
Finding modules on graphs

Sushmita Roy
sroy@biostat.wisc.edu

Computational Network Biology
Biostatistics & Medical Informatics 826

https://compnetbiocourse.discovery.wisc.edu

Nov 1st 2018

mailto:sroy@biostat.wisc.edu
https://compnetbiocourse.discovery.wisc.edu

Goals for today
• Finding modules on graphs/Community structure on

graphs/Graph clustering
• Girvan-Newman algorithm
• Hierarchical agglomerative clustering on graphs
– Stochastic block model
– Hierarchical random graph model
– Combining the two

RECAP
• Network structure is often analyzed for different

topological properties.
– Degree distribution
– Diameter
– Clustering coefficient/Modularity measures
– Network motifs

• Network modularity questions
– How to measure modularity
– How to find modules

• Algorithms for clustering

RECAP contd
• Flat clustering
– Cluster objects into K clusters
– K : number of clusters is a user defined argument
– Popular algorithms

• K-means
• Gaussian mixture models

• Hierarchical clustering
– Instead of the number of clusters, it requires us to specify

how much dissimilarity we will tolerate between groups
– Can be top-down (divisive) or bottom up (agglomerative)

Graph clustering enables community
structure detection

Graph clustering partitions vertices into groups based on their
interaction patterns
Such partitions could be indicative of the specific properties of
the vertices/form communities

Community 1

Community 2

Community 3

Common graph clustering algorithms

• Hierarchical or flat clustering using a notion of
similarity between nodes

• Girvan-Newman algorithm
• Hierarchical Agglomerative clustering
• Spectral clustering
• Markov clustering algorithm
• Affinity propagation

Goals for today
• Finding modules on graphs/Community structure on

graphs/Graph clustering
• Girvan-Newman algorithm
• Hierarchical agglomerative clustering on graphs
– Stochastic block model
– Hierarchical random graph model
– Combining the two

Motivation of the Girvan-Newman
algorithm

Detecting community structure in networks

M. E. J. Newman
Department of Physics and Center for the Study of Complex Systems,

University of Michigan, Ann Arbor, MI 48109–1120

There has been considerable recent interest in algorithms for finding communities in networks—
groups of vertices within which connections are dense, but between which connections are sparser.
Here we review the progress that has been made towards this end. We begin by describing some
traditional methods of community detection, such as spectral bisection, the Kernighan–Lin algorithm
and hierarchical clustering based on similarity measures. None of these methods, however, is ideal
for the types of real-world network data with which current research is concerned, such as Internet
and web data and biological and social networks. We describe a number of more recent algorithms
that appear to work well with these data, including algorithms based on edge betweenness scores,
on counts of short loops in networks and on voltage differences in resistor networks.

I. INTRODUCTION

In the continuing flurry of research activity within
physics and mathematics on the properties of networks,
a particular recent focus has been the analysis of com-
munities within networks [1–10]. In the simplest case, a
network or graph can be represented as a set of points,
or vertices, joined in pairs by lines, or edges. Many net-
works, it is found, are inhomogeneous, consisting not
of an undifferentiated mass of vertices, but of distinct
groups. Within these groups there are many edges be-
tween vertices, but between groups there are fewer edges,
producing a structure like that sketched in Fig. 1.

The ability to find communities within large networks
in some automated fashion could be of considerable use.
Communities in a web graph for instance might cor-
respond to sets of web sites dealing with related top-
ics [11, 12], while communities in a biochemical network
or an electronic circuit might correspond to functional
units of some kind [4, 5, 13, 14]. In this paper we discuss
computer algorithms for the extraction of communities
from raw network data.

FIG. 1: A small network with community structure of the
type considered in this paper. In this case there are three
communities, denoted by the dashed circles, which have dense
internal links but between which there are only a lower density
of external links.

The outline of the paper is as follows. In Sec. II we de-
scribe some of the historical approaches to finding com-
munities including spectral partitioning and hierarchical
clustering. Then in Sec. III we describe some newer meth-
ods that have appeared in the last few years, including
the edge betweenness method of Girvan and Newman and
a number of variations on it proposed by other authors.
In Sec. IV we give our conclusions.

