Introduction to graph theory and molecular networks

Sushmita Roy

sroy@biostat.wisc.edu

Computational Network Biology
Biostatistics & Medical Informatics 826
https://compnetbiocourse.discovery.wisc.edu

Sep 11th 2018

Some of these materials are from Introduction to Bioinformatics, BMI/CS 576.
Goals for today

• Introductory Graph theory
• Molecules of life
• Different types of molecular networks
A network

- Describes connectivity patterns between the parts of a system
 - Vertex/Nodes: parts, components
 - Edges/Interactions/links: relationships
- Edges can have signs, directions, and/or weight
- A network is represented as a graph
 - Node and vertex are used interchangeably
 - Edge, link, and interaction are used interchangeably
Notation

- u, v, v_i, s, t: A vertex of a graph
- G: A graph defined by a tuple (V,E)
- V: set of vertices, \{\(v_i, \ldots, v_N\}\} where N is the number of nodes
- E: set of edges, each edge is defined by a pair (v_i, v_j) representing a link between these two vertices
- For an edge (v_i, v_j), v_j is said to be adjacent to v_i
A few graph-theoretic concepts

• Representing a graph
 – Directed/Undirected/Weighted graph
• Connectivity on a graph
• Subnetworks/subgraphs
• Traversal on a graph
Representing a graph

• Adjacency matrix

• Adjacency list
Adjacency matrix

Matrix-based representation; dense

\[
\begin{array}{cccccccccc}
A & B & C & D & E & F & G & H \\
\hline
A & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
B & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
C & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
D & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
E & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
F & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
G & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
H & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]

\(V=\{A, B, C, D, E, F, G, H\}\)

Adapted from Barabasi & Oltvai, Nature Reviews Genetics 2004
Adjacency list

List based representation; sparse, space efficient

A → B → C → D → E → H
B → A → C → G
C → A → B
D → A
E → A → F
F → G → E
G → B → F → H
H → A → G
Adjacency list versus matrix

- Adjacency list
 - Space efficient
 - Asking if there is an edge can be slow
 - Preferred when the graph is sparse

- Adjacency matrix
 - Very fast to ask if there is an edge
 - Storage is N^2, where N is the number of nodes in the graph
 - Preferred when the graph is dense
Directed graphs

- Edges have directionality on them
- Adjacency matrix is no longer symmetric
• Edges have weights on them.
• We can have directed and undirected weighted graphs.
• The example shown is that of a directed weighted graph
Node degree

• Undirected network
 – Degree, k: Number of neighbors of a node

• Directed network
 – In degree, k_{in}: Number of incoming edges
 – Out degree, k_{out}: Number of outgoing edges

What is the out degree of E?
Paths and cycles

• **Path:**
 – a path from vertex \(s \) to \(t \) in \(G \) is a sequence of vertices \((v_0,\ldots,v_k) \) such that \(s=v_0 \) and \(t=v_k \) and \((v_i,v_{i+1}) \) are edges in \(E \).
 – A path is **simple** if there are no repetitions of a vertex.

• **Reachable:** A vertex \(t \) is **reachable** from vertex \(s \) if there is a path from \(s \) to \(t \)

• **Path length:** The total number of edges in a path

• **Shortest path:** The path between two vertices with the shortest path length

• **Cycle:** A path where \(v_0 \) and \(v_k \) are the same
There are two paths from B to D
Which is the shortest path?
Connected components

- **Connected components**: The set of vertices that are reachable from one node to another
- **Strongly connected components**: The set of vertices that are reachable from one vertex to another in a directed graph.
- **Connected graph**: An undirected graph is connected if every pair of vertices is connected by a path
- **Strongly connected graph**: A directed graph where all vertices are reachable from each other
Connected components

Connected components in an undirected graph

Two connected components

Connected components in a directed graph

Four strongly connected components
Special types of graphs

- **Complete graph**: an undirected graph where all vertices are neighbors of each other
- **Bipartite graph**: a graph $G=(V,E)$ whose vertex set is divided into two sets, V_1 and V_2 such that for every edge (u,v) in E, u is in V_1 and v is in V_2
- **Directed acyclic graph**: A directed graph that has no cycles
- **Tree**: A graph where every pair of vertices are connected by a unique simple path
Subgraph

• A graph $G'=(V',E')$ is a subgraph of a graph $G=(V,E)$ if $V' \subseteq V$ (V' is a subset of V) and $E' \subseteq E$.
• Given a subset $V' \subseteq V$, $G'=(V',E')$ is a subgraph induced by V' if $E' = \{(u,v) \in E ; u, v \in V'\}$.
• We will use subgraph and subnetwork interchangeably.
• Subgraphs we just saw:
 – Cycle, path, connected component
Common graph traversal algorithms

