9: **end for**
- 10: end procedure

- 1: **procedure** DFS-VISIT(*u*)
- 2: color[u]=GRAY
- 3: time=time+1
- 4: d[u]=time
- 5: for each vertex v in Adj(u) do
- 6: **if** color[v]=WHITE **then**

7:
$$\pi[v] = u$$

8:
$$DFS-VISIT(v)$$

- 9: **end if**
- 10: **end for**
- 11: color[u]=BLACK
- 12: time=time+1
- 13: f[u]=time

14: end procedure

Depth first search example

4/5

Х

3/6

y

10/11

Ζ

4/5

Х

Take away points

- Adjacency lists and matrices are used to represent and analyze graphs
- Definitions of paths, cycles, connected components
- Breadth-first search
- Depth-first search

Goals for today

- Introductory Graph theory
- Molecules of life
- Different types of molecular networks

Organization of biological information

http://publications.nigms.nih.gov/thenewgenetics/chapter1.html

An animal cell

Molecules of life

- Deoxyribonucleic acid (DNA)
- Ribonucleic acid (RNA)
 - Messenger RNA (mRNA)
 - Makes proteins
 - Non-coding RNA (ncRNA)
- Proteins
- Metabolites
- While DNA is mostly static, RNA, proteins, metabolites change between cell types, tissues, environmental conditions

Deoxyribonucleic acid (DNA)

image from the DOE Human Genome Program http://www.ornl.gov/hgmis

DNA is a double helical molecule

Rosalind Frankin

- In 1953, James Watson and Francis Crick discovered DNA molecule has two strands arranged in a double helix
- This was possible through the Xray diffraction data from Maurice Wilkins and Rosalind Franklin

http://www.chemheritage.org/discover/online-resources/chemistry-in-history/themes/biomolecules/dna/watson-crick-wilkins-franklin.aspx

Nucleotides

- DNA is a polymer
- Composed of repeating chemical units called *nucleotides*
- Nucleotide
 - Nitrogen containing base
 - 5 carbon sugar: deoxyribose
 - Phosphate group
 - Phosphate-hydroxy bonds connect the nucleotides
- Four nucleotides make DNA
 - adenine (A), cytosine (C), guanine (G) and thymine (T)

DNA stores the blue print of an organism

- The heredity molecule
- Has the information needed to make an organism
- Double strandedness of the DNA molecule provides stability, prevents errors in copying
 - one strand has all the information

Chromosomes

- All the DNA of an organism is divided up into individual *chromosomes*
- Each chromosome is really a DNA molecule
- Different organisms have different numbers of chromosomes

DNA packaging in Chromatin

DNA is very long (3m in humans). The DNA is compressed and packaged inside a cell's nucleus with the help of a few key proteins (histones). Collection of DNA and proteins is called chromatin.

Genes

- Genes are the units of heredity
- A gene is a sequence of nucleotides which specifies a protein or RNA molecule
- The human genome has ~ 25,000 protein-coding genes (still being revised)
- One gene can have many functions
- One function can require many ... GTATGTCTAAGCCTGAATTCAGAACGGCTTC... genes

The central dogma of Molecular biology

RNA: Ribonucleic acid

- RNA
 - Made up of repeating nucleotides
 - The sugar is ribose
 - U is used in place of T
- A strand of RNA can be thought of as a string composed of the four letters: A, C, G, U
- RNA is single stranded
 - More flexible than DNA
 - Can double back and form loops
 - Such structures can be more stable

Transcription

- In eukaryotes: happens inside the nucleus
- *RNA polymerase (RNA Pol)* is an enzyme that builds an RNA strand from a gene
- RNA Pol is recruited at specific parts of the genome in a condition-specific way.
- Transcription factor proteins are assigned the job of RNA Pol recruitment.
- RNA that is transcribed from a protein coding region is called *messenger RNA* (mRNA)

Translation

- Process of turning mRNA into proteins.
- Happens outside of the nucleus inside the cytoplasm in ribosomes
- ribosomes are the machines that synthesize proteins from mRNA

Proteins

- Proteins are polymers too
- The repeating units are *amino acids*
- There are 20 different amino acids known
- DNA sequence of a gene *codes* for a protein
- Some types of proteins are transcription factors and metabolic enzymes, signaling proteins

Amino Acids

Alanine	Ala	Α
Arginine	Arg	R
Aspartic Acid	Asp	D
Asparagine	Asn	Ν
Cysteine	Cys	С
Glutamic Acid	Glu	Е
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	н
Isoleucine	lle	I
Leucine	Leu	L
Lysine	Lys	Κ
Methionine	Met	Μ
Phenylalanine	Phe	F
Proline	Pro	Ρ
Serine	Ser	S
Threonine	Thr	Т
Tryptophan	Тгр	W
Tyrosine	Tyr	Υ
Valine	Val	V

The genetic code: specifies how mRNA is translated into protein

Genetic code is degenerate

A video about transcription and translation

Metabolites

- Small molecules that are essential to living systems
 - Water, sugars, fat
- Product or substrate of a metabolic process

Goals for today

- Introductory Graph theory
- Molecules of life
- Different types of molecular networks

Graphs for representing molecular networks

- Nodes are biological molecules
 - Genes, proteins, metabolites, etc
- Edges represent interaction between molecules
- Many different types of molecular networks exist
- They vary based upon the node and edge semantics

Transcriptional regulatory networks

- Directed, signed, weighted graph
- Nodes: TFs and Target genes
- Edges: A regulates C's expression level

Regulatory network of *E. coli*. 153 TFs (green & light red), 1319 targets

Protein-protein interaction networks

- Undirected, may or may not be weighted graph
- Nodes: Proteins
- Edges: Protein X physically interacts with protein Y

Barabasi et al. 2003

Yeast protein interaction network

Signaling networks

Receptors

- Directed graph
- Nodes: Enzymes and other proteins
- Edges: Enzyme P modifies protein Q

Sachs et al., 2005, Science

Metabolic networks

- Unweighted graph
- Nodes: Metabolic enzyme
- Edges: Enzymes M and N share a compound

Reactions associated with Galactose metabolism

Genetic interaction networks

Genetic interaction: If the phenotype of double mutant is significantly different than each mutant alone

- Undirected graph
- Nodes: Genes
- Edges: Genetic interaction between query gene Q and gene G

Step 1: Generate double mutant

Saccharomyces cerevisiae

Step 2: Score phenotype and identify interactions

Colony 1: **98 pixels** Colony 2: **99 pixels** Colony 3: **95 pixels** Colony 4: **17 pixels**

Dixon et al., 2009, Annu. Rev. Genet

Different types of networks

- Physical networks
 - Transcriptional regulatory networks: interactions between regulatory proteins (transcription factors) and genes
 - *Protein-protein*: interactions among proteins
 - Signaling networks: protein-protein and protein-small molecule interactions to relay signals from outside the cell to the nucleus
- Functional networks
 - *Metabolic*: reactions through which enzymes convert substrates to products
 - Genetic: interactions among genes which when <u>perturbed</u>
 <u>together</u> produce a significant phenotype than when <u>individually</u>
 <u>perturbed</u>

"Omic" tools measure cellular molecular components in a high-throughput manner

Uwe Sauer, Matthias Heinemann, Nicola Zamboni, Science 2007

References

- Cormen, Thomas H., Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. *Introduction to Algorithms*.
 2nd edition. McGraw-Hill Higher Education, 2001.
- Introductory lecture from Introduction to Bioinformatics, BMI/CS 576