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Strategies for capturing dynamics in networks

• Dynamic Bayesian Networks
• Skeleton network-based approaches 
• Input/Output Hidden Markov Models
• Multi-task learning approaches 



Goals for today

• Define Multi-task learning for dynamic 
network inference

• Learning multiple GGMs for hierarchically 
related tasks
– Gene Network Analysis Tool (GNAT)
• Pierson et al., 2015, PLOS Computational Biology

• Applications to inference of tissue-specific 
networks



Graphical Gaussian Models (GGMs)

• An undirected probabilistic graphical model
• Graph structure encode conditional 

independencies among variables
• The GGM assumes that X is drawn from a p-

variate Gaussian distribution with mean     and 
co-variance

• The graph structure specifies the zero pattern in 
the 
– Zero entries in the inverse imply absence of an edge in 

the graph
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Absence of edges and the zero-pattern of the 
precision matrix
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Learning a Graphical Gaussian Model

• Learning the structure of a GGM entails 
estimating which entries in the inverse of the 
covariance matrix are non-zero

• These correspond to the direct dependencies 
among two random variables



Learning a GGM

• Requires us to solve the following optimization 
problem

• But if we want the inverse of covariance to be 
sparse, we can add a regularization term

• This is the idea behind the Graphical LASSO 
algorithm and also the GNAT approach
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Algorithms to learn a GGM

• Graphical Lasso
– Exact approach
– Friedman, Hastie and Tibshirani 2008

• Neighborhood selection
– Approximate approach
– Meinshausen and Buhlmann 2006



Consider the following problem

• Suppose we had N time points or conditions 
or cell types

• We can measure p different entities for each 
of the cell types/individuals
– We can repeat this experiment several times (mn) 

• We wish to identify the network in each of the 
cell types/individuals that produces p different 
measurements



Multi-task learning (MTL)

• Suppose we had T different tasks that we want to solve
– For example, each task could be a regression task, to 

predict the expression level of gene from its regulator 
expression

• Suppose we knew the tasks are related 
• Multi-task learning aims to simultaneously solve these 

T tasks while sharing information between them
• Different MTL frameworks might share information 

differently
• MTL is especially useful when for each task we do not 

have many samples
• We will look at a particular example of MTL



Single task versus multi-task learning

• Single task learning

• Multi-task learning

Widmer and Ratsch, 2012

Loss function Regularization term



Genetic Network Analysis Tool

• Given 
– gene expression measurements from multiple tissues, several 

per tissue
– A tissue hierarchy relating the tissues

• Do
– Learn a gene co-expression network for each tissue

• Naïve approach: Learn co-expression network in each 
tissue independently; 
– Some tissues have 2 dozen samples (n<<<p)

• Key idea of GNAT is to exploit the tissue hierarchy to share 
information between each tissue co-expression network

Pierson et al., Plos computational biology 2015



GNAT

• Each tissue’s gene network is a co-expression 
network: A Graphical Gaussian Model (GGM)

• Learning a GGM is equivalent to estimate the 
non-zeros in the inverse of the covariance 
matrix (precision matrix)

• Sharing information in a hierarchy by 
constraining the precision matrix of two 
tissues close on the hierarchy to be more 
similar to each other



Hierarchically related GGM learning tasks
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GNAT objective function

Sparse 
precision 
matrix 

Encourage similarity with 
parent node

They don’t directly optimize this, but rather apply a two-step iterative algorithm
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Two-step iterative algorithm in GNAT

• For each dataset/tissue at the leaf nodes k, 
learn an initial matrix Θk

• Repeat until convergence
– Optimize the internal matrices, Θp for all the 

ancestral nodes p keeping the leaf nodes fixed
• This can be computed analytically, because of the L2 

penalty
– Optimize the leaf matrices Θk using their 

combined objective function



Updating the ancestral nodes

• To obtain the estimate of the ancestral  
precision matrices, we need to derive the 
objective with respect to each Θp(k)

• Turns out the ancestral matrix is an average of 
the child matrices
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Key steps of the GNAT algorithm

the GTEx dataset—too few to learn networks with 50 million parameters—but because all the
brain tissues were closely related in our hierarchy, by adaptively sharing samples for related
brain tissues we were able to make more robust estimates of co-expression. We provide a sche-
matic illustration of our algorithm in Fig 2.

