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Strategies for capturing dynamics in networks

Dynamic Bayesian Networks

Skeleton network-based approaches
Input/Output Hidden Markov Models
Multi-task learning approaches



Goals for today

* Define Multi-task learning for dynamic
network inference

* Learning multiple GGMs for hierarchically
related tasks
— Gene Network Analysis Tool (GNAT)
* Pierson et al., 2015, PLOS Computational Biology

* Applications to inference of tissue-specific
networks



Graphical Gaussian Models (GGMs)

An undirected probabilistic graphical model

Graph structure encode conditional
independencies among variables

The GGM assumes that X is drawn from a p-
variate Gaussian distribution with mean ftand
co-variance .

The graph structure specifies the zero pattern in
the X~ 1 = @O

— Zero entries in the inverse imply absence of an edge in
the graph



Absence of edges and the zero-pattern of the

precision matrix
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Learning a Graphical Gaussian Model

e Learning the structure of a GGM entails
estimating which entries in the inverse of the

covariance matrix are non-zero

* These correspond to the direct dependencies
among two random variables



Learning a GGM

* Requires us to solve the following optimization
problem
~ 1

m
© = arg max Elog@ — 5T7“(@S)

e Butif we want the inverse of covariance to be

sparse, we can add a regularization term
~ 1
0= arg max %log@ — §TT(@S) + A||©]]1

* This is the idea behind the Graphical LASSO
algorithm and also the GNAT approach



Algorithms to learn a GGM

* Graphical Lasso

— Exact approach
— Friedman, Hastie and Tibshirani 2008

* Neighborhood selection
— Approximate approach
— Meinshausen and Buhlmann 2006



Consider the following problem

e Suppose we had N time points or conditions
or cell types

* We can measure p different entities for each
of the cell types/individuals

— We can repeat this experiment several times (m,))
* We wish to identify the network in each of the

cell types/individuals that produces p different
measurements



Multi-task learning (MTL)

Suppose we had T different tasks that we want to solve

— For example, each task could be a regression task, to
predict the expression level of gene from its regulator
expression

Suppose we knew the tasks are related

Multi-task learning aims to simultaneously solve these
T tasks while sharing information between them

Different MTL frameworks might share information
differently

MTL is especially useful when for each task we do not
have many samples

We will look at a particular example of MTL



Single task versus multi-task learning

* Single task learning

Loss function Regularization term

J(©) = L(O|X,Y) + R(©)

* Multi-task Iearnmg
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Widmer and Ratsch, 2012



Genetic Network Analysis Tool

e @Given

— gene expression measurements from multiple tissues, several
per tissue

— A tissue hierarchy relating the tissues
* Do
— Learn a gene co-expression network for each tissue

* Naive approach: Learn co-expression network in each
tissue independently;

— Some tissues have 2 dozen samples (n<<<p)

* Key idea of GNAT is to exploit the tissue hierarchy to share
information between each tissue co-expression network

Pierson et al., Plos computational biology 2015



GNAT

* Each tissue’s gene network is a co-expression
network: A Graphical Gaussian Model (GGM)

* Learning a GGM is equivalent to estimate the
non-zeros in the inverse of the covariance

matrix (precision matrix)

* Sharing information in a hierarchy by
constraining the precision matrix of two
tissues close on the hierarchy to be more
similar to each other



Hierarchically related GGM learning tasks
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GNAT objective function

Parent of k
from the
hierarchy

K 2K —2 l
Z( (log®y, — Tr(©1S)) — Z||@k||1) — AP Z 10k — Op I3
k=1 k=1

Sparse Encourage similarity with
pretu_smn parent node
matrix

K: Total number of tasks
m;. Number of samples in task k&

They don’t directly optimize this, but rather apply a two-step iterative algorithm



Two-step iterative algorithm in GNAT

For each dataset/tissue at the leaf nodes k,
earn an initial matrix @,

Repeat until convergence

— Optimize the internal matrices, @, for all the
ancestral nodes p keeping the leaf nodes fixed

