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Goals for today

What are Hidden Markov Models (HMMs)?

— How do they relate to Dynamic Bayesian
Networks?

What are Input/Output HMMs (IOHMMs)?
EM algorithm for learning IOHMMs

Application of IOHMMs to examine regulatory
network dynamics



Motivation

Suppose we are given time series expression
profiles

We wish to find key regulators that are
associated with changes in expression levels
over time

We have seen a simple approach to do this

— Activity subgraph/skeleton network-based
approaches

Can we more explicitly take time into account?
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Ernst et al., 2007, Mol Sys Biol



Recall Markov chain

A Markov chain is a probabilistic model for sequential
observations where there is a dependency between
the current and the previous state

It is defined by a graph of possible states and a
transition probability matrix defining transitions
between each pair of state

The states correspond to the possible assignments a
variable can state

One can think of a Markov chain as doing a random
walk on a graph with nodes corresponding to each
state



A three state Markov chain

These define the transition
probabilities

P(Xs1=high|X;=low)=0.1



Hidden Markov Models

 Hidden Markov models are also probabilistic
models used to model sequential data about a
dynamical system

* At each time point the system is a hidden state
that is dependent upon the previous states
(history)

 The observation sequence is the output of a
hidden state

« HMMs are defined by observation models and
transition models

Murphy 2000



Notation

States are numbered from / to K
— observed character at position ¢
T =1{Z1,-*-,TT} Observed sequence

T ={m, 77TT}Hidden state sequence or path
Transition probabilities
Al] — P(?Tt_|_1 — l‘ﬂ't — k)

Emission probabilities: Probability of emitting symbol
b from state k£

er(b) = P(xy = blmy = k)



What does an HMM do?

* Enables us to model observed sequences of
characters generated by a hidden dynamic

system
* The system can exist in a fixed number of
“hidden” states

* The system probabilistically transitions
between states and at each state it emits a
symbol/character




Defining an HMM

* States
* Emission alphabet
* Parameters

— State transition probabilities for probabilistic
transitions from state at time ¢ to state at time 7+ /

— Emission probabilities for probabilistically emitting
symbols from a state



An HMM for an occasionally dishonest casino

a’l 1 a’22 Transition probabilities
0.95 <\’ 0.9<\
1 1/6 1 1/10
Emission probabilities 5 1;6 0.05 5 1;10
61(3) 3 1/6 3 1/10
4 1/6[* 0.1 4 1/10
5 1/6 ) 5 1/10
6 1/6 6 1/2
Fair Loaded

What is hidden? Which dice is rolled

What is observed? Number (1-6) on the die



Formally defining a HMM

* States
* Emission alphabet
* Parameters

— State transition probabilities for probabilistic
transitions from state at time ¢ to state at time 7+ /

— Emission probabilities for probabilistically emitting
symbols from a state



Goals for today

 What are Hidden Markov Models (HMMs)?

— How do they relate to Dynamic Bayesian
Networks?



Recall a DBN for p variables and T time points

t=1 t=2

s \
) )

X?'Variables at time t=2

Dependency at the
first time point



HMM represented as a DBN

* A DBN could be used to represent the
transition probabilities more compactly.

7'(‘t > 7Tt_|_ * For example, consider the state variable

/ K to be D-dimensional each with K possible

values.

* For example we are tracking D objects
and each object can have K possible
settings

* The state variable can have K? possible
values

* An HMM will attempt to model the transition

X X probabilities between all state combinations.
t t4+/1
* In other words, the DBN will look fully
connected.
DBN

Kevin Murphy, 2000



DBN version of the occasional dishonest casino

P (7.
ot

: Z

41
F L
1 |78))
F 0.95 | 0.05
Tt
L 0.1 0.9
N
‘JP(Xt-I-l‘T‘-t—I—l] X
Y, t+1
1 2 3 4 5 6
7Tt_|_1 F 1/6 |1/6 |1/6|1/6 |1/6 | 1/6
L 0.1(01/(/011({0.1 (0.1 (0.5




Three important questions in HMMs

 What is the probability of a sequence from an
HMM?

— Forward algorithm

 What is the most likely sequence of states for
generating a sequence of observations
— Viterbi algorithm

e How can we learn an HMM from a set of
sequences?

