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Goals for today

* Finding modules on graphs/Community structure on
graphs/Graph clustering

e Girvan-Newman algorithm

* Hierarchical agglomerative clustering on graphs

— Stochastic block model
— Hierarchical random graph model
— Combining the two



RECAP

* Network structure is often analyzed for different
topological properties.

— Degree distribution

— Diameter
— Clustering coefficient/Modularity measures

— Network motifs

* Network modularity questions
— How to measure modularity
— How to find modules

e Algorithms for clustering



RECAP contd

* Flat clustering
— Cluster objects into K clusters
— K : number of clusters is a user defined argument
— Popular algorithms

e K-means
e Gaussian mixture models

* Hierarchical clustering

— Instead of the number of clusters, it requires us to specify
how much dissimilarity we will tolerate between groups

— Can be top-down (divisive) or bottom up (agglomerative)



Graph clustering enables community
structure detection

Graph clustering partitions vertices into groups based on their

interaction patterns
Such partitions could be indicative of the specific properties of

the vertices/form communities

Community 1 !

Community 3

Community 2




Common graph clustering algorithms

Hierarchical or flat clustering using a notion of
similarity between nodes

Girvan-Newman algorithm
Hierarchical Agglomerative clustering
Spectral clustering

Markov clustering algorithm

Affinity propagation



Goals for today

e Girvan-Newman algorithm



Motivation of the Girvan-Newman
algorithm

Communities
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Intercommunity edges

* A graph that has a grouping (community) structure is going to have few
intercommunity edges.
 Community structure can be revealed by removing such intercommunity edges

Detecting community structure in networks, M. E. J. Newman



Girvan-Newman algorithm

* General idea: “If two communities are joined by only
a few inter-community edges, then all paths through
the network from vertices in one community to
vertices in the other must pass along one of those
few edges.”

 Community structure can be revealed by removing
edges that with high betweenness

* Algorithm is based on a divisive clustering idea

M. E. J. Newman and M. Girvan. Finding and evaluating community structure



Betweenness of an edge

 Betweenness of an edge ¢ is defined as the number of
shortest paths that include e

* Edges that lie between communities tend to have high
betweenness

Shortest path including e

B —
(€) Number of total shortest paths



Girvan-Newman algorithm

* |nitialize
— Compute betweenness for all edges
* Repeat until convergence criteria

1. Remove the edge with the highest betweenness
2. Recompute betweenness of remaining edges

 Convergence criteria can be
— No more edges
— Desired modularity

M. E. J. Newman and M. Girvan. Finding and evaluating community structure



Girvan-Newman algorithm as a
hierarchical clustering algorithm

One can view this algorithm as
a top-down (divisive)

hierarchical clustering algorithm

The root of the dendrogram

groups all nodes into one

community i l il

Each branch of the tree g@) O O O CE—CI) O
represents the order of splitting \ ¥

the network as edges are
removed

Graph vertices



Applying the Girvan-Newman
algorithm to Zachary’s karate club
network

Dataset collected by Wayne Zachary over 2 years who

observed social interactions among members of a karate
club

Zachary’s karate club network is a well-known example of
a social network with community structure

Network represents the friendships among members of a
karate club

Due to a dispute the club split into two factions

Can a graph clustering/module detection algorithm
predict the factions?
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Node grouping based on betweenness

Each node is an individual and edges represent social interactions among individuals.
The shape and colors represent different groups.



Goals for today

* Hierarchical agglomerative clustering on graphs
— Stochastic block model
— Hierarchical random graph model
— Combining the two



Issues with existing graph clustering
models

* Flat clustering (Stochastic block model)
— Need to specify the number of clusters
— Cluster structure might be hierarchical

— Resolution limit: the presence of large clusters may
prevent the recovery of smaller clusters.