* This can be computed analytically, because of the L2
penalty

— Optimize the leaf matrices ®, using their
combined objective function



Updating the ancestral nodes

* To obtain the estimate of the ancestral
precision matrices, we need to derive the
objective with respect to each 6,

2K—2

K
> ( (log®y — T'r(OSk) — AZH@kHl) =N I8k = O3
k=1

k=1
* Turns out the ancestral matrix is an average of
the child matrices

1
@p — _<@pz + @pr)
20 N0 N

Left and right child of p



Key steps of the GNAT algorithm

Define tissue hierarchy based Learn co-expression network
A on gene expression levels B in each leaf tissue

®'® (A) (&) .|. .|.® (a®) # .‘.
® © © ® © ©) ®

Tissue 1 Tissue 2 Tissue 3 Tissue 4

Infer network in internal Final inferred networks
nodes and u date leaf nodes




Tissue hierarchy used

Brain — Caudate (basal ganglia)
Brain — Nucleus accumbens (basal ganglia) a_
Brain — Putamen (basal ganglia)
Brain — Amygdala
Brain — Hippocampus
Brain — Cortex
Brain — Anterior cingulate cortex (BA24)
Brain — Frontal Cortex (BA9)
Brain — Spinal cord (cervical c-1)
Brain — Hypothalamus
Brai B(r:ain t; ?ubsHtantia r;1igra
rain — Cerebellar Hemisphere
Brain — Cerebellum ]
Pituitary
Stomach
Colon - Transverse:'
Esophagus — Muscularis
Artery — Tibial
Artery — Aorta
Thyroid
Nerve - Tibial
Breast - Mammary Tissue
Adipose — Subcutaneous —
Adipose - Visceral (Omentum)
Lung
Heart — Atrial Appendage
Heart — Left Ventricle
Skin — Not Sun Exposed (Suprapubic)
Skin — Sun Exposed (Lower leg) :':I_ 1
Esophagus — Mucosa
Adrenal Gland
Pancreas B
Muscle — Skeletal
Testis
Whole Blood

1. Compute the mean expression of each gene per tissue
2. Tissues were clustered using hierarchical clustering of the mean expression vectors.



Results

* Ask whether sharing information helps
— Simulated data

* Apply to multi-tissue expression data from
GTEX consortium

— 35 different human tissues
— Hierarchy learned from the expression matrix



Simulation experiment

Use data from each tissue and generate five
different sets

Learn networks from four of the five tissues per
tissue

Assess the data likelihood on the hold out tests

Baselines
— Independent learning per tissue
— Merging all datasets and learning one model

Repeat for three gene sets



Improvement Over Baseline

Does sharing information help?

Gene Set 1 (2,000 Genes) Gene Set 2 (2,000 Genes) Gene Set 3 (10,000 Genes)
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Three gene sets. Compute test data likelihood using 5 fold cross-validation

Single network likelihood was too low to be shown!



Tissue hierarchy used

Brain — Caudate (basal ganglia)
Brain — Nucleus accumbens (basal ganglia) a_
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Brain — Amygdala
Brain — Hippocampus
Brain — Cortex
Brain — Anterior cingulate cortex (BA24)
Brain — Frontal Cortex (BA9)
Brain — Spinal cord (cervical c-1)
Brain — Hypothalamus
Brai B(r:ain t; ?ubsHtantia r;1igra
rain — Cerebellar Hemisphere
Brain — Cerebellum ]
Pituitary
Stomach
Colon - Transverse:'
Esophagus — Muscularis
Artery — Tibial
Artery — Aorta
Thyroid
Nerve - Tibial
Breast - Mammary Tissue
Adipose — Subcutaneous —
Adipose - Visceral (Omentum)
Lung
Heart — Atrial Appendage
Heart — Left Ventricle
Skin — Not Sun Exposed (Suprapubic)
Skin — Sun Exposed (Lower leg) :':I_ 1
Esophagus — Mucosa
Adrenal Gland
Pancreas B
Muscle — Skeletal
Testis
Whole Blood

1. Compute the mean expression of each gene per tissue
2. Tissues were clustered using hierarchical clustering of the mean expression vectors.



