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RECAP: Graph clustering enables
community structure detection

Graph clustering partitions vertices into groups based on their

interaction patterns
Such partitions could be indicative of the specific properties of

the vertices/form communities

Community 1 !

Community 3

Community 2




RECAP: Common graph clustering
algorithms

Hierarchical or flat clustering using a notion of
similarity between nodes

Girvan-Newman algorithm
Hierarchical Agglomerative clustering
Spectral clustering

Markov clustering algorithm

Affinity propagation



Goals for this lecture

* A few graph-theoretic concepts
— Graph Laplacian
— Connected components from the Laplacian

* Spectral clustering
— Spectral clustering and graph cut
— Spectral clustering demo with Zachary Karate Club

* Application of spectral clustering



Notation

Graph G={V, E} where V is the vertex set and E is
the edge set

D: Degree matrix of a graph

W: Adjacency matrix of a graph

L: Graph Laplacian

x” denotes the transpose of x, where x is a vector

A~ denotes inverse of matrix A



A few linear algebra concepts

* Eigen vector of A

— v, in n-dimensional (nX1) vector, is the eigen vector of A
with eigen value A, (a scalar) if

Av = \v
e Positive semi-definite

— A is said to be positive semi-definite if, for any n-
dimensional vector x, the following holds

' Ax > 0
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Unnormalized Graph Laplacian

 For a given graph G={V, E}

* The unnormalized graph Laplacianisa | V |X]| V|
matrix

L=D-W



Unnormalized Graph Laplacian example

Adjacency matrix(W) Degree matrix (D)
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Properties of the Laplacian

For every vector fi |n R",
fILf = wa fi = 1;)?

L is symmetric and p05|t|ve semi-definite

f'Lf>0VfeR"

The smallest eigen value of L is 0 and its corresponding eigen
vector is all 1s

L has n non-negative eigen values



Connected components

* A subgraph where there is
path from one node to
another

 The number of connected
components is inherently
tied to the Laplacian matrix

Two connected components

B

D
Connected component: A
subgraph spanning a vertex
subset where every vertex can be
“reached” from another vertex



Number of connected components and
the multiplicity of 4=0

* Let G be an undirected graph with non-negative
weights.
 Then the multiplicity, £, of the eigenvalue 0 of L

equals the number of connected components in the
graphA;, ..., A,



Number of connected components and L’s
smallest eigen value

 To see why this is true, we use the property of an eigen vector,
consider the case of one connected component

— If fis an eigen vector of L, then Lf=Af
— For eigen value 0, Lf=0 (vector or all zeros)

* |n addition we know
1
f'Lf = 5 Z’wij(fi — f;)°
©,J

* |If fis an eigen vector corresponding to eigen value =0, this must be
0

* The only way this can be 0 is if f,=f; because w;;is non-zero
e This holds for all vertices connected by a path
* If all vertices are connected, then fis a vector of constants



Now consider a graph with k components

Wi Ly
Ws Lo

Wi Ly,

 Wis block diagonal with k blocks
* L is also block diagonal




Consider a graph with kK components

Each L; is a proper graph Laplacian for the subgraph
of the i component.

Each L; has one eigen value of 0 and the
corresponding eigen vector is constant one vector

Eigen vectors of the full graph is the same as the
eigen vectors of individual blocks with the remaining
entries set to 0.

Thus L must have k eigen values equal to O.

Each eigen vector of L is constant non-zeros for the
entries corresponding to each connected component




An example with 2 connected
components

For this matrix, we expect to have two eigen
vectors associated with eigen value =0




The corresponding Laplacian

L=D-W




eigen value (4))

First 10 eigen values
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Normalized graph Laplacians

e L

Ssym

Lsym = D2 p-1Y2 1 _ p-1/2ywyp—1/2

e L

rw

L.,=D 'L=I1—-D"'W



Graph Laplacians have a lot of
applications

* Graph clustering

* Regularization in an objective function to find a
solution that obeys the graph structure

* Diffusion on a graph



Goals for this lecture

* Spectral clustering
— Spectral clustering and graph cut
— Spectral clustering demo with Zachary Karate Club



Spectral clustering

Based on the graph Laplacian
Graph Laplacian L=D-W

— D is the diagonal degree of matrix
— Wis the adjacency matrix

Obtain the k eigen vectors associated with k smallest
eigen values of L

Represent each node as the k-dimensional vector
Cluster nodes based on k-means clustering



Spectral clustering key steps

: . k clusters
Adjacency matrix

(W)

o




Spectral clustering can be applied on non-
graph data

* Let {x,.. X, }be a set of data points

 We can create a similarity graph or a distance graph
using the pairwise similarity (s;;) or distance (d;;) with one
of the following strategies
* ¢&-neighborhood graph
— Connect all vertices v; and v; such that d;<¢
* k-nearest neighbor graph
— Connect v, to its k nearest neighbors
— Make the graph symmetric
* Fully connected graph
— Use s;;as similarity for all pairs



Toy example of spectral clustering

* Let’s consider spectral clustering for a toy dataset:
— {X;.. X500}: 200 points drawn from a mixture of four
Gaussians Histogram of the sample

[ R S I 2 ¢ ]

0 2 4 6 8 10

— Use Gaussian similarity to create a graph

2
sij = exp(—|z; — x;|%)/2
— Consider two variants : 10 nearest neighbors and fully
connected graph

Luxburg tutorial on spectral clustering



Toy example of spectral clustering
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Recall the Zachary karate club study
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Adjacency matrix of Zachary Karate club
study




First 20 eigen values of the ZKC graph
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First two eigen vectors of the ZKC graph
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Clusters depicted on the graph




Spectral vs Girvan-Newman




First five eigen vectors of Zachary Karate

club data
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Reordered matrix post clustering
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ZKC graph clustered into k=5 clusters




Graph cuts

* A cuton graph is defined as a partitioning on the
nodes of the graph into two sets

* The size of a cut is the number of edges spanning the
cut
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Different types of graph cuts

e A cutcan be

— Min Cut: No other cut is smaller (fewer edges)
— Max Cut: No other cut is larger



Graph clustering from a graph cut point of

View

e Clustering on the graph can be re-stated as follows:

— Find a partition of the graph such that the edges between
different groups have a very low weight (which means that
points in different clusters are dissimilar from each other) and
the edges within a group have high weight (which means that
points within the same cluster are similar to each other).

