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Goals for today

• What are Hidden Markov Models (HMMs)?
– How do they relate to Dynamic Bayesian 

Networks?
• What are Input/Output HMMs (IOHMMs)?
• EM algorithm for learning IOHMMs
• Application of IOHMMs to examine regulatory 

network dynamics



Motivation

• Suppose we are given time series expression 
profiles

• We wish to find key regulators that are 
associated with changes in expression levels 
over time

• We have seen a simple approach to do this
– Activity subgraph/skeleton network-based 

approaches
• Can we more explicitly take time into account?



DREM: Dynamic Regulatory Events Miner

A few recent methods have been proposed to integrate time-
series expression data with ChIP-chip or motif data while
taking into account the ordering of experiments in time-series
data sets. For instance, time-series expression data were used
to determine which genes were active at certain phases and
then combined with ChIP-chip data using a trace-back
algorithm to identify active TFs at these phases (Luscombe
et al, 2004). This method in effect identified an ordered series
of static regulatory graphs, but its direct connection with the
dynamics of observed gene expression patterns is less clear.
Other methods have relied more heavily on individual
gene expression profile dynamics. For instance, Kundaje et al
(2005) forms independent clusters of genes by using a joint
probabilistic model for the dynamics of time-series expression
profiles of genes and the motifs in their promoter regions.
Others have integrated time-series expression data with ChIP-
chip data tomodel the expression of individual genes (Lin et al,
2005) and interactions among TFs (Cokus et al, 2006) applying
their techniques to model the cell cycle. Another method
(Bonneau et al, 2006) used kinetic equations based on the
time-series expression data to associate TFs with subsets of
genes across a subset of experimental conditions.
Our objective is different from that of these prior works. We

present a computational method that integrates the time-series
expression data and ChIP-chip or motif information to infer an

annotated global temporal map. This map describes the main
transcriptional regulatory events leading to the observed time-
series expression patterns and the factors controlling these
events during a cell’s response to stimuli. Our method focuses
on bifurcation events. Bifurcation events occur when sets
of genes that have roughly the same expression level up until
some time point diverge (see Figure 1). Modeling expression
patterns as results of a series of bifurcation events is consistent
with a multilayer hierarchical model of gene regulation
previously suggested for some organisms (Balázsi et al,
2005). Our method attempts to both detect these bifurcation
events and explain them in terms of regulation by TFs. By
focusing on detecting and explaining bifurcation events, we
can determine the time when TFs are exerting their influence.
The method also assigns genes to paths in the map based on
their expression profiles and the TFs that control them. The
model we use to learn these maps is based on an instance of
an input–output hidden Markov model (IOHMM) (Bengio and
Frasconi, 1995), where the ChIP-chip or motif data are the
input and the observed expression data are the output.
We applied our method to study several stress responses

in yeast. Our method was able to automatically infer many
aspects of the temporal responses, some of which were
previously known whereas others were new predictions.
These new predictions range from low-level predictions
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Figure 1 Model overview. (A) Plots of time series expression profiles generated to illustrate the model. (B) Static TF-DNA binding data—DREM integrates TF-gene
regulatory relationships derived from ChIP-chip or motif data with the time series expression data. For this example a majority of the pink genes in (A) are regulated by
TF A, the blue genes by TF B and the red genes by TFC andD. (C) The model structure inferred by DREM for the data in (A) and (B). After the model is derived genes
are assigned to their most likely paths based on their expression profile as well as on the set of TFs that regulate them. TF labels appear on some of the paths out of
splits. (D) IOHMM model—each state has a Gaussian emission distribution for the expression values and the transition probabilities for a gene depend on the set of TFs
that regulates it. A logistic regression classifier (Krishnapuram et al, 2005) maps the set of regulating TFs to transition probabilities. The classifiers are denoted by
question marks in the figure. Example transition probabilities are given for a gene which is regulated by TF B. These probabilities are greater for the states with
distributions similar to those of TF B regulated genes. The TF information also affects the structure of the resulting IOHMM model. Based on this information some splits
can be added and some splits are removed from the model.