* Hierarchical clustering

— At the top level, only one cluster is found, which might
group unrelated clusters

— At the bottom level, clusters might be too small



Hierarchical Agglomerative Clustering
(HAC)

* A hierarchical “agglomerative/bottom-up” clustering
algorithm

e Starting from individual graph nodes it gradually
finds clusters of increasing size but does not go all
the way to the top

 HAC algorithm was developed to overcome issues of
existing flat and hierarchical graph clustering
strategies

e Main idea: Combines a flat stochastic block model
and a hierarchical random graph model

Park and Bader BMC Bioinformatics 2011



Goals for today

* Hierarchical agglomerative clustering on graphs

— Stochastic block model



Stochastic block model (SBM)

SBM is a probabilistic model for a flat community structure
Let G={V,E'} be a graph, with vertex set V and edge set E
Suppose each vertex (node) vin V can belong to one of K
groups

Let M denote the edge and non-edge (hole) patterns on the
graph where membership of vis in one of K groups

SBM describes P(M)

SBM is defined by parameters of within and between group
interactions

— 0, Probability of interactions between vertices of the same group i

— 0,; Probability of interactions between vertices of two different groups
i and j



Probability of a grouping structure
from the stochastic block model

Probability of edge and hole patterns between group i and j

Pij = 0;;' (1 —0;;)"

e;;: Number of edges between groups i and j
t;: Number of possible edges between
groupsiand j

h;;: Number of holes between groups i and j
hij = tij' el-j

Probability of edge-hole pattern (M) for all groups

K
:HPij H@e” 1—-86 ) i

1<J 1<J

t 1

Groups



Stochastic block model for flat
clustering for K=3 groups

€11 — 10
Coo — 10

(912 622 e33 = 10

€12 = 2

Group 1 (7 vertices) Group 2 (6 vertices)

613:1

623:1

hi1 = (7%6)/2— 10 =11
hoo =15 —10 =5

hgs = 21 — 10 = 11

hio =42 — 2 = 40
Group 3 (7 vertices) h13 — 49 — 1 = 48

hog =42 —1 =141




Stochastic block model for flat
clustering for K=3 groups

Group 1

11 =10 oy = (7%6)/2 — 10 = 11 Group 2
e25 = 10 has =15—-10=5 @

es5 = 10 has =21 — 10 = 11

€15 = 2 hip =42 — 2 = 40

€15 = his =49 — 1 = 48

€23 = 1 hos =42 — 1 =41

Group 3

P(M) = (611)"(1 — 011)" (012)° (1 — 012)*° (013) " (1 — 613)*°



Maximum likelihood Parameter
estimation in HAC

* Parameters of HAC are 0
* Suppose we know what the cluster memberships are
« Maximum likelihood estimate of parameters is Qij =

* The probability of edges/holes between groups i and j
. — Pt g
Pij =0, (1 —0;5)"

* can be re-written as

eij hij
€4 hz '
tij Ifij
6ij hij
Hence, everything can be expressed in terms of the edge presence and absence pattern

Py



Goals for today

* Hierarchical agglomerative clustering on graphs

— Hierarchical random graph model



Hierarchical Random Graph model
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Left subtree L(r) Right subtree R(r)

Probability of edges (e,) and holes (4,) between nodes in

P, =0°(1—6,)"

e,: Number of edges crossing L(r) and R(r)

h,: Number of holes between L(r) and R(r)



Hierarchical Random Graph model

T

_____________________

The HRG also describes a probabilistic model over the entire
hierarchy

P(M)=][P-=]]6:(1—6)"
;‘ r

All internal nodes



What if we did not want to merge up
to the very top?

 This is what the HAC model tries to do

})(A4) — ]jI JF;T’]iI~F?

rr/ &top r
Defined in the same way as the flat Defined in the same way as the

model for two groups, r and r’ hierarchical model for tree node r



Combining the HRG and the SB model

Two top level groups
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Agglomerative clustering of HAC

The idea of the HAC algorithm is to use
agglomerative clustering:

— build the hierarchy bottom up, but stop if a merge of
trees is not good enough

We consider each pair of clusters and merge them if
the corresponding model score improves

What is a good enough merge?