— Forward-backward or Baum-Welch (an EM algorithm)



Computing the probability of a sequence from
an HMM

P(xh”' y LT, T =" 77TT) —
T

a’()ﬂ'l H 67'('75 (ajt)a’ﬂ'tﬂ't—l—l

/ t=1 | N

State transition between

Emitting symbol x, consecutive time points

Initial transition



Computing the probability of a sequence
from an HMM

* But we don’t know what the sequence of states (path) is
* So we need to sum over all paths

* The probability over all paths is:
T

P(:Cla T 7xT) — Z A0, Heﬂ't (xt)a'ﬂ'tﬂ't—|—1

Ty , T t=1
N _J
Y

Sum over all paths

 The forward algorithm gives an efficient way to compute this
probability

* Itis based on the concept of dynamic programming



Goals for today

 What are Hidden Markov Models (HMMs)?

— How do they relate to Dynamic Bayesian
Networks?

* What are Input/Output HMMs (IOHMMs)?
* Learning problems of IOHMMs



Input output Hidden Markov Models (IOHMM)

* Asinthe HMM we have
— States, emissions and transitions
* |n addition we have a sequence of inputs

— The transitions and emissions can depend on
inputs (u;,..,uy)

* |n a way, IOHMMs map inputs to outputs
— This is different from HMMs

* HMMs aim to define P(x;.x;) while IOHMMs
define P(x;.x;lu;..u;)

Bengio & Frasconi, IEEE Trans on Neural Networks 1996



Input output Hidden Markov Models (IOHMM)

Hidden states

Inputs

Lt Zl?t_|_1

N —

Outputs

Transition and emissions are
dependent upon a set of external
stimuli

v




Formally defining an IOHMM

The set of K hidden states
Emission characters/symbols/values

Transition probabilities conditioned on the
iInput

— Unlike HMMS where we had ay; = P(m; 1 = l|m = k)
— Here we have ax = P(mi41 = l|m = k,upq1)
Similarly for emission probabilities on the

input and state

Gk(iﬁt) — P(xt‘ﬂ't = kaut)



Three important questions in IOHMMs

 What is the probability of a sequence from an
IOHMM?

— Forward algorithm

 What is the most likely sequence of states for
generating a sequence of observations

— Viterbi algorithm

e How can we learn an IOHMM from a set of
seguences?

— Forward-backward algorithm (an EM algorithm)



Computing the probability of a sequence from
an IOHMM

P(Clj'l,"' g LTy T,y 77TT|U17'°° ,UT)

T
— HP($t|7Tt,Ut)P(7Tt\7Tt—17Ut)
t=1

l |

State transition between

Emitting symbol x, consecutive time points



As in the case of HMMs

* We would need to sum over the possible state
configurations

P(xlv'”axT|u1” , U Z HP -CUt\Wt,Ut 7775‘7716 17Ut)

-, t=1

Sum over all paths

* We will use the forward algorithm for this
problem



How likely is a given sequence: Forward
algorithm

* Define f (t)as the probability of observing

X1, -+ ,xs and endingin state k at time ¢
given inputs u;..u,
fk( ) (2171, ' 7xt77Tt:k‘u17°" 7ut)

 This can be written as follows
it +1) = P(@ealmerr, ur) Y fit)P(megr = klme = Lugia)

fi(t +1) = ex(x1) Y filt)an



Steps of the Forward algorithm

* |nitialization

fe(1) = ex(x1)P(m1 = kluy)

e Recursion:fortr=2to T

fi(t) = ex(x Zaucfz (t—1)

* Termination

P(ajla'” 7£ET‘U17'” ,UT) — Zfl(T>
[=1



Working through an example

Suppose we are able to measure three reporter
molecules whose values are dependent upon
input chemical stimulus and whether one of four
possible hidden pathways are triggered.

Chemical stimulus: {0,1}

Hidden Pat

hways: {A, B, C, D}

Reporter molecules: {r, ry,r3}

Given a sequence of reporter molecule
measurements, and chemical stimuli, infer which

hidden pat

nway was likely triggered



Mapping to an IOHMM

Hidden states T‘-t E {A7 B7 07 D}

U+ - {O, ]_}
it 't Ty € {r1,72, 73}
Inputs %

L —

We need to specify three CPTs
P(Tl’l |U1)
} P(mg|mi—1,uy)