- Breadth-first search
- Depth-first search
Breadth-first search (BFS)

- Given a graph $G=(V,E)$ and a source vertex s, BFS explores G to
 - find every vertex that is reachable from s
 - Computes the shortest path length from s to all reachable vertices
- BFS explores all vertices at a particular distance before the next
 - So it uniformly accesses all vertices across the “breadth” of the frontier
Breadth first search algorithm sketch

- We will need two types of data structures
 - Three arrays: color \(\text{color}\), distance \(d\), predecessor \(\pi\)
 - A queue, queue \(Q\), used for doing the traversal of nodes in a first in first out order
- Color: A node is white, black or gray
 - White: as yet undiscovered
 - Black: all neighbors have been discovered
 - Gray: some neighbors may not have been discovered
- Distance keeps track of the shortest path length
- Predecessor is used to produce the path
Breadth first search algorithm

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td><code>procedure BFS(G,s)</code></td>
</tr>
<tr>
<td>2:</td>
<td><code>for each vertex u ∈ V(G) \ {s} do</code></td>
</tr>
<tr>
<td>3:</td>
<td><code>color[u]=WHITE</code></td>
</tr>
<tr>
<td>4:</td>
<td><code>π[u]=NIL</code></td>
</tr>
<tr>
<td>5:</td>
<td><code>d[u] = ∞</code></td>
</tr>
<tr>
<td>6:</td>
<td><code>end for</code></td>
</tr>
<tr>
<td>7:</td>
<td><code>color[s]=GRAY</code></td>
</tr>
<tr>
<td>8:</td>
<td><code>d[s] = 0</code></td>
</tr>
<tr>
<td>9:</td>
<td><code>π[s]=NIL</code></td>
</tr>
<tr>
<td>10:</td>
<td><code>Q = ∅</code></td>
</tr>
<tr>
<td>11:</td>
<td><code>Push(Q, s)</code></td>
</tr>
<tr>
<td>12:</td>
<td><code>while Q ≠ ∅ do</code></td>
</tr>
<tr>
<td>13:</td>
<td><code>u=Pop(Q)</code></td>
</tr>
<tr>
<td>14:</td>
<td><code>for each v ∈ Adj[u] do</code></td>
</tr>
<tr>
<td>15:</td>
<td><code>if color[v]==WHITE then</code></td>
</tr>
<tr>
<td>16:</td>
<td><code>color[v]=GRAY</code></td>
</tr>
<tr>
<td>17:</td>
<td><code>d[v] = d[u] + 1</code></td>
</tr>
<tr>
<td>18:</td>
<td><code>π[v] = u</code></td>
</tr>
<tr>
<td>19:</td>
<td><code>Push(Q, v)</code></td>
</tr>
<tr>
<td>20:</td>
<td><code>end if</code></td>
</tr>
<tr>
<td>21:</td>
<td><code>end for</code></td>
</tr>
<tr>
<td>22:</td>
<td><code>color[u]=BLACK</code></td>
</tr>
<tr>
<td>23:</td>
<td><code>end while</code></td>
</tr>
<tr>
<td>24:</td>
<td><code>end procedure</code></td>
</tr>
</tbody>
</table>
Breadth first search example

Before while loop

Iteration 1

Adapted from Introduction to Algorithms, 2nd Edition, Cormen, Leiserson, Rivest, Stein
Breadth first search continued

Iteration 2

Q={r,t,x}

Iteration 3

Q={t,x,v}
Depth first search

• Searches deeper in the graph whenever possible
• Edges are explored from the most recently discovered vertex with unexplored edges leaving it
• DFS is used for “topological sort” and to find “strongly connected components”
• Like BFS needs color, predecessor
• Additionally stores start (d) and end time (f) of a node’s discovery
Depth first search algorithm

1: `procedure DFS(G)
2: for each vertex $u \in V(G)$ do
3: color[u]=WHITE
4: $\pi[u]$=NIL
5: end for
6: time=0
7: for each vertex $u \in V(G)$ do
8: DFS-VIST(u)
9: end for
10: `end procedure`

1: `procedure DFS-VIST(u)
2: color[u]=GRAY
3: time=time+1
4: $d[u]$=time
5: for each vertex v in Adj(u) do
6: if color[v]=WHITE then
7: $\pi[v]$ = u
8: DFS-VIST(v)
9: end if
10: end for
11: color[u]=BLACK
12: time=time+1
13: $f[u]$=time
14: `end procedure`
Depth first search example

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6
Depth first search example

Iteration 7

Iteration 8

Iteration 9

Iteration 10

Final iteration
Take away points

- Adjacency lists and matrices are used to represent and analyze graphs
- Definitions of paths, cycles, connected components
- Breadth-first search
- Depth-first search
Goals for today