Previous work suggests the promise of using transfer learning to learn multiple genetic net-
works [18, 20, 21, 23]; hierarchical models have also been used more broadly throughout biolo-
gy, for example to study phylogenies [24]. [18] used prior knowledge of a hierarchy of cancer
cell types to learn a network for each cell type. Their method, however, relied on a hand-speci-
fied hierarchy, which would only be feasible if the number of datasets was smaller than the 35
in the GTEx dataset, and though successful in simulation was never shown to improve on prior
methods on real data. [20] and [21] learn networks for multiple datasets using shrinkage be-
tween precision matrices, although they do not use a hierarchy and simply use a single shrink-
age parameter. Additionally, none of these methods were designed to work on the large
number of tissues included in the GTEx dataset, because such data has not been previously
available. Importantly, our choice of optimization objective allows parallel optimization of all
35 tissue networks, which is critical for scaling to a large number of tissues. In contrast, the

Fig 2. An illustration of our algorithm for hypothetical tissues (1, 2, 3, 4) and genes (A, B, C). The tree represents the hierarchy over tissues 1–4. For
each tissue and each internal node in the hierarchy, gene networks over three genes (A, B, and C) are represented by circles (genes) and edges. a) Learning
the hierarchy: tissues 1 and 2 are clustered together because A, B, and C have high mean expression levels in both tissues (green) and low levels in tissues
3 and 4 (red). b) co-expression networks are learned in each tissue independently. Edge AB is shared across three tissues; BC and AC only appear in one
tissue. c) Networks are learned for each internal node in the hierarchy, representing an “average” of the child node networks, allowing similar tissues to share
knowledge. The child node networks are re-learned and encouraged to be similar to their parents; this repeats until convergence. d) The final networks. Edge
AB is now present in all 4 tissues; similarly, AC now appears in tissues 1 and 2, and edge BC in tissues 3 and 4.

doi:10.1371/journal.pcbi.1004220.g002

Gene Co-expression Networks across 35 Human Tissues

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004220 May 13, 2015 5 / 19

Define tissue hierarchy based 
on gene expression levels

Learn co-expression network 
in each leaf tissue

Infer network in internal 
nodes and update leaf nodes

Final inferred networks



Tissue hierarchy used

tissue k, and lðkÞs is a sparsity parameter. The sparsity makes the networks more interpretable
and computationally tractable.

We extended this method by constraining the matrices S(k) in tissues that were nearby in the
hierarchy to have similar entries, creating similar networks, using an L2 penalty that penalized
differences between the S(k). We used an L2 penalty rather than an L1 penalty because it al-
lowed us to develop a fast parallel algorithm for optimizing the objective function (Methods).
This transfer learning framework proved especially valuable for tissues with very few samples,
for which we would otherwise lacked sufficient statistical power to infer co-expression net-
works. For example, we had only about two dozen samples for each of the 13 brain tissues in

Fig 1. The hierarchy of tissues which is used as the basis for learning networks for each tissue. The
hierarchy was created using hierarchical clustering: for each tissue, the mean expression of each gene in the
tissue was computed, and tissues with similar gene expression patterns were merged into clusters. Lower
branching points represent clusters with more similar gene expression patterns. Many biologically plausible
clusters are apparent: the brain and non-brain cluster, and clusters for the basal ganglia, cortex, adipose
tissue, heart, artery, and skin.

doi:10.1371/journal.pcbi.1004220.g001

Gene Co-expression Networks across 35 Human Tissues

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004220 May 13, 2015 4 / 19

1. Compute the mean expression of each gene per tissue
2. Tissues were clustered using hierarchical clustering of the mean expression vectors. 



Results

• Ask whether sharing information helps
– Simulated data

• Apply to multi-tissue expression data from 
GTEX consortium
– 35 different human tissues
– Hierarchy learned from the expression matrix



Simulation experiment

• Use data from each tissue and generate five 
different sets

• Learn networks from four of the five tissues per 
tissue

• Assess the data likelihood on the hold out tests
• Baselines
– Independent learning per tissue
– Merging all datasets and learning one model

• Repeat for three gene sets



Does sharing information help?

methods described in [18] and [20] cannot be easily parallelized and thus will not scale to the
GTEx dataset, as we confirmed by testing their code on simulations with 35 tissues but far
fewer genes than we use in our analysis (n = 10 versus n = 9998). Adapting our algorithm to
the scale of the GTEx data required several further methodological innovations (Methods). For
example, selecting a sparsity parameter for each of the 35 datasets using cross validation would
have been prohibitively slow, so we developed a faster heuristic.

Validation of Algorithm
We used 5-fold cross-validation to evaluate our algorithm: for each tissue, we randomly divid-
ed our samples into five groups, learned networks based on samples from four of the five
groups, and measured the accuracy of each network (quantified by the log likelihood on the
held out test data) using the remaining group. We compared the performance of our method
to two baselines: learning a network for each tissue independently, or learning a single network
for all tissues. We observed a higher log likelihood on the held out test set using our approach
as compared to the two baselines on three different gene sets of increasing sizes (Fig 3), indicat-
ing that the transfer learning approach resulted in a more robust estimation of the networks.