II. TRADITIONAL APPROACHES

The methods described in this paper all assume that
we are given a network structure that we wish to divide
into communities in such a way that every vertex belongs
to one of the communities. We assume that the network
is of the simplest kind possible, with a single type of
undirected, unweighted edge connecting unweighted ver-
tices of a single type, although generalizations to more
sophisticated network types have been given for some of
the algorithms described.

The problem of finding good divisions of networks has
been studied for some decades now in two fields in par-
ticular, computer science and sociology, which have de-
veloped quite different approaches as we now describe.

A. Computer science approaches

The typical problem in computer science is that of
dividing the vertices of a network into some number g
of groups with roughly equal size, while minimizing the
number of edges that run between vertices in different
groups. Computer scientists refer to this task as graph
partitioning. Graph partitioning problems arise for ex-
ample in the optimal allocation of processes to proces-
sors in a parallel computer. In practice, most approaches
to graph partitioning have been based on iterative bi-
section: we find the best division we can of the com-
plete graph into two groups, and then further subdivide
those two until we have the required number of groups.
Among the many algorithms suggested for the problem,

• A graph that has a grouping (community) structure is going to have few
intercommunity edges.

• Community structure can be revealed by removing such intercommunity edges

Detecting community structure in networks, M. E. J. Newman

Communities

Intercommunity edges

Girvan-Newman algorithm
• General idea: “If two communities are joined by only

a few inter-community edges, then all paths through
the network from vertices in one community to
vertices in the other must pass along one of those
few edges.”

• Community structure can be revealed by removing
edges that with high betweenness

• Algorithm is based on a divisive clustering idea

M. E. J. Newman and M. Girvan. Finding and evaluating community structure

Betweenness of an edge

B(e) =
Shortest path including e

Number of total shortest paths

• Betweenness of an edge e is defined as the number of
shortest paths that include e

• Edges that lie between communities tend to have high
betweenness

Girvan-Newman algorithm
• Initialize
– Compute betweenness for all edges

• Repeat until convergence criteria
1. Remove the edge with the highest betweenness
2. Recompute betweenness of remaining edges

• Convergence criteria can be
– No more edges
– Desired modularity

M. E. J. Newman and M. Girvan. Finding and evaluating community structure

Girvan-Newman algorithm as a
hierarchical clustering algorithm

• One can view this algorithm as
a top-down (divisive)
hierarchical clustering algorithm

• The root of the dendrogram
groups all nodes into one
community

• Each branch of the tree
represents the order of splitting
the network as edges are
removed

2

FIG. 2: A hierarchical tree or dendrogram illustrating the
type of output generated by the algorithms described here.
The circles at the bottom of the figure represent the indi-
vidual vertices of the network. As we move up the tree the
vertices join together to form larger and larger communities,
as indicated by the lines, until we reach the top, where all are
joined together in a single community. Alternatively, we the
dendrogram depicts an initially connected network splitting
into smaller and smaller communities as we go from top to
bottom. A cross-section of the tree at any level, as indicated
by the dotted line, will give the communities at that level.
The vertical height of the split-points in the tree are indica-
tive only of the order in which the splits (or joins) took place,
although it is possible to construct more elaborate dendro-
grams in which these heights contain other information.

ious metrics of similarity or strength of connection be-
tween vertices. They fall into two broad classes, agglom-
erative and divisive [19], depending on whether they fo-
cus on the addition or removal of edges to or from the net-
work. In an agglomerative method, similarities are cal-
culated by one method or another between vertex pairs,
and edges are then added to an initially empty network
(n vertices with no edges) starting with the vertex pairs
with highest similarity. The procedure can be halted at
any point, and the resulting components in the network
are taken to be the communities. Alternatively, the en-
tire progression of the algorithm from empty graph to
complete graph can be represented in the form of a tree
or dendrogram such as that shown in Fig. 2. Horizontal
cuts through the tree represent the communities appro-
priate to different halting points.