• Introductory Graph theory
• Molecules of life
• Different types of molecular networks
Organization of biological information

http://publications.nigms.nih.gov/thenewgenetics/chapter1.html
An animal cell

- Nucleus
- Nucleolus
- Ribosomes
- Rough Endoplasmic Reticulum
- Smooth Endoplasmic Reticulum
- Cytoplasm
- Mitochondrion
- Lysosomes
- Golgi Body
- Centrioles
- Microtubule

Molecules of life

- Deoxyribonucleic acid (DNA)
- Ribonucleic acid (RNA)
 - Messenger RNA (mRNA)
 - Makes proteins
 - Non-coding RNA (ncRNA)
- Proteins
- Metabolites
- While DNA is mostly static, RNA, proteins, metabolites change between cell types, tissues, environmental conditions
Deoxyribonucleic acid (DNA)

image from the DOE Human Genome Program
http://www.ornl.gov/hgmis
DNA is a double helical molecule

- In 1953, James Watson and Francis Crick discovered DNA molecule has two strands arranged in a double helix
- This was possible through the Xray diffraction data from Maurice Wilkins and Rosalind Franklin

Nucleotides

- DNA is a polymer
- Composed of repeating chemical units called *nucleotides*
- Nucleotide
 - Nitrogen containing base
 - 5 carbon sugar: deoxyribose
 - Phosphate group
 - Phosphate-hydroxy bonds connect the nucleotides
- Four nucleotides make DNA
 - adenine (A), cytosine (C), guanine (G) and thymine (T)
DNA stores the blue print of an organism

• The heredity molecule
• Has the information needed to make an organism
• Double strandedness of the DNA molecule provides stability, prevents errors in copying
 – one strand has all the information
Chromosomes

- All the DNA of an organism is divided up into individual **chromosomes**
- Each chromosome is really a DNA molecule
- Different organisms have different numbers of chromosomes

Image from www.genome.gov
DNA is very long (3m in humans). The DNA is compressed and packaged inside a cell’s nucleus with the help of a few key proteins (histones). Collection of DNA and proteins is called chromatin.
Genes

- Genes are the units of heredity
- A gene is a sequence of nucleotides which specifies a protein or RNA molecule
- The human genome has ~25,000 protein-coding genes (still being revised)
- One gene can have many functions
- One function can require many genes

...GTATGTCTAAGCCTGAATTCAAGAACGGCTTC...
The central dogma of Molecular biology

- DNA
 - Transcription
 - RNA
 - Translation
 - Proteins
RNA: Ribonucleic acid

• RNA
 – Made up of repeating nucleotides
 – The sugar is ribose
 – U is used in place of T
• A strand of RNA can be thought of as a string composed of the four letters: A, C, G, U
• RNA is single stranded
 – More flexible than DNA
 – Can double back and form loops
 – Such structures can be more stable
Transcription

- In eukaryotes: happens inside the nucleus
- *RNA polymerase (RNA Pol)* is an enzyme that builds an RNA strand from a gene
- RNA Pol is recruited at specific parts of the genome in a condition-specific way.
- Transcription factor proteins are assigned the job of RNA Pol recruitment.
- RNA that is transcribed from a protein coding region is called *messenger RNA (mRNA)*
Translation

• Process of turning mRNA into proteins.

• Happens outside of the nucleus inside the cytoplasm in ribosomes

• *ribosomes* are the machines that synthesize proteins from mRNA
Proteins

• Proteins are polymers too
• The repeating units are *amino acids*
• There are 20 different amino acids known
• DNA sequence of a gene *codes* for a protein
• Some types of proteins are transcription factors and metabolic enzymes, signaling proteins
Amino Acids

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Abbreviation</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>Ala</td>
<td>A</td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg</td>
<td>R</td>
</tr>
<tr>
<td>Aspartic Acid</td>
<td>Asp</td>
<td>D</td>
</tr>
<tr>
<td>Asparagine</td>
<td>Asn</td>
<td>N</td>
</tr>
<tr>
<td>Cysteine</td>
<td>Cys</td>
<td>C</td>
</tr>
<tr>
<td>Glutamic Acid</td>
<td>Glu</td>
<td>E</td>
</tr>
<tr>
<td>Glutamine</td>
<td>Gln</td>
<td>Q</td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly</td>
<td>G</td>
</tr>
<tr>
<td>Histidine</td>
<td>His</td>
<td>H</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Ile</td>
<td>I</td>
</tr>
<tr>
<td>Leucine</td>
<td>Leu</td>
<td>L</td>
</tr>
<tr>
<td>Lysine</td>
<td>Lys</td>
<td>K</td>
</tr>
<tr>
<td>Methionine</td>
<td>Met</td>
<td>M</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe</td>
<td>F</td>
</tr>
<tr>
<td>Proline</td>
<td>Pro</td>
<td>P</td>
</tr>
<tr>
<td>Serine</td>
<td>Ser</td>
<td>S</td>
</tr>
<tr>
<td>Threonine</td>
<td>Thr</td>
<td>T</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>Trp</td>
<td>W</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Tyr</td>
<td>Y</td>
</tr>
<tr>
<td>Valine</td>
<td>Val</td>
<td>V</td>
</tr>
</tbody>
</table>
The genetic code: specifies how mRNA is translated into protein