Reconstructing dynamic regulatory maps
J Ernst et al

2 Molecular Systems Biology 2007 & 2007 EMBO and Nature Publishing Group

Ernst et al., 2007, Mol Sys Biol



Recall Markov chain

• A Markov chain is a probabilistic model for sequential 
observations where there is a dependency between 
the current and the previous state

• It is defined by a graph of possible states and a 
transition probability matrix defining transitions 
between each pair of state

• The states correspond to the possible assignments a 
variable can state

• One can think of a Markov chain as doing a random 
walk on a graph with nodes corresponding to each 
state



A three state Markov chain
0.6

high

medium low

0.1

0.1

0.7
0.20.6

0.2

0.3

0.2

P(Xt+1=high|Xt=low)=0.1

These define the transition 
probabilities



Hidden Markov Models

• Hidden Markov models are also probabilistic 
models used to model sequential data about a 
dynamical system

• At each time point the system is a hidden state 
that is dependent upon the previous states 
(history)

• The observation sequence is the output of a 
hidden state

• HMMs are defined by observation models and 
transition models

Murphy 2000



Notation
• States are numbered from 1 to K
– observed character at position t

• Observed sequence
• Hidden state sequence or path
• Transition probabilities

• Emission probabilities: Probability of emitting symbol 
b from state k

ek(b) = P (xt = b|�t = k)

akl = P (�t+1 = l|�t = k)

⇡ = {⇡1, · · · ,⇡T }

x = {x1, · · · , xT }



What does an HMM do?

• Enables us to model observed sequences of 
characters generated by a hidden dynamic 
system 

• The system can exist in a fixed number of 
“hidden” states

• The system probabilistically transitions
between states and at each state it emits a 
symbol/character



Defining an HMM

• States
• Emission alphabet
• Parameters
– State transition probabilities for probabilistic 

transitions from state at time t to state at time t+1
– Emission probabilities for probabilistically emitting 

symbols from a state



An HMM for an occasionally dishonest casino
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Formally defining a HMM

• States
• Emission alphabet
• Parameters
– State transition probabilities for probabilistic 

transitions from state at time t to state at time t+1
– Emission probabilities for probabilistically emitting 

symbols from a state



Goals for today

• What are Hidden Markov Models (HMMs)?
– How do they relate to Dynamic Bayesian 

Networks?
• What are Input/Output HMMs (IOHMMs)?
• Learning problems of IOHMMs
• Application of IOHMMs to examine regulatory 

network dynamics



Recall a DBN for p variables and T time points
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HMM represented as a DBN

DBN

• A DBN could be used to represent the 
transition probabilities more compactly.

• For example, consider the state variable
to be D-dimensional each with K possible 
values.
• For example we are tracking D objects 

and each object can have K possible 
settings

• The state variable can have KD possible 
values

• An HMM will attempt to model the transition 
probabilities between all state combinations.

• In other words, the DBN will look fully 
connected.

⇡t ⇡t+1

Xt+1Xt

Kevin Murphy, 2000



DBN version of the occasional dishonest casino

⇡t ⇡t+1

F L
F 0.95 0.05
L 0.1 0.9

P (⇡t+1|⇡t)
⇡t+1

⇡t

Xt+1Xt

P (Xt+1|⇡t+1)

1 2 3 4 5 6
F 1/6 1/6 1/6 1/6 1/6 1/6
L 0.1 0.1 0.1 0.1 0.1 0.5

⇡t+1

Xt+1



Three important questions in HMMs

• What is the probability of a sequence from an 
HMM?
– Forward algorithm

• What is the most likely sequence of states for 
generating a sequence of observations
– Viterbi algorithm

• How can we learn an HMM from a set of 
sequences?
– Forward-backward or Baum-Welch (an EM algorithm)



Computing the probability of a sequence from 
an HMM

P (x1, · · · , xT , �1 · · · , �T ) =

a0�1

TY

t=1

e�t(xt)a�t�t+1

Initial transition Emitting symbol xt
State transition between
consecutive time points



Computing the probability of a sequence 
from an HMM

• But we don’t know what the sequence of states (path) is
• So we need to sum over all paths
• The probability over all paths is:

P (x1, · · · , xT ) =
X

�0,··· ,�T

a0�1

TY

t=1

e�t(xt)a�t�t+1

• The forward algorithm gives an efficient way to compute this 
probability

• It is based on the concept of dynamic programming

Sum over all paths
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Input output Hidden Markov Models (IOHMM)