Accuracy of Networks
We confirmed the accuracy of our learned networks in two ways. First, we evaluated agreement
with two previous datasets. When we compared our networks to the co-expression database
COEXPRESdb [25], pairs of genes we predicted to be linked had expression levels that were 2.6
times as correlated as genes we did not predict to be linked (p< 10−6, 2-sample KS test). To an-
alyze tissue-specificity, we also compared our networks to TS-CoExp [12], which provides lists

Fig 3. Network accuracy as measured by 5-fold cross validation. Learning networks independently corresponds to setting λp = 0 (the bottom left corner
of each graph); the y-axis is the improvement in log likelihood over baseline. Our method improved on this baseline for all three gene sets we experimented
with. The baseline of learning a single network for all tissues cannot be shown on this graph because its log likelihood is so low; we dropped it from further
consideration in our analysis. The differing scales on the y-axes are due to the different sizes of the gene sets.

doi:10.1371/journal.pcbi.1004220.g003

Gene Co-expression Networks across 35 Human Tissues

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004220 May 13, 2015 6 / 19

Three gene sets. Compute test data likelihood using 5 fold cross-validation

Single network likelihood was too low to be shown!



Tissue hierarchy used

tissue k, and lðkÞs is a sparsity parameter. The sparsity makes the networks more interpretable
and computationally tractable.

We extended this method by constraining the matrices S(k) in tissues that were nearby in the
hierarchy to have similar entries, creating similar networks, using an L2 penalty that penalized
differences between the S(k). We used an L2 penalty rather than an L1 penalty because it al-
lowed us to develop a fast parallel algorithm for optimizing the objective function (Methods).
This transfer learning framework proved especially valuable for tissues with very few samples,
for which we would otherwise lacked sufficient statistical power to infer co-expression net-
works. For example, we had only about two dozen samples for each of the 13 brain tissues in

Fig 1. The hierarchy of tissues which is used as the basis for learning networks for each tissue. The
hierarchy was created using hierarchical clustering: for each tissue, the mean expression of each gene in the
tissue was computed, and tissues with similar gene expression patterns were merged into clusters. Lower
branching points represent clusters with more similar gene expression patterns. Many biologically plausible
clusters are apparent: the brain and non-brain cluster, and clusters for the basal ganglia, cortex, adipose
tissue, heart, artery, and skin.

doi:10.1371/journal.pcbi.1004220.g001

Gene Co-expression Networks across 35 Human Tissues

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004220 May 13, 2015 4 / 19

1. Compute the mean expression of each gene per tissue
2. Tissues were clustered using hierarchical clustering of the mean expression vectors. 



Biological assessment of the networks

• Pairs of genes predicted to be connected were 
shown to be co-expressed in third party 
expression databases.
– Including tissue-specific expression database.

• Genes predicted to be linked in a specific tissue 
were 10 times more likely to be co-expressed in 
specific tissues

• Test if genes linked in the networks were 
associated with shared biological functions
– Genes that shared a function, were linked 94% more 

often than genes not sharing a function



Examining tissue-specific properties of the 
networks

Table 1. Summary of principles of tissue specificity.

Property Tissue-Specific Transcription
Factors

General Transcription
Factors

Genes with Tissue-Specific
Functions

Higher-expressed than average gene? Yes (p < .001, 25/25 tissues) No Yes (p < .001, 27/29 tissues)

Hubbier than average gene? Yes (p = .023, 20/25 tissues) Yes (p < .001, 31/35 tissues) Less hubby (p < .001, 23/29
tissues)

Higher-expressed in tissues they’re
specific to?

Yes (p < .001, 10/10 gene sets) NA Yes (p < .001, 13/13 gene sets)

Hubbier in tissues they’re specific to? No NA No

Changes of expression and hubness for transcription factors and genes with tissue-specific functions. All reported results were statistically significant by
both a parametric (T) test and a non-parametric (bootstrap) test. As an additional confirmation, because gene sets in different tissues may have different
properties, we also examined each gene set individually. We include the bootstrap probabilities in parentheses below, along with the proportion of gene
sets/tissues for which the conclusion held true. To conduct the bootstrap comparisons, we compared values of expression and hubness for tsTFs, gTFs,
and tsFXNGs to those for randomly selected set of genes in each tissue and repeated for 1000 iterates.

doi:10.1371/journal.pcbi.1004220.t001

Fig 4. Important principles of tissue-specificity. a) Tissue-specific transcription factors (circled in blue)
have higher expression levels (green) in tissues they are specific to, and those that change most dramatically
in expression are most likely to be essential genes. b) Tissue-specific transcription factors connect to and
upregulate genes with tissue-specific function (circled in red), which in turn connect to each other. c)
Transcription factors lie at the centers of networks; genes with tissue-specific function and enriched modules
lie at the network peripheries. d) Modules shared across tissues are more likely to be enriched for Gene
Ontology functions, and tend to have functions common to all tissues like cell division.