Agglomerative methods based on a wide variety of sim-
ilarity measures have been applied to different networks.
Some networks have natural similarity metrics built in.
For example, in the widely studied network of collabo-
rations between film actors [21, 22], in which two actors
are connected if they have appeared in the same film, one
could quantify similarity by how many films actors have
appeared in together [23]. Other networks have no natu-
ral metric, but suitable ones can be devised using correla-
tion coefficients, path lengths, or matrix methods. A well
known example of an agglomerative clustering method is
the Concor algorithm of Breiger et al. [24].

Agglomerative methods have their problems however.
One concern is that they fail with some frequency to find
the correct communities in networks were the commu-
nity structure is known, which makes it difficult to place
much trust in them in other cases. Another is their ten-

FIG. 3: Agglomerative clustering methods are typically good
at discovering the strongly linked cores of communities (bold
vertices and edges) but tend to leave out peripheral vertices,
even when, as here, most of them clearly belong to one com-
munity or another.

dency to find only the cores of communities and leave
out the periphery. The core nodes in a community of-
ten have strong similarity, and hence are connected early
in the agglomerative process, but peripheral nodes that
have no strong similarity to others tend to get neglected,
leading to structures like that shown in Fig. 3. In this
figure, there are a number of peripheral nodes whose com-
munity membership is obvious to the eye—in most cases
they have only a single link to a specific community—
but agglomerative methods often fail to place such nodes
correctly.

In this paper, therefore, we focus on divisive meth-
ods. These methods have been relatively little studied
in the previous literature, either in social network the-
ory or elsewhere, but, as we will see, seem to offer a
lot of promise. In a divisive method, we start with the
network of interest and attempt to find the least similar
connected pairs of vertices and then remove the edges
between them. By doing this repeatedly, we divide the
network into smaller and smaller components, and again
we can stop the process at any stage and take the com-
ponents at that stage to be the network communities.
Again, the process can be represented as a dendrogram
depicting the successive splits of the network into smaller
and smaller groups.

The approach we take follows roughly these lines,
but adopts a somewhat different philosophical viewpoint.
Rather than looking for the most weakly connected ver-
tex pairs, our approach will be to look for the edges in the
network that are most “between” other vertices, meaning
that the edge is, in some sense, responsible for connect-
ing many pairs of others. Such edges need not be weak
at all in the similarity sense. How this idea works out in
practice will become clear in the course of the presenta-
tion.

Briefly then, the outline of this paper is as follows.
In Sec. II we describe the crucial concepts behind our
methods for finding community structure in networks and
show how these concepts can be turned into a concrete
prescription for performing calculations. In Sec. III we
describe in detail the implementation of our methods. In

Graph vertices

Applying the Girvan-Newman
algorithm to Zachary’s karate club

network
• Dataset collected by Wayne Zachary over 2 years who

observed social interactions among members of a karate
club

• Zachary’s karate club network is a well-known example of
a social network with community structure

• Network represents the friendships among members of a
karate club

• Due to a dispute the club split into two factions
• Can a graph clustering/module detection algorithm

predict the factions?

Zachary’s karate club study
10

123

4 5
6

7

8
11

12

13

14

18

20

22

9

32

31

28

29

33

10

17

34

15

16

21

23

24

26

30

25

27

19

FIG. 8: The network of friendships between individuals in
the karate club study of Zachary [35]. The administrator and
the instructor are represented by nodes 1 and 33 respectively.
Shaded squares represent individuals to who ended up align-
ing with the club’s administrator after the fission of the club,
open circles those who aligned with the instructor.

trator and its principal karate teacher over whether to
raise club fees, and as a result the club eventually split
in two, forming two smaller clubs, centered around the
administrator and the teacher.