• As in the HMM we have 
– States, emissions and transitions

• In addition we have a sequence of inputs
– The transitions and emissions can depend on 

inputs (u1,..,uT)
• In a way, IOHMMs map inputs to outputs
– This is different from HMMs

• HMMs aim to define P(x1..xT) while IOHMMs 
define P(x1..xT|u1..uT)

Bengio & Frasconi, IEEE Trans on Neural Networks 1996 



Input output Hidden Markov Models (IOHMM)

⇡t ⇡t+1

xt+1xt

ut ut+1

Inputs

Outputs

Hidden states

Transition and emissions are 
dependent upon a set of external 
stimuli



Formally defining an IOHMM

• The set of K hidden states
• Emission characters/symbols/values
• Transition probabilities conditioned on the 

input
– Unlike HMMS where we had 
– Here we have

• Similarly for emission probabilities on the 
input and state

akl = P (⇡t+1 = l|⇡t = k)

akl = P (⇡t+1 = l|⇡t = k, ut+1)

ek(xt) = P (xt|⇡t = k, ut)



Three important questions in IOHMMs

• What is the probability of a sequence from an 
IOHMM?
– Forward algorithm

• What is the most likely sequence of states for 
generating a sequence of observations
– Viterbi algorithm

• How can we learn an IOHMM from a set of 
sequences?
– Forward-backward algorithm (an EM algorithm)



Computing the probability of a sequence from 
an IOHMM

Emitting symbol xt
State transition between
consecutive time points

P (x1, · · · , xT ,⇡1, · · · ,⇡T |u1, · · · , uT )

=
TY

t=1

P (xt|⇡t, ut)P (⇡t|⇡t�1, ut)



As in the case of HMMs

• We would need to sum over the possible state 
configurations

• We will use the forward algorithm for this 
problem

Sum over all paths

P (x1, · · · , xT |u1 · · · , uT ) =
X

⇡1,··· ,⇡T

TY

t=1

P (xt|⇡t, ut)P (⇡t|⇡t�1, ut)



How likely is a given sequence: Forward 
algorithm

• Define            as the probability of observing 
and ending in state k at time t 

given inputs u1..ut

• This can be written as follows

fk(t)
x1, · · · , xt

fk(t) = P (x1, · · · , xt,⇡t = k|u1, · · · , ut)

fk(t+ 1) = ek(xt+1)
kX

l=1

fl(t)alk

fk(t+ 1) = P (xt+1|⇡t+1, ut+1)
KX

l=1

fl(t)P (⇡t+1 = k|⇡t = l, ut+1)



Steps of the Forward algorithm

• Initialization

• Recursion: for t=2 to T

• Termination
fk(t) = ek(xt)

X

l

alkfl(t� 1)

P (x1, · · · , xT |u1, · · · , uT ) =
KX

l=1

fl(T )

fk(1) = ek(x1)P (⇡1 = k|u1)



Working through an example

• Suppose we are able to measure three reporter 
molecules whose values are dependent upon 
input chemical stimulus and whether one of four 
possible hidden pathways are triggered.

• Chemical stimulus: {0,1}
• Hidden Pathways: {A, B, C, D}
• Reporter molecules: {r1, r2,r3}
• Given a sequence of reporter molecule 

measurements, and chemical stimuli, infer which 
hidden pathway was likely triggered 



Mapping to an IOHMM

⇡t ⇡t+1

xt+1xt

ut ut+1

Inputs

Outputs

Hidden states

We need to specify three CPTs

P (⇡1|u1)
P (⇡t|⇡t�1, ut)

P (xt|⇡t, ut)

⇡t 2 {A,B,C,D}
ut 2 {0, 1}
xt 2 {r1, r2, r3}



The CPTs that we will use

A B C D
0 0.5 0.5 0 0
1 0.5 0.5 0 0

u1

⇡1

A B C D
0 A 0.6 0.2 0.2 0
0 B 0.2 0.6 0 0.2
0 C 0.1 0 0.8 0.1
0 D 0 0.25 0.25 0.5
1 A 0.8 0.1 0.1 0
1 B 0.8 0.1 0 0.1
1 C 0.1 0 0.8 0.1
1 D 0 0.1 0.8 0.1

⇡t+1

xt
r1 r2 r3

0 A 0.8 0.1 0.1
0 B 0.2 0.6 0.2
0 C 0.25 0.5 0.25
0 D 0.2 0.2 0.6
1 A 0.2 0.6 0.2
1 B 0.25 0.5 0.25
1 C 0.2 0.2 0.6
1 D 0.5 0.25 0.25

Suppose we observed the following sequences
0 1 1 0
r1 r1 r2 r3

Input:
Output:

How likely is this observation from our IOHMM?