A X)) Plame, u)
Outputs




The CPTs that we will use

T

A B C D

Ul 0.510.5 0

05/105] 0 0

Lt

0 A 0.8 0.1 0.1
0 B 0.2 0.6 0.2
Ty, U 0 C (0.25| 0.5 |0.25
0 D 0.2 0.2 0.6
1 A 0.2 0.6 0.2
1 B 0.25| 0.5 | 0.25
1 C 0.2 0.2 0.6
1 D 0.5 10.25 1] 0.25

TTt41
A B C D
0.6 | 0.2 | 0.2 0
0.2 | 0.6 0 0.2
0.1 0 0.8 | 0.1
0 0.25(0.25| 0.5
0.8 | 0.1 | 0.1 0
0.8 | 0.1 0 0.1
0.1 0 0.8 | 0.1
0 0.1 | 0.8 | 0.1

T, Ut4+1

= | === 0|0 |0|0

OC(lo|®|>P|IO[(O|W | P>

Suppose we observed the following sequences
nput: 0110

Output: i rirr;

How likely is this observation from our IOHMM?



Transition probabilities encode some
independencies

TTt41

A B C D

0.6 | 0.2 | 0.2 0

0.2 | 0.6 0 0.2

0.1 0 08 | 0.1

0 [(025(0.25| 0.5

Tty U1

08 | 01| 01 0

08 | 0.1 0 0.1

0.1 0 08 | 0.1

= === OO0 |0|O0

OCO|lOo|®|>»P(O[(O|0 | P>

0 01| 0.8 | 01




Applying the forward algorithm

Input: 0 1 1 0

Output: | 1 | M | I | I3

1 2 3 4

O\l | m|>
N

= P(r2|B,1) x (fa(2)P(B|A4, 1)+
fB(2)P(B|B,1) + fp(2)P(D|C, 1))



Result of applying the forward algorithm

Input: 0 1 1 0
Output:
1 1 Iy I3
1 2 3 4
A 0.4 0.08 0.04488 0.0033861
B 0.1 0.0125 0.033125 0'02156082
C 0 0.008 0.00308 0'002;;7906
D 0 0.01 0.0007625 | 0.00438855

P(T17T17T27T3|07 17 170) — fA(4) + fB(4) + fC’(4) + fD(4): 00325



Learning an IOHMM from data

* Given J paired sequences
{(wlle ; ul:Tl)a ‘o ($1:TJ, U1:TJ)}
* Parameter estimation:
— Learn the transition and emission probability distributions
— This is very similar to what is done in HMMs
e Structure learning:

— Learn the number of states and the dependencies among
the states

— Because states are hidden variables and we do not how
many there are, this adds another level of complexity in
learning

— We will first assume that we know the number of states



The expectation maximization algorithm

* Expectation Maximization (EM) is a widely used
when there are hidden variables

* Itis an iterative algorithm that maximizes the
likelihood of the data

e Each iteration is made up of two steps

— Expectation step (E): estimate the expected values of
hidden variables given the data and previous
parameter settings

— Maximization step (M): estimate the parameters using
the expected counts



Learning without hidden information

* Transition probabilities

— — — — Number of transitions from
Akl P(Trt l‘ﬂ-t_l k’ Ut p) state k to state / given input p

nkj—)l|ut:p‘/

D1 1/ juy=p
* Emission probabilities

€k(C) — P(l’t — C”ﬂ't — k, Ut = p) Number of times c is emitted
/fromkgiven input p
nk,C|’U,t:p

ZC’ nkac/ |ut:p




The expectation step

* We need to know the probability of the symbol at 7 being
produced by state i, given the entire observation and input
sequence u;.p, X;.7

P(ﬂ-t — k‘ulzTa ml:T)
 We also need to know the probability of observations at ¢

and (t+1) being produced by state i, and [ respectively given
seguence x

P(ﬂ't — 7;,7Tt—1 — j‘ulzTa wl:T)

e Given these we can compute our expected counts for
state transitions, character emissions

Bengio & Frasconi, IEEE Trans on Neural Networks 1996



Computing P(7; = k|ui.7, 1.7)

* First we compute the probability of the entire
observed sequence with the #”symbol being

generated by state k

P(Wt — ka$1:T|'UJ1:T)

 Then our quantity of interest is computed as
P(my =k, x1.7|u1.7)

P(?Tt — klulzTamlzT) — P(£1-T|u1-T)
o : :

Obtained from the forward algorithm



Computing P(m =k, x1.7|u1.7)

* To compute

P(m =k, x1.7|u1.7)