doi:10.1371/journal.pcbi.1004220.g004

Gene Co-expression Networks across 35 Human Tissues

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004220 May 13, 2015 8 / 19

Transcription factors specific to a tissue, tend to have a lot of connections, and connect
to genes associated with other genes specific to the tissue

Brighter the green,
the more expressed 
is a gene.
Blue circles: TFs



Tissue-specific TFs (tsTFs) are highly expressed 
in their specific tissues
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The signal is most apparent for Brain tissues



Additional analysis of tsTFs

• Define genes with tissue-specific functions and 
assess the connectivity of tsTFs to these genes 
versus non tissue-specific genes

• Tissue-specific genes connected to tsTFs were 
more expressed than genes that are not tissue-
specific or genes not connected to these TFs.

• tsTFs tended to have lot of connections (hubby)
• Tissue-specific target genes were less hubby than 

the average gene.



Defining tissue-specific and shared gene 
modules

• Use a clustering algorithm to group genes into 
modules while using the graph structure
– We will see algorithms that do this type of 

clustering
• Test each module for enrichment of curated 

biological processes
• For each module, assess conservation in other 

tissues based on the fraction of links present 
among genes in other tissues.



Modules captured tissue-specific functions

has similar gene expression patterns to immune tissues like the spleen and thymus, perhaps in-
dicating the importance of immune function in the lung.) The top module in suprapubic skin,
enriched for mitosis, was also upregulated in other tissues where cells divide frequently, includ-
ing the testis, the stomach, the esophagus, and the colon.

Our analysis also revealed upregulation of tissue-specific modules in “similar” tissues: the
top module in one tissue was often upregulated in tissues nearby in the hierarchy. For all brain
tissues, top modules were dramatically upregulated in all other brain tissues as well, but not in
non-brain tissues (Fig 6 ). The top module in the heart atrium, related to “structural constituent
of muscle” was unsurprisingly upregulated in the muscle and heart ventricle as well.

We also identified a number of modules that were conserved in most tissues, representing
ubiquitous functions shared by all cells. For each module in each tissue, we measured the

Fig 5. Genes linked to the blood-specific transcription factor GATA3 are enriched for immune function. Blue circles (and links) denote tsTFs; red
circles denote tsFXNGs; the color of a gene indicates its level of expression, with green denoting upregulation and red denoting downregulation. This tightly
connected cluster of genes comprises the blood-specific TFs GATA3 and RUNX3 (circled in blue) and 11 genes with immune related function (circled in red).
GATA3 has been previously linked to RUNX3 [53] and implicated as a master regulator of the immune system [54], required for the maintenance of T cells;
consistent with this, the set of genes linked to GATA3 to is significantly enriched for the T cell receptor signaling pathway and the T cell receptor complex
(Fisher’s exact test with Bonferroni correction p = .0001 and .01, respectively) with 8 of the top 10 most enriched functions for these genes relating to the
immune system.

doi:10.1371/journal.pcbi.1004220.g005

Gene Co-expression Networks across 35 Human Tissues
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An important immune-related module associated with blood-specific transcription 
factor GATA3. GATA3 and RUNX3 coordinately interact with other tissue-specific genes



Analysis of shared modules

• Define module conservation for a module m in 
a tissue as

Total number of tissues

Number of possible 
interactions among 
genes in the module

Number of 
interactions in tissue 
j for module m



Take away points

• Graphical Gaussian models can be used to capture 
direct dependencies
– Learning a GGM entails estimating the precision matrix

• Dynamics of networks:  How networks change across 
different tissues

• GNAT: A multi-task learning approach to learn tissue-
specific networks
– One task maps to a learning one GGM
– Share information between tasks using the hierarchy
– Has good generalization capability and infers biologically 

meaningful associations
• Gaussian assumption might be too strong



Other approaches of interest

• Ontogenet
– Jojic et al., Nature Immunology 2013

• TREEGL
– Parikh et al., Bioinformatics 2011



Ontogenet

• The average expression of a 
module is explained by a 
linear combination of the 
levels of the regulators

• Regulators from nearby 
cells on a lineage are similar

• Ontogenet does this by 
adding a penalty to the 
regression weights for each 
cell lineage.

Jojic et al., 2013



Ontogenet objective

This is the objective for a single module m, across the entire lineage

gene i in cell type t regulator r’s activity in cell type t

{t1,t2) is an edge in the cell lineage tree f



TREEGL: Tree smoothed Graphical LASSO

TreeGL uses 
neighborhood 
selection to learn the 
graph structure

Predictive error

Sparsity penalty
Make weights similar