⇡
t,
u
t+

1

⇡t, ut



Transition probabilities encode some 
independencies

A

B

C

D

A B C D
0 A 0.6 0.2 0.2 0
0 B 0.2 0.6 0 0.2
0 C 0.1 0 0.8 0.1
0 D 0 0.25 0.25 0.5
1 A 0.8 0.1 0.1 0
1 B 0.8 0.1 0 0.1
1 C 0.1 0 0.8 0.1
1 D 0 0.1 0.8 0.1

⇡t+1

⇡
t,
u
t+

1



Applying the forward algorithm

Output:

1 2 3 4
A
B
C
D

fB(3)= P (r2|B, 1) ⇤ (fA(2)P (B|A, 1)+

fB(2)P (B|B, 1) + fD(2)P (D|C, 1))

Input: 0 1 1 0

r1 r1 r2 r3



Result of applying the forward algorithm
Input:

Output:

1 2 3 4

A 0.4 0.08 0.04488 0.0033861

B 0.1 0.0125 0.033125 0.02186082
5

C 0 0.008 0.00308 0.00287906
25

D 0 0.01 0.0007625 0.00438855

0 1 1 0

r1 r1 r2 r3

P (r1, r1, r2, r3|0, 1, 1, 0) = fA(4) + fB(4) + fC(4) + fD(4)= 0.0325



Learning an IOHMM from data

• Given J paired sequences 

• Parameter estimation:
– Learn the transition and emission probability distributions
– This is very similar to what is done in HMMs

• Structure learning:
– Learn the number of states and the dependencies among 

the states
– Because states are hidden variables and we do not how 

many there are, this adds another level of complexity in 
learning

– We will first assume that we know the number of states

{(x1:T1 ,u1:T1), .., (x1:TJ ,u1:TJ )}



The expectation maximization algorithm

• Expectation Maximization (EM) is a widely used 
when there are hidden variables

• It is an iterative algorithm that maximizes the 
likelihood of the data

• Each iteration is made up of two steps
– Expectation step (E): estimate the expected values of 

hidden variables given the data and previous 
parameter settings

– Maximization step (M): estimate the parameters using 
the expected counts



akl = P (⇡t = l|⇡t�1 = k, ut = p)

=
nk!l|ut=pP
l0 nk!l0|ut=p

Learning without hidden information

• Transition probabilities

• Emission probabilities

Number of transitions from 
state k to state l given input p

Number of times c is emitted 
from k given input p

ek(c) = P (xt = c|⇡t = k, ut = p)

=
nk,c|ut=pP
c0 nk,c0|ut=p



The expectation step

• We need to know the probability of the symbol at t being 
produced by state i, given the entire observation and input 
sequence u1:T, x1:T

• Given these we can compute our expected counts for 
state transitions, character emissions

• We also need to know the probability of observations at t
and (t+1) being produced by state i, and l respectively given 
sequence x

Bengio & Frasconi, IEEE Trans on Neural Networks 1996 

P (⇡t = k|u1:T ,x1:T )

P (⇡t = i,⇡t�1 = j|u1:T ,x1:T )



Computing 

• First we compute the probability of the entire 
observed sequence with the  tth symbol being 
generated by state k

• Then our quantity of interest is computed as

Obtained from the forward algorithm

P (⇡t = k|u1:T ,x1:T )

P (⇡t = k,x1:T |u1:T )

P (⇡t = k|u1:T ,x1:T ) =
P (⇡t = k,x1:T |u1:T )

P (x1:T |u1:T )



• To compute

• We need the forward and backward algorithm 

Forward algorithm fk(t) Backward algorithm bk(t)

Computing P (⇡t = k,x1:T |u1:T )

P (⇡t = k,x1:T |u1:T )

= P (x1:t,⇡t = k|u1:t)P (xt+1:T |⇡t = k,x1:t,u1:T )

= P (x1:t,⇡t = k|u1:t)P (xt+1:T |⇡t = k,ut:T )



Steps of the backward algorithm

• Initialization (t=T)

• Recursion (t=T-1 to 1)

bk(t) = ⌃laklel(xt+1)bl(t+ 1)

bk(t) = 1



Trying out an example with backward 
algorithm

• Again assume we have the same CPTs as those 
associated with the forward algorithm demo

• Assume we observe the following

• What are computations for the backward 
algorithm?