 The most direct way to find such a partition is by solving
the Min-Cut problem

— This is an NP-hard problem

* The spectral clustering algorithm can be thought of as
solving a continuous relaxation of this problem

Luxburg Tutorial on Spectral graph clustering



Goals for this lecture

* A few graph-theoretic concepts
— Graph Laplacian
— Connected components from the Laplacian

* Spectral clustering
— Spectral clustering and graph cut
— Spectral clustering demo with Zachary Karate Club

* Application of spectral clustering



Application of spectral clustering

Finding higher-order Topologically Associated
Domains from Hi-C data

Disease module identification

Similarity network fusion for aggregating data types
on a genomic scale



Genome is organized into multiple
organizational uni

Chromosomal territories

through inter-TAD
interactions

e Compartments and sub-
compartments
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Chromosome regions

A graph is a natural representation of a Hi-

HiC matrix for cis and
trans interactions
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Genes

An overview of spectral clustering

Adjacency matrix Laplacian matrix First k eigenvectors
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Does graph clustering help?
Silhouette index (higher is better)
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Avg rank (smaller is

better)
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Does graph clustering help?
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Spectral clustering of Hi-C data of human

Spectral clusters for human ESC
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Two main types of chromatin interaction

Spectral clusters for human ESC
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Application of spectral clustering

Finding higher-order Topologically Associated
Domains from Hi-C data

Disease module identification

Similarity network fusion for aggregating data types
on a genomic scale



Similarity network fusion for aggregating
data types on a genomic scale

This paper had two goals:

— Integrate different types of data using a network-based
approach

— ldentify groups of samples representing integrated data types
Recent high throughput technologies have made it
possible to collect many different types of genomic data
for individual patients

How do we combine patient data to describe a disease?
This is challenging because of the following issues:

— Noisy samples

— Small number of samples than variables

— Complimentary nature of the data



Similarity Network Fusion

e Given N different types of measurements for
different individuals
* Do
— Construct a similarity matrix of individuals for each data
type

— Integrate the networks using a single similarity matrix
using an iterative algorithm

— Cluster the network into a groups of individuals



Similarity network fusion with two data
types

a . b . L . c Fused patient
Original data Patient similarity matrices Patient snmllanty networks Fusion iterations similarity network
mRNA expression
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Patients

Patients

Patients

Patients
Patients

Supported by all datz

Similarity network fusion (Nodes are patients, edges
represent similarities).



Defining a similarity graph over patient
samples

* For each data type, create a weighted graph, with
vertices corresponding to patients

* Letx; and x; denote the measurements of patients i
and j

* Edge weights, W(i,j) correspond to how similar

patient i is to patient j based on x; and x;

J Euclidean distance

.o 2 CEZ:QL'
W (i, ) = exp( il j))
o M€

Hyper-parameter Scamverage of the

distance between each node and
its neighborhood)



Creating a fused matrix

* Define two matrices for each data type

* A full matrix: normalized weight matrix
WG
— ] # i
P(i, ) =+ 2% . W(i,k)
\ 1/2,j=1i
e A sparse matrix (based on k nearest neighbors or
each node)

W(, j)
S(i, j) = - DI NZ-W(i>k) >

0 otherwise

i

This makes the assumption that the local similarities are the most reliable



Iterate for fusion

Input m data types
Construct W for each data type v
Construct dense matrix P and sparse matrix S/

At each iteration, update the dense similarity matrix
of one data type using the similarity matrix of the
other data type



Iteration with m=2 data types

For iteration 7+ 1/
Update similarity matrix of data type 1

t(lle — g« p t(2) < (S(l))T

Update similarity matrix of data type 2

P2 = §) 5 p 5 (s

Update similarity matrix of data type 1 using weight matrix
from data type 2 and vice-versa



What is going on in the iteration step

Neighbors of i

\'
Pl =Y Y S(l)(z‘,k)xS(l)T(j,l)th(z)(k,l)

ke N; ZEN]'

Neighbors of j

We are updating the similarity matrix using the most confident common neighbors
of iandj



Extending to m>2 data types

m — 1

!

Just average over all other data types

k
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SNF termination

* After repeating the iterative updates for t steps, final
similarity matrix is

1 m
P:E;Pf

* This is then clustered using spectral clustering



Application of SNF to Glioblastoma

* Contradicting information about subtypes
depending upon the type of data used

 Glioblastoma dataset

* Three data types among 215 patients
* DNA methylation (1491 genes)
* mRNA (12,042 genes)
* miRNA (534 miRNAs)



SNF application to GBM identifies 3 subtypes

DNA methylation

MRNA expression

MiRNA expression
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Validation of SNF identified subtypes
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Key points of graph clustering algorithms

* Flat or hierarchical clustering

e Algorithms differ in

— how they define the similarity/distance measure
* Local topology measures
* Global measures

— Whether the algorithm takes as input the number of
clusters or the goodness of clusters (e.g. the approximate
cluster algorithm)
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