Define the score of a merge

Assume there are K top level clusters

If two nodes 1 and 2 are merged into 1’, the change
in likelihood before and after the merge is scored as:

M) &P
Yo =pan ~ L mr

This score enables us to develop a greedy
agglomerative algorithm



HAC greedy algorithm

Input: Graph G=(V,E)

Initialize top-level clusters rtop={{v}, in V}
Initialize K = [V

While K>1 do

— Find top-level clusters i and j with max )\ij
— Merge i andj into new top level cluster r

— Add r to rop

— L (r) = {i} and R(r)={j}

— Remove i and j from top

— K=K-1



HAC algorithm execution

* Let’s see one iteration of HAC with a small example
graph with 5 nodes V={1,2,3,4,5} and following edges

A4

Example graph

Initialization
- top={1,2,3,4,5}
- K=5



HAC algorithm iteration 1

* |n iteration one

Compute scores for all potential merges,
into a new node 6.

2oV

1
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3
P
k=11 6k
A4 =

Merge nodes with the highest score (example
shows 1,2)

Update hierarchy L(6)=1, R(6)=2

Update rop={3,4,5,6}

K=4

Repeat with new fop



Experiments

 Compare HAC with other algorithms
— Fast Modularity (CNM)
— Variational Bayes Modularity (VBM)
— Graph Diffusion Kernel (GDK)

e Assess performance based on link prediction
— Randomly remove a set of test edges

— Estimate within and between cluster interaction probabilities
using the remaining edges

— Generate confidence scores for all pairs of nodes within and
between clusters using cluster structure from training data

— Rank links based on confidence score and compute AUPR and F-
score

* Note, this assumes that the test nodes do not disappear from the
training set.



Assessing performance based on link
prediction

)

Generate test and
training data

Assess Precision and
recall on test set

‘E‘c‘

Cluster and rank
all edges (thickness)




HAC-ML is able to outperform other

algorithms

Link prediction performance of 85/15 cross validation (7.5% of observed edges held out).

Physical interactions

Data HAC-ML GDK CNM VBM HAC-ES HAC-E HAC-Q
Yeast-PPI @ 0.69=03 06907 07604 07105 06907 0.69+0.8
Drosophila 06602 06704 07004 06703 06703 06704

Human 0.73=0.9 10.75=0.7) 0.71=05 0.70=06 067=04 068x05 069+1.0

Celegans 0.68x15) 067=13 (0.68=13) 06606 066=08 06607 06708

Arabidopsis 0.80=8.3 (0.92=22 0.92—:3_2 090£3.6 0.78x11.0 0.87=10.8 0.88=114
Genetic interactions

Data HAC-ML GDK CNM VBM HAC-ES HAC-E HAC-Q
Yeast-GEN @ 0.67=0.0 06907 0.74=60 0.73=08 067x0.1 0.69+0.7

SGA 0.76.:t1.5 06700 06702 (0.76=03) 0.70=0.2 06700 0.69=0.2

SLAM @:tlo 09105 06808 06703 08429 0.76x10 06703




Precision

Precision
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HAC-ML is able to outperform

competing methods
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(B) PPI F1 scores
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(C) PPI AUC scores
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Multi-resolution analysis of yeast PPI

network

protein transport
[50/72]

transport

vesicle-mediated
[28/72]

[18/72]

K7 e ‘ 24 \
vesicle fusion ’,’
establishment
[19/72] [of protein localization

Golgi to plasma
membrane transport
[14/72]

autophagy
[14/72]

Figure 4 Protein transport complex. Bottom level clusters: Different shapes and colors in the topmost and leftmost panel indicate different
bottom-level clusters; Other panels: Each box indicates one GO keyword and its enrichment within the subnetwork, and vertices belonging to
this GO category are highlighted by non-gray colors.

involved in exocytosis

vesicle docking
[14/72]

Bottom level clusters
could provide greater
resolution to the GO

terms



Take away points

* Biological networks are modular
 Modules can be topological or functional

* We have seen two clustering algorithms

— Girvan-Newman algorithm
* based on edge-betweenness
» Can be viewed as top-down/divisive clustering algorithm

— Hierarchical Agglomerative clustering
 Combines SBM and HRG
* Enables one to find clusters and also their relationships
* Greedy probabilistic score for merging subtrees is fast
* Good performance on link prediction