0 1 1
r1 r2 r2

Input:
Output:



Results from applying the backward algorithm

Input:
Output:

1 2 3
A 0.19 1
B 0.09 1
C 1
D 1

0 1 1
r1 r2 r2 A B C D

0 A 0.6 0.2 0.2 0
0 B 0.2 0.6 0 0.2
0 C 0.1 0 0.8 0.1
0 D 0 0.25 0.25 0.5
1 A 0.8 0.1 0.1 0
1 B 0.8 0.1 0 0.1
1 C 0.1 0 0.8 0.1
1 D 0 0.1 0.8 0.1

⇡t+1

⇡
t,
u
t+

1

bB(2) =P (A|B, 1)P (r2|A, 1)bA(3) + P (B|B, 1)P (r2|B, 1)bB(3)

+P (D|B, 1)P (r2|D, 1)bD(3)



Computing

• Using the forward and backward variables, 
this is computed as

P (⇡t = k|u1:T ,x1:T ) =
P (⇡t = k,x1:T |u1:T )

P (x1:T |u1:T )

P (⇡t = k|u1:T ,x1:T ) =
fk(t)bk(t)

P (x1:T |u1:T )

P (⇡t = k,x1:T |u1:T )



Computing

• This is the probability of symbols at t and t+1 
emitted from  states k and l given the entire 
observed and sequence x1:T and input 
sequence u1:T

P (⇡t = i,⇡t�1 = j|u1:T ,x1:T )

=
P (⇡t = i,⇡t�1 = j,x1:T |u1:T )

P (x1:T |u1:T )

=
fj(t� 1)ajiei(xt)bi(t)

P (x1:T |u1:T )



Putting it all together

• Assume we are given J training instances 

• Expectation step
– Using current parameter values compute for each

• Apply the forward and backward algorithms 
• Compute 

– expected number of transitions between all pairs of states
– expected number of emissions for all states

• Maximization step
– Using current expected counts

• Compute the transition and emission probabilities

{(x1:T1 ,u1:T1), .., (x1:TJ ,u1:TJ )}

(x1:TJ ,u1:Tj )



Baum-Welch one iteration

• Let’s assume we have J=2 training instances

• Each training example will contribute to the 
expected counts of transition and emission 
probabilities

• Expectation step:
– Compute the forward and backward variables for 

both training samples, for all time points

{(0, 1, 1), (r1, r2, r2)}



Baum-Welch one iteration M step

• Suppose we are updating the transition 
probability of A to B given input u=1

nA!B|u=1

Contribution from sample 1

{(0, 1, 1), (r1, r2, r2)}
{(1, 0, 0)(r2, r1, r1)}

Sample 2 will not contribute as there is no relevant configuration



Baum-Welch one iteration M step

• Suppose we are updating the expected counts 
for observing r2 from state B given input u=1
nr2,B|u=1

=
fB(2)bB(2) + fB(3)bB(3)

P (r1, r2, r2|0, 0, 1)
+

fB(1)bB(1)

P (r2, r1, r1|1, 0, 0)

Contribution from sample 1 Contribution from sample 2
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Bifurcation events

• Bifurcation events occur when sets of genes 
that have roughly the same expression level 
up until some time point diverge