<table>
<thead>
<tr>
<th>First letter</th>
<th>Second letter</th>
<th>UUU</th>
<th>UUC</th>
<th>UUA</th>
<th>UUG</th>
<th>CUU</th>
<th>CUC</th>
<th>CUA</th>
<th>CUG</th>
<th>UCU</th>
<th>UCC</th>
<th>UCA</th>
<th>UCG</th>
<th>AUU</th>
<th>AUC</th>
<th>AUA</th>
<th>AUG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
<td>Phenylalanine</td>
<td>Leucine</td>
<td>Serine</td>
<td>Tyrosine</td>
<td>Stop codon</td>
<td>Stop codon</td>
<td>Cysteine</td>
<td>Stop codon</td>
<td>Tryptophan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Leucine</td>
<td>Proline</td>
<td>Histidine</td>
<td>Glutamine</td>
<td>Arginine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Isoleucine; Methionine; initiation codon</td>
<td>Threonine</td>
<td>Asparagine</td>
<td>Lysine</td>
<td>Arginine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>Valine</td>
<td>Alanine</td>
<td>Aspartic acid</td>
<td>Glutamic acid</td>
<td>Glycine</td>
<td></td>
</tr>
</tbody>
</table>

Genetic code is degenerate
A video about transcription and translation
Metabolites

• Small molecules that are essential to living systems
 – Water, sugars, fat
• Product or substrate of a metabolic process
Goals for today

• Introductory Graph theory
• Molecules of life
• Different types of molecular networks
Graphs for representing molecular networks

- Nodes are biological molecules
 - Genes, proteins, metabolites, etc
- Edges represent interaction between molecules
- Many different types of molecular networks exist
- They vary based upon the node and edge semantics
Transcriptional regulatory networks

Transcription factors (TF)

DNA

Gene C

A

B

C

- Directed, signed, weighted graph
- Nodes: TFs and Target genes
- Edges: A regulates C’s expression level

Regulatory network of *E. coli*. 153 TFs (green & light red), 1319 targets

Vargas and Santillan, 2008
Protein-protein interaction networks

- Undirected, may or may not be weighted graph
- Nodes: Proteins
- Edges: Protein X physically interacts with protein Y

Yeast protein interaction network

Barabasi et al. 2003
Signaling networks

• Directed graph
• Nodes: Enzymes and other proteins
• Edges: Enzyme P modifies protein Q

Sachs et al., 2005, Science
Reactions associated with Galactose metabolism

- Unweighted graph
- Nodes: Metabolic enzyme
- Edges: Enzymes M and N share a compound
Genetic interaction networks

Genetic interaction: If the phenotype of double mutant is significantly different than each mutant alone

- Undirected graph
- Nodes: Genes
- Edges: Genetic interaction between query gene Q and gene G

Step 1:
Generate double mutant

Saccharomyces cerevisiae

Mating
Query strain
X
Deletion library

Step 2:
Score phenotype and identify interactions

Measure viability using a dye

Well 1: 998 a.u.
Well 2: 956 a.u.
Well 3: 972 a.u.
Well 4: 211 a.u.

Count viable worms

Well 1: 30 worms
Well 2: 28 worms
Well 3: 29 worms
Well 4: 3 worms

Measure colony size

Colony 1: 98 pixels
Colony 2: 99 pixels
Colony 3: 95 pixels
Colony 4: 17 pixels

Step 3:
Build genetic interaction networks

Common biological process
Explore function of gene cluster

Dixon et al., 2009, Annu. Rev. Genet
Different types of networks

• Physical networks
 – *Transcriptional regulatory networks*: interactions between regulatory proteins (transcription factors) and genes
 – *Protein-protein*: interactions among proteins
 – *Signaling networks*: protein-protein and protein-small molecule interactions to relay signals from outside the cell to the nucleus

• Functional networks
 – *Metabolic*: reactions through which enzymes convert substrates to products
 – *Genetic*: interactions among genes which when *perturbed together* produce a significant phenotype than when *individually perturbed*
“Omic” tools measure cellular molecular components in a high-throughput manner

Uwe Sauer, Matthias Heinemann, Nicola Zamboni, Science 2007
References

• Introductory lecture from Introduction to Bioinformatics, BMI/CS 576