 We need the forward and backward algorithm

— P(mlztaﬂ-t — k‘ulzt)P(mt—l-liT g = k’ ml;t’“’l:T)

— P(w‘lzt,m — k“ULt)P(wt—l—l:T‘ﬂ-t — kaut:TP

] |

v |
Forward algorithm f,(7) Backward algorithm b,(1)



Steps of the backward algorithm

* |nitialization (r=T7)
bi(t) = 1

e Recursion (t=7-1 to 1)
bk(t) = Zlaklel(xtﬂ)bl (t -+ 1)



Trying out an example with backward
algorithm

* Again assume we have the same CPTs as those
associated with the forward algorithm demo

* Assume we observe the following
nput: 011
Output: r,; r, r,

 What are computations for the backward
algorithm?



Results from applying the backward algorithm

Input:O 1 1 ﬂ-t‘l“l
Output: [, I, AlB]c]o
0 | A |lo6|02]|02] 0
0o | B |02/06]| 0 |02
1 | 2 | 3 Yl o | c|o1| o0 |o08]o01
A 019 | 1 Slo|p | o |o2s]025]05
B 0.09| 1 g: 1 | A |08|01]01]| O
C ' 1 1 | B |[08]01] 0 |o01
D / 1 1 | c |01] o |08]01
1 | D| 0 |01]|08]o01

bB(Q)A)(ABv 1)P(T2|A7 1)bA(3) T P(B|Bv 1)P(T2|B7 1)bB (3)
+P(D|B,1)P(rs|D, 1)bp(3)



Computing P(m =k, x1.7|u1.7)

* Using the forward and backward variables,
this is computed as

P(Wt — kamlzT‘ulzT)

P(T‘-t — k‘ulzTa m1:T) — P(ml-T‘Ufl-T)

fr(t)0r(t)

P(£1:T|u1:T)

P(T‘_t — k‘ulszwlzT) —



Computing P(m, =i, m—1 = jlui.r, T1.7)

* This is the probability of symbols at f and ¢+
emitted from states k and [ given the entire

observed and sequence x;., and input
sequence u; .y

P(Wt =1, 1 = jamlzT\uLT)
P(wlleulzT)

fi(t = Dajiei(x)b;(1)
P(xi.7|ui.7)




Putting it all together

* Assume we are given J training instances
{(CBLTl ) ul:Tl)a S (wlzTJ, U1:TJ)}
* Expectation step

— Using current parameter values compute for each (1.7 ; Ul:Tj)
* Apply the forward and backward algorithms

* Compute
— expected number of transitions between all pairs of states
— expected number of emissions for all states

* Maximization step

— Using current expected counts
* Compute the transition and emission probabilities



Baum-Welch one iteration

e Let’s assume we have J=2 training instances

{(O, 1, 1), (7"1, T2, 7“2)}
{(1, O, O), (7‘2,7‘1,7‘1)}

* Each training example will contribute to the
expected counts of transition and emission
probabilities

* Expectation step:

— Compute the forward and backward variables for
both training samples, for all time points



Baum-Welch one iteration M step

e Suppose we are updating the transition
probability of A to B given input u=1
{(07 17 1)7 (r17 ra, TZ)}

1,0,0)(rq, 7,1
NA— Blu—1 {( )(re,71,71)}

_ Ja()aapes(r2)bp(2) + fa(2)aapes(r2)bs(3)
P(’l“l, TQ,TQ‘O, 1, 1)

Contribution from sample 1

Sample 2 will not contribute as there is no relevant configuration



Baum-Welch one iteration M step

* Suppose we are updating the expected counts
for observing r, from state B given input u=1

n?“g,BlUZl

_ [(2)bs(2) + f5G3)B) | fe()bs(1)
P(’I“l,’l“g,’l“2|0,0,1) | (P(fr‘zjrlyrl‘l,()?())
! Y

Contribution from sample 1 Contribution from sample 2

\ J




Goals for today

* Application of IOHMMSs to examine regulatory
network dynamics



Bifurcation events

e Bifurcation events occur when sets of genes
that have roughly the same expression level
up until some time point diverge

A _ Expression data
Expression

Level




Dynamic Regulatory Events Miner (DREM)

* Given
— a gene expression time course
— Static TF binding data or signaling networks