A few recent methods have been proposed to integrate time-
series expression data with ChIP-chip or motif data while
taking into account the ordering of experiments in time-series
data sets. For instance, time-series expression data were used
to determine which genes were active at certain phases and
then combined with ChIP-chip data using a trace-back
algorithm to identify active TFs at these phases (Luscombe
et al, 2004). This method in effect identified an ordered series
of static regulatory graphs, but its direct connection with the
dynamics of observed gene expression patterns is less clear.
Other methods have relied more heavily on individual
gene expression profile dynamics. For instance, Kundaje et al
(2005) forms independent clusters of genes by using a joint
probabilistic model for the dynamics of time-series expression
profiles of genes and the motifs in their promoter regions.
Others have integrated time-series expression data with ChIP-
chip data tomodel the expression of individual genes (Lin et al,
2005) and interactions among TFs (Cokus et al, 2006) applying
their techniques to model the cell cycle. Another method
(Bonneau et al, 2006) used kinetic equations based on the
time-series expression data to associate TFs with subsets of
genes across a subset of experimental conditions.
Our objective is different from that of these prior works. We

present a computational method that integrates the time-series
expression data and ChIP-chip or motif information to infer an

annotated global temporal map. This map describes the main
transcriptional regulatory events leading to the observed time-
series expression patterns and the factors controlling these
events during a cell’s response to stimuli. Our method focuses
on bifurcation events. Bifurcation events occur when sets
of genes that have roughly the same expression level up until
some time point diverge (see Figure 1). Modeling expression
patterns as results of a series of bifurcation events is consistent
with a multilayer hierarchical model of gene regulation
previously suggested for some organisms (Balázsi et al,
2005). Our method attempts to both detect these bifurcation
events and explain them in terms of regulation by TFs. By
focusing on detecting and explaining bifurcation events, we
can determine the time when TFs are exerting their influence.
The method also assigns genes to paths in the map based on
their expression profiles and the TFs that control them. The
model we use to learn these maps is based on an instance of
an input–output hidden Markov model (IOHMM) (Bengio and
Frasconi, 1995), where the ChIP-chip or motif data are the
input and the observed expression data are the output.
We applied our method to study several stress responses

in yeast. Our method was able to automatically infer many
aspects of the temporal responses, some of which were
previously known whereas others were new predictions.
These new predictions range from low-level predictions
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Figure 1 Model overview. (A) Plots of time series expression profiles generated to illustrate the model. (B) Static TF-DNA binding data—DREM integrates TF-gene
regulatory relationships derived from ChIP-chip or motif data with the time series expression data. For this example a majority of the pink genes in (A) are regulated by
TF A, the blue genes by TF B and the red genes by TFC andD. (C) The model structure inferred by DREM for the data in (A) and (B). After the model is derived genes
are assigned to their most likely paths based on their expression profile as well as on the set of TFs that regulate them. TF labels appear on some of the paths out of
splits. (D) IOHMM model—each state has a Gaussian emission distribution for the expression values and the transition probabilities for a gene depend on the set of TFs
that regulates it. A logistic regression classifier (Krishnapuram et al, 2005) maps the set of regulating TFs to transition probabilities. The classifiers are denoted by
question marks in the figure. Example transition probabilities are given for a gene which is regulated by TF B. These probabilities are greater for the states with
distributions similar to those of TF B regulated genes. The TF information also affects the structure of the resulting IOHMM model. Based on this information some splits
can be added and some splits are removed from the model.
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Dynamic Regulatory Events Miner (DREM)

• Given 
– a gene expression time course 
– Static TF binding data or signaling networks

• Do
– Identifies important regulators for interesting 

temporal changes

• DREM is suited for short time courses
• DREM is based on an Input-Output HMM

Ernst et al., 2007 Mol Sys Biol



DREM key idea

A few recent methods have been proposed to integrate time-
series expression data with ChIP-chip or motif data while
taking into account the ordering of experiments in time-series
data sets. For instance, time-series expression data were used
to determine which genes were active at certain phases and
then combined with ChIP-chip data using a trace-back
algorithm to identify active TFs at these phases (Luscombe
et al, 2004). This method in effect identified an ordered series
of static regulatory graphs, but its direct connection with the
dynamics of observed gene expression patterns is less clear.
Other methods have relied more heavily on individual
gene expression profile dynamics. For instance, Kundaje et al
(2005) forms independent clusters of genes by using a joint
probabilistic model for the dynamics of time-series expression
profiles of genes and the motifs in their promoter regions.
Others have integrated time-series expression data with ChIP-
chip data tomodel the expression of individual genes (Lin et al,
2005) and interactions among TFs (Cokus et al, 2006) applying
their techniques to model the cell cycle. Another method
(Bonneau et al, 2006) used kinetic equations based on the
time-series expression data to associate TFs with subsets of
genes across a subset of experimental conditions.
Our objective is different from that of these prior works. We