In Fig. 8 we show a consensus network structure ex-
tracted from Zachary’s observations before the split.
Feeding this network into our algorithms we find the re-
sults shown in Fig. 9. In the left-most two panels we
show the dendrograms generated by the shortest-path
and random-walk versions of our algorithm, along with
the modularity measures for the same. As we see, both
algorithms give reasonably high values for the modularity
when the network is split into two communities—around
0.4 in each case—indicating that there is a strong nat-
ural division at this level. What’s more, the divisions
in question correspond almost perfectly to the actual di-
visions in the club revealed by which group each club
member joined after the club split up. (The shapes of
the vertices representing the two factions are the same as
those of Fig. 8.) Only one vertex, vertex 3, is misclassi-
fied by the shortest-path version of the method, and none
are misclassified by the random-walk version—the latter
gets a perfect score on this test. (On the other hand, the
two-community split fails to produce a local maximum in
the modularity for the random-walk method, unlike the
shortest-path method for which there is a local maximum
precisely at this point.)

In the last panel of Fig. 9 we show the dendrogram
and modularity for an algorithm based on shortest-path
betweenness but without the crucial recalculation step
discussed in Sec. II. As the figure shows, without this
step, the algorithm fails to find the division of the net-
work into the two known groups. Furthermore, the mod-
ularity doesn’t reach nearly such high values as in the
first two panels, indicating that the divisions suggested

are much poorer than in the cases with the recalculation.

C. Collaboration network

For our next example, we look at a collaboration net-
work of scientists. Figure 10a shows the largest com-
ponent of a network of collaborations between physi-
cists who conduct research on networks. (The authors
of the present paper, for instance, are among the nodes
in this network.) This network (which appeared previ-
ously in Ref. 36) was constructed by taking names of
authors appearing in the lengthy bibliography of Ref. 4
and cross-referencing with the Physics E-print Archive at
arxiv.org, specifically the condensed matter section of
the archive where, for historical reasons, most papers on
networks have appeared. Authors appearing in both were
added to the network as vertices, and edges between them
indicate coauthorship of one or more papers appearing
in the archive. Thus the collaborative ties represented in
the figure are not limited to papers on topics concerning
networks—we were interested primarily in whether peo-
ple know one another, and collaboration on any topic is
a reasonable indicator of acquaintance.

The network as presented in Fig. 10a is difficult to in-
terpret. Given the names of the scientists, a knowledge-
able reader with too much time on their hands could, no
doubt, pick out known groupings, for instance at partic-
ular institutions, from the general confusion. But were
this a network about which we had no a priori knowledge,
we would be hard pressed to understand its underlying
structure.

Applying the shortest-path version of our algorithm
to this network we find that the modularity, Eq. (5),
has a strong peak at 13 communities with a value of
Q = 0.72 ± 0.02. Extracting the communities from the
corresponding dendrogram, we have indicated them with
colors in Fig. 10b. The knowledgeable reader will again
be able to discern known groups of scientists in this ren-
dering, and more easily now with the help of the colors.
Still, however, the structure of the network as a whole
and the of the interactions between groups is quite un-
clear.

In Fig. 10c we have reduced the network to only the
groups. In this panel, we have drawn each group as a
circle, with size varying roughly with the number of indi-
viduals in the group. The lines between groups indicate
collaborations between group members, with the thick-
ness of the lines varying in proportion to the number of
pairs of scientists who have collaborated. Now the over-
all structure of the network becomes easy to see. The
network is centered around the middle group shown in
cyan (which consists of researchers primarily in southern
Europe), with a knot of inter-community collaborations
going on between the groups on the lower right of the
picture (mostly Boston University physicists and their
intellectual descendants). Other groups (including the
authors’ own) are arranged in various attitudes further

Each node is an individual and edges represent social interactions among individuals.
The shape and colors represent different groups.