Biological assessment of the networks

* Pairs of genes predicted to be connected were
shown to be co-expressed in third party
expression databases.

— Including tissue-specific expression database.

* Genes predicted to be linked in a specific tissue
were 10 times more likely to be co-expressed in
specific tissues

e Test if genes linked in the networks were
associated with shared biological functions

— Genes that shared a function, were linked 94% more
often than genes not sharing a function



Examining tissue-specific properties of the
networks

Out of Tissue In Tissue Out of Tissue In Tissue

Brighter the green, ‘
the more expressed

is a gene. ‘ on
Blue circles: TFs

D Tissue 1 Tissue 2

56 S0

Tissue 3 Tissue 4

56 S0

Transcription factors specific to a tissue, tend to have a lot of connections, and connect
to genes associated with other genes specific to the tissue
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Additional analysis of tsTFs

Define genes with tissue-specific functions and
assess the connectivity of tsTFs to these genes
versus non tissue-specific genes

Tissue-specific genes connected to tsTFs were
more expressed than genes that are not tissue-
specific or genes not connected to these TFs.

tsTFs tended to have lot of connections (hubby)

Tissue-specific target genes were less hubby than
the average gene.



Defining tissue-specific and shared gene
modules

* Use a clustering algorithm to group genes into
modules while using the graph structure

— We will see algorithms that do this type of
clustering
e Test each module for enrichment of curated
biological processes

 For each module, assess conservation in other
tissues based on the fraction of links present
among genes in other tissues.



Modules captured tissue-specific functions
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An important immune-related module associated with blood-specific transcription
factor GATA3. GATA3 and RUNX3 coordinately interact with other tissue-specific genes



Analysis of shared modules

Define module conservation for a module m in

a tissue as

K
Total number of tissues Z

Number of
~ interactions in tissue
j for module m

Number of possible
interactions among
genes in the module



Take away points

Graphical Gaussian models can be used to capture
direct dependencies

— Learning a GGM entails estimating the precision matrix

Dynamics of networks: How networks change across
different tissues

GNAT: A multi-task learning approach to learn tissue-
specific networks

— One task maps to a learning one GGM

— Share information between tasks using the hierarchy

— Has good generalization capability and infers biologically
meaningful associations

Gaussian assumption might be too strong



Other approaches of interest

* Ontogenet

— Jojic et al., Nature Immunology 2013

* TREEGL
— Parikh et al., Bioinformatics 2011



Ontogenet

a b
Target module expression = .
d = X Regulator expression x
Regulator activity

- Mean module expression * The average expression of a
module is explained by a
1 Em .o i [ - & linear combination of the
Global activator Irf5 expression IRFS activity |eve|S of the regU|atOrS
cxorosson AR
Activity . - ) -
Expression Globa're& Gata3 expression GATA-3 activity * RegUIators from nearby
actvity | cells on a lineage are similar
Context-specific regulator 2 i S E"
Expression [T 1 (AN '
Activity B Tox expression TOX activity ° Ont o) g en et d oes th | S by
W TR 5 e adding a penalty to the
-2 0 2 Trim14 expression TRIM14 activity regreSS|0n WelghtS fOr eaCh
cell lineage.

Repression None Activation

Jojicetal., 2013



Ontogenet objective

This is the objective for a single module m, across the entire lineage

Z “mrr“rl) +A||“m||l ““m”’ 7Y “)Wm”l
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gene /in cell type t regulator r’s activity in cell type t

z(ll.rz )e_{zr l Wi,r.ty = W, r,t

{t1,t,) is an edge in the cell lineage tree f



TREEGL: Tree smoothed Graphical LASSO
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