present a computational method that integrates the time-series
expression data and ChIP-chip or motif information to infer an

annotated global temporal map. This map describes the main
transcriptional regulatory events leading to the observed time-
series expression patterns and the factors controlling these
events during a cell’s response to stimuli. Our method focuses
on bifurcation events. Bifurcation events occur when sets
of genes that have roughly the same expression level up until
some time point diverge (see Figure 1). Modeling expression
patterns as results of a series of bifurcation events is consistent
with a multilayer hierarchical model of gene regulation
previously suggested for some organisms (Balázsi et al,
2005). Our method attempts to both detect these bifurcation
events and explain them in terms of regulation by TFs. By
focusing on detecting and explaining bifurcation events, we
can determine the time when TFs are exerting their influence.
The method also assigns genes to paths in the map based on
their expression profiles and the TFs that control them. The
model we use to learn these maps is based on an instance of
an input–output hidden Markov model (IOHMM) (Bengio and
Frasconi, 1995), where the ChIP-chip or motif data are the
input and the observed expression data are the output.
We applied our method to study several stress responses

in yeast. Our method was able to automatically infer many
aspects of the temporal responses, some of which were
previously known whereas others were new predictions.
These new predictions range from low-level predictions
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Figure 1 Model overview. (A) Plots of time series expression profiles generated to illustrate the model. (B) Static TF-DNA binding data—DREM integrates TF-gene
regulatory relationships derived from ChIP-chip or motif data with the time series expression data. For this example a majority of the pink genes in (A) are regulated by
TF A, the blue genes by TF B and the red genes by TFC andD. (C) The model structure inferred by DREM for the data in (A) and (B). After the model is derived genes
are assigned to their most likely paths based on their expression profile as well as on the set of TFs that regulate them. TF labels appear on some of the paths out of
splits. (D) IOHMM model—each state has a Gaussian emission distribution for the expression values and the transition probabilities for a gene depend on the set of TFs
that regulates it. A logistic regression classifier (Krishnapuram et al, 2005) maps the set of regulating TFs to transition probabilities. The classifiers are denoted by
question marks in the figure. Example transition probabilities are given for a gene which is regulated by TF B. These probabilities are greater for the states with
distributions similar to those of TF B regulated genes. The TF information also affects the structure of the resulting IOHMM model. Based on this information some splits
can be added and some splits are removed from the model.
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IOHMM model in DREM

• The output distributions were modeled as 
Gaussians
– Enabled modeling continuous expression values

• State transitions depended on static input and 
the current state
– A binary classifier was trained in the M step for 

each state with two children, to discriminate 
between genes assigned to the bifurcating states



Defining the transition probability in DREM

• DREM uses a binary classifier (logistic 
regression) to define transition probabilities

• Assume we are state h, which has two child 
states a and b

P (xt+1 = a|xt = h,ui) =
1

1 + exp(��h
0 �

P
f �

h
fu

i(f))

Input associated with the ith gene: collection of
binding sites on gene i’s promoter

State-specific parameters



Results

• Application of DREM to yeast expression data
– Amino acid (AA) starvation
– One time point ChIP binding in AA starvation

• Analysis of condition-specific binding
• Application to multiple stress and normal 

conditions



DREM application in yeast amino acid 
starvation

DREM identified 11 paths, and associated important AA related TFs for each split 



Does condition non-specific data help?

Yes, adding additional non-condition specific data helped explain more splits or 
found more TFs per split



Validation of INO4 binding

• INO4 was a novel prediction by the method
• Using a small scale experiment, test binding in 

4 gene promoters after AA starvation
• Measure genome-wide binding profile of INO4 

in AA starvation and SCD and compare relative 
binding



The first pathway showed a similar pattern of repression and
recovery in all of the reconstructed temporal regulatory maps
except for the map for cold shock. This pathway included the
ribosomal genes and their primary TFs (Rap1, Sfp1, and Fhl1).
These genes are repressed steeply and quickly. However, these
genes also recovered quickly approaching their pre-treatment
levels. In cold shock, the ribosomal genes were assigned to an
activated path consistent with a previously made observation
(Gasch et al, 2000; Supplementary Figures 6 and 7).
Another common repressed pathway that was observed in