Node grouping based on betweenness

11

1
3
4

14
2
8

20
18
22
13
12
6
7

17
5

11

25
32

24
28
9

34
33
19
16
31
15
10
23
30
21
27

26
29

0

0.1

0.2

0.3

0.4

go
od

ne
ss

 o
f s

pl
it

0

0.1

0.2

0.3

0.4

go
od

ne
ss

 o
f s

pl
it

11
5
6
17
7
12
13
18
20
22
8
1
2
14
4

3
29
28
25
27
32
26
15
16
19
21
23
9
31
24
30
34
33
10

0

0.1

0.2

0.3

0.4

go
od

ne
ss

 o
f s

pl
it

12
17
7
6
11
5
10
16
15
23
21
19
32
29
28
30
27
24
26
25
22
18
34
33
20
31
9
14
3
13
8
4
2
1

without recalculationrandom walkshortest path
shortest path

FIG. 9: Community structure in the karate club network. Left: the dendrogram extracted by the shortest-path betweenness
version of our method, and the resulting modularity. The modularity has two maxima (dotted lines) corresponding to splits
into two communities (which match closely the real-world split of the club, as denoted by the shapes of the vertices) and five
communities (though one of those five contains only one individual). Only one individual, number 3, is incorrectly classified.
Center: the dendrogram for the random walk version of our method. This version classifies all 34 vertices correctly into the
factions that they actually split into (first dotted line), although the split into four communities gets a higher modularity score
(second dotted line). Right: the dendrogram for the shortest-path algorithm without recalculation of betweennesses after each
edge removal. This version of the calculation fails to find the split into the two factions.

out.
One of the problems created by the sudden availability

in recent years of large network data sets has been our
lack of tools for visualizing their structure [4]. In the
early days of network analysis, particularly in the social
sciences, it was usually enough simply to draw a picture
of a network to see what was going on. Networks in those
days had ten or twenty nodes, not 140 as here, or several
billion as in the world wide web. We believe that methods
like the one presented here, of using community structure
algorithms to make a meaningful “coarse graining” of a
network, thereby reducing its level of complexity to one
that can be interpreted readily by the human eye, will
be invaluable in helping us to understand the large-scale
structure of these new network data.

D. Other examples

In this section, we briefly describe example applica-
tions of our methods to three further networks. The first
is a non-human social network, a network of dolphins, the
second a network of fictional characters, and the third not
a social network at all, but a network of web pages and
the links between them.

In Fig. 11 we show the social network of a community
of 62 bottlenose dolphins living in Doubtful Sound, New
Zealand. The network was compiled by Lusseau [37] from
seven years of field studies of the dolphins, with ties be-
tween dolphin pairs being established by observation of
statistically significant frequent association. The network
splits naturally into two large groups, represented by the

Modularity

Goals for today
• Finding modules on graphs/Community structure on

graphs /Graph clustering
• Girvan-Newman algorithm
• Hierarchical agglomerative clustering on graphs
– Stochastic block model
– Hierarchical random graph model
– Combining the two

Issues with existing graph clustering
models

• Flat clustering (Stochastic block model)
– Need to specify the number of clusters
– Cluster structure might be hierarchical
– Resolution limit: the presence of large clusters may

prevent the recovery of smaller clusters.
• Hierarchical clustering
– At the top level, only one cluster is found, which might

group unrelated clusters
– At the bottom level, clusters might be too small

Hierarchical Agglomerative Clustering
(HAC)

• A hierarchical “agglomerative/bottom-up” clustering
algorithm

• Starting from individual graph nodes it gradually
finds clusters of increasing size but does not go all
the way to the top

• HAC algorithm was developed to overcome issues of
existing flat and hierarchical graph clustering
strategies

• Main idea: Combines a flat stochastic block model
and a hierarchical random graph model

Park and Bader BMC Bioinformatics 2011

Goals for today
• Finding modules on graphs/Community structure on

graphs
• Girvan-Newman algorithm
• Hierarchical agglomerative clustering on graphs
– Stochastic block model
– Hierarchical random graph model
– Combining the two