* Do

— |dentifies important regulators for interesting
temporal changes

e DREM is suited for short time courses
* DREM is based on an Input-Output HMM

Ernst et al., 2007 Mol Sys Biol



DREM key idea

Expression data
A Expression xP ! ~ B Static TF-DNA binding data
Level TF A .,
14
I |
—>

D

Expression
Level

Ernst et al., 2007, Mol Sys Biol

RN

IOHMM model

TF D




IOHMM model in DREM

* The output distributions were modeled as
Gaussians

— Enabled modeling continuous expression values

* State transitions depended on static input and
the current state
— A binary classifier was trained in the M step for

each state with two children, to discriminate
between genes assigned to the bifurcating states



Defining the transition probability in DREM

* DREM uses a binary classifier (logistic
regression) to define transition probabilities

e Assume we are state /2, which has two child

states a and b
1

P ¢ — t:h7 ") = .
(e = ol =R ) = A =5, B ()

Input associated with the i gene: collection of
binding sites on gene i’s promoter

State-specific parameters




Results

* Application of DREM to yeast expression data
— Amino acid (AA) starvation
— One time point ChIP binding in AA starvation

* Analysis of condition-specific binding

* Application to multiple stress and normal
conditions



DREM application in yeast amino acid
starvation

A GCN4
MET32
HAPS
MET4
2= RIG3
DALS2
LN3
CBF1 CBF1
ARGS1
STP1

FHL1 DALB1
SFP1 STP1
RAP1 GLN3

DREM identified 11 paths, and associated important AA related TFs for each split



Does condition non-specific data help?

GCN4

B MET32 ) ) 23
ik Nitrogen compound metabolism 510~
DAL82

2 = RIG3

CBF1
YAPT -
GLN3 C3F1
ARGS!
SR Nucleotide biosynthesis 2*10~'2

1 -
GoNa Cellular carbohydrate metabolism 4*10 '3
CBF1
@ Ty element transposition 10734
0 SN -,-——— pm— Protein biosynthesis 3*10~72
/c~-§- ah :
Ribosome biogenesis and assembly 4*10~2"
MBP1 FHL1
-1 = RAP
- '\ SwWi4 SFP11
ip‘: Amino-acid transport 102
ABF1
STP
P — oL

Yes, adding additional non-condition specific data helped explain more splits or
found more TFs per split



Validation of INO4 binding

* INO4 was a novel prediction by the method

* Using a small scale experiment, test binding in
4 gene promoters after AA starvation

* Measure genome-wide binding profile of INO4
in AA starvation and SCD and compare relative
binding



Validation of INO4 binding

Genes associated with INO4 split profile ~ INO4 occupancy is much higher in AA

response parn starvation compared to normal (SCD)
Expressin 12
24 level e
10 B AA starvation [
1= 5 8
£,
g
i = “=T T T £ 4
0 05h 1h 2h 4 h 6h
7 0 - T T
YDR497C YNL169C YGR196C YHR123W
0 - Gene
More genes are bound genome-wide Stronger binding in AA starvation of
in AA starvation genes in this path
250 o 5 —
B 0.001-0.005 (union) - 4.5 s
® B <0.001 (union) @ 4 %Y
@ o 35 S ——
& gg 3 Tt
s e
[ - QL . .
€ g&_ 15 sl .
2 o 1
<<t 0.5
0 <
0h SCD 4h AA 0 1 2 3 4

Experiment condition SCD repeat 1: —log base 10 P-value



Does integration help?

e Randomize ChIP data and ask if enriched TFs
with paths were identified

— Fewer TFs were identified

* Compare IOHMM vs HMM

— Lesser enrichment of Gene Ontology processes in
HMMs paths compared to IOHMMs



Take away points

Network dynamics can be defined in multiple ways
Skeleton network-based approaches
+ The universe of networks is fixed, nodes become on or off
+ Simple to implement, and does not need lot of data
+ No assumption of how the network changes over time
— No model of how the network changes over time
— Requires the skeleton network to be complete
Dynamic Bayesian network
+ Can learn new edges
+ Describes how the system transitions from one state to another
+ Can incorporate prior knowledge
— Assumes that the dependency between t-1 and t is the same for all time points
— Requires sufficient number of timepoints
IOHMMS (DREM approach)
+ Integrates static TF-DNA and dynamic gene expression responses
+ Works at the level of groups of genes
+ Focus on bifurcation points in the time course
— Tree structure might be restrictive (although possible extensions are discussed)
— Depends upon the completeness of the TF binding data