AA starvation, heat shock, and cold shock was a pathway
controlled by Swi4, Swi6, and Mbp1. This pathway primarily
contained cell-cycle genes. For example, in the heat-shock
pathway, there was a particularly strong enrichment for G1
cell-cycle genes (Spellman et al, 1998) (P-value o4!10"20).
In comparison to the ribosomal genes, cell-cycle genes were

repressed at a slower rate and to a less significant level
(Supplementary Figure 4). However, when they recover, they
were expressed at a higher level than their initial (time point 0)
value (Figure 4B). A possible explanation to the slow
repression of the cell-cycle genes, which is followed by a
strong activation, is that what we are actually seeing is the
well-documented stress-related cell-cycle arrest. In an unsyn-
chronized culture, the downregulation of G1 genes should be
gradual as it takes time until all cells leave the G1 phase. On the
other hand, in the recovery stage, the culture is relatively
synchronized and therefore the G1 genes reach higher levels
than in unsynchronized culture. To test the prediction that this
pathway in heat shock indeed represents differences in the
cell-cycle phase distribution, we counted the budding index of
cells following heat shock. As Figure 4C shows, 20–40min
after heat shock, cells enter S-phase arrest (increase in the
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Figure 3 The role of Ino4 in regulating response to AA starvation. (A) Expression profiles of 13 genes in AA starvation that were assigned to the brown path in
Figure 2B. These 13 genes were all bound by Ino4 in a ChIP-chip experiment in YPD media with a P-valueo0.005 and have an evolutionarily conserved Ino4 motif.
It was predicted by DREM that Ino4 was activating these and other genes starting around 2 h (see also Supplementary Table 4). (B) Occupancy rates of Ino4 in the
promoter region of four genes regulated by Ino4, before and at 4 h after AA starvation. For three of these four genes, the Ino4 promoter occupancy rates were at least
two-fold higher following AA starvation than in synthetic completeþ D-glucose (SCD) media before AA starvation. (C) Comparison of the number of genes bound by
Ino4 before and 4 h after AA starvation using a whole-genome binding experiment. We compared the lists using two different P-value cutoffs (0.001 and 0.005). Genes
were counted if they are bound at the appropriate P-value in at least one of the two repeats. At the 0.001 P-value cutoff, there is almost a six-fold enrichment for Ino4-
bound genes 4 h after AA starvation. (D) Comparison of bindingP-values for genes assigned to the main path determined by DREM to be regulated by Ino4 in one of the
repeats (see also Supplementary Figure 2). The plots are the negative log base 10 of the binding P-value for genes that were bound with a P-valueo0.005 in one or
more of the Ino4 binding experiments and are on the identified Ino4 response path. The horizontal and vertical lines represent a P-value significance of 0.005. Anything
to the right of the vertical line is significant under normal growth conditions. Anything above the horizontal line is significant in the AA starvation experiment. Anything
above the diagonal line is more significant in the AA starvation experiment. This plot indicates that these genes were bound more significantly in AA starvation conditions
than SCD conditions.
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Validation of INO4 binding
Genes associated with INO4 split profile INO4 occupancy is much higher in AA 

starvation compared to normal (SCD)

More genes are bound genome-wide 
in AA starvation 

Stronger binding in AA starvation of 
genes in this path



Does integration help?

• Randomize ChIP data and ask if enriched TFs 
with paths were identified
– Fewer TFs were identified

• Compare IOHMM vs HMM
– Lesser enrichment of Gene Ontology processes in 

HMMs paths compared to IOHMMs



Take away points
• Network dynamics can be defined in multiple ways
• Skeleton network-based approaches

+ The universe of networks is fixed, nodes become on or off
+ Simple to implement, and does not need lot of data
+ No assumption of how the network changes over time
– No model of how the network changes over time
– Requires the skeleton network to be complete

• Dynamic Bayesian network
+ Can learn new edges 
+ Describes how the system transitions from one state to another
+ Can incorporate prior knowledge
– Assumes that the dependency between t-1 and t is the same for all time points
– Requires sufficient number of timepoints

• IOHMMS (DREM approach)
+ Integrates static TF-DNA and dynamic gene expression responses
+ Works at the level of groups of genes
+ Focus on bifurcation points in the time course
- Tree structure might be restrictive (although possible extensions are discussed)
- Depends upon the completeness of the TF binding data