Stochastic block model (SBM)
• SBM is a probabilistic model for a flat community structure
• Let G={V,E} be a graph, with vertex set V and edge set E
• Suppose each vertex (node) v in V can belong to one of K

groups
• Let M denote the edge and non-edge (hole) patterns on the

graph where membership of v is in one of K groups
• SBM describes P(M)
• SBM is defined by parameters of within and between group

interactions
– θii Probability of interactions between vertices of the same group i
– θij Probability of interactions between vertices of two different groups
i and j

Probability of a grouping structure
from the stochastic block model

eij: Number of edges between groups i and j
tij: Number of possible edges between
groups i and j
hij: Number of holes between groups i and j
hij = tij - eij

Pij = ✓
eij
ij (1� ✓ij)

hij

Probability of edge and hole patterns between group i and j

Groups

P (M) =
KY

ij

Pij =
KY

ij

✓
eij
ij (1� ✓ij)

hij

Probability of edge-hole pattern (M) for all groups

Stochastic block model for flat
clustering for K=3 groups

✓11

✓22

✓33

✓13
✓23

Group 3 (7 vertices)

Group 1 (7 vertices) Group 2 (6 vertices)

✓12

h11 = (7 ⇤ 6)/2� 10 = 11

h22 = 15� 10 = 5

h33 = 21� 10 = 11

h12 = 42� 2 = 40

h13 = 49� 1 = 48

h23 = 42� 1 = 41

e11 = 10

e22 = 10

e33 = 10

e12 = 2

e13 = 1

e23 = 1

Stochastic block model for flat
clustering for K=3 groups

Group 3

Group 1 Group 2
h11 = (7 ⇤ 6)/2� 10 = 11

h22 = 15� 10 = 5

h33 = 21� 10 = 11

h12 = 42� 2 = 40

h13 = 49� 1 = 48

h23 = 42� 1 = 41

P (M) = (✓11)
10(1� ✓11)

11(✓12)
2(1� ✓12)

40(✓13)
1(1� ✓13)

48

0

@
3Y

ij=2

✓
eij
ij (1� ✓ij)

hij

1

A

e11 = 10

e22 = 10

e33 = 10

e12 = 2

e13 = 1

e23 = 1

Maximum likelihood Parameter
estimation in HAC

• Parameters of HAC are θij
• Suppose we know what the cluster memberships are
• Maximum likelihood estimate of parameters is

• The probability of edges/holes between groups i and j

• can be re-written as

Pij = ✓
eij
ij (1� ✓ij)

hij

Pij =

✓
eij
tij

◆eij ✓hij

tij

◆hij

Pij =
e
eij
ij h

hij

ij

t
tij
ij

Hence, everything can be expressed in terms of the edge presence and absence pattern

Goals for today
• Finding modules on graphs/Community structure on

graphs
• Girvan-Newman algorithm
• Hierarchical agglomerative clustering on graphs
– Stochastic block model
– Hierarchical random graph model
– Combining the two

Hierarchical Random Graph model

r

Left subtree L(r) Right subtree R(r)

Probability of edges (er) and holes (hr) between nodes in

er: Number of edges crossing L(r) and R(r)
hr: Number of holes between L(r) and R(r)

Pr = ✓err (1� ✓r)
hr

Hierarchical Random Graph model
r

The HRG also describes a probabilistic model over the entire
hierarchy

P (M) =
Y

r

Pr =
Y

r

✓err (1� ✓r)
hr

R(r)L(r)

All internal nodes

What if we did not want to merge up
to the very top?

• This is what the HAC model tries to do

Defined in the same way as the flat
model for two groups, r and r’

Defined in the same way as the
hierarchical model for tree node r

P (M) =
Y

rr02top

Prr0
Y

r

Pr

Combining the HRG and the SB model

j
i

Two top level groups

P (M) = Pij

Y

ri

Pri

Y

rj

Prj

Agglomerative clustering of HAC
• The idea of the HAC algorithm is to use

agglomerative clustering:
– build the hierarchy bottom up, but stop if a merge of

trees is not good enough
• We consider each pair of clusters and merge them if

the corresponding model score improves
• What is a good enough merge?

Define the score of a merge
• Assume there are K top level clusters
• If two nodes 1 and 2 are merged into 1’, the change

in likelihood before and after the merge is scored as:

• This score enables us to develop a greedy
agglomerative algorithm

�12 =
P (M 0)

P (M)
=

KY

k=3

P10k

P1kP2k

HAC greedy algorithm
• Input: Graph G=(V,E)
• Initialize top-level clusters top={{v}, in V}
• Initialize K = |V|
• While K>1 do
– Find top-level clusters i and j with max
– Merge i and j into new top level cluster r
– Add r to top
– L (r) = {i} and R(r)={j}
– Remove i and j from top
– K=K-1

�ij

HAC algorithm execution
• Let’s see one iteration of HAC with a small example

graph with 5 nodes V={1,2,3,4,5} and following edges

Initialization
- top={1,2,3,4,5}
- K=5

1

2 3 4

5

Example graph

HAC algorithm iteration 1
• In iteration one

1 2 3 4 5

�12 =

Q5
k=3 P6kQ5

k=3 P1kP2k

• Compute scores for all potential merges,

into a new node 6.

• Merge nodes with the highest score (example

shows 1,2)

• Update hierarchy L(6)=1, R(6)=2

• Update top={3, 4, 5, 6}
• K=4

• Repeat with new top

1 2 3 4 5

6

�45 =

Q3
k=1 P6kQ3

k=1 P4kP5k

…

Experiments
• Compare HAC with other algorithms

– Fast Modularity (CNM)
– Variational Bayes Modularity (VBM)
– Graph Diffusion Kernel (GDK)

• Assess performance based on link prediction
– Randomly remove a set of test edges
– Estimate within and between cluster interaction probabilities

using the remaining edges
– Generate confidence scores for all pairs of nodes within and

between clusters using cluster structure from training data
– Rank links based on confidence score and compute AUPR and F-

score
• Note, this assumes that the test nodes do not disappear from the

training set.

Assessing performance based on link
prediction

Generate test and
training data

Cluster and rank
all edges (thickness)

Assess Precision and
recall on test set

HAC-ML is able to outperform other
algorithms

HAC-ML is able to outperform
competing methods

may also work incorrectly when applied to networks
with a mix of assortative and disassortative group
structures.

Multi-resolution views of a physical interaction network
Bayesian model selection provides criteria for collapsing
homogenous bottom-level clusters and for identifying
top-level clusters that should not be merged. The size

distributions for top-level and bottom-level clusters have
long tailed distributions (Fig. 2). Power-law fits for max-
imum likelihood [27] yield exponents close to 2, albeit
over only a decade of sizes.
Edge densities within top-level clusters and bottom-

level clusters have bimodal distributions, including edge
densities of both 0 and 1 (Fig. 3). Clusters with density
0 can be generated when unconnected vertices share

Table 2 Link prediction performance of 85/15 cross validation (7.5% of observed edges held out)
Physical interactions

Data HAC-ML GDK CNM VBM HAC-ES HAC-E HAC-Q

Yeast-PPI 0.79±0.5 0.69±0.3 0.69±0.7 0.76±0.4 0.71±0.5 0.69±0.7 0.69±0.8

Drosophila 0.73±0.8 0.66±0.2 0.67±0.4 0.70±0.4 0.67±0.3 0.67±0.3 0.67±0.4

Human 0.73±0.9 0.75±0.7 0.71±0.5 0.70±0.6 0.67±0.4 0.68±0.5 0.69±1.0

Celegans 0.68±1.5 0.67±1.3 0.68±1.3 0.66±0.6 0.66±0.8 0.66±0.7 0.67±0.8

Arabidopsis 0.80±8.3 0.92±2.2 0.92±3.2 0.90±3.6 0.78±11.0 0.87±10.8 0.88±11.4

Genetic interactions

Data HAC-ML GDK CNM VBM HAC-ES HAC-E HAC-Q

Yeast-GEN 0.78±2.3 0.67±0.0 0.69±0.7 0.74±6.0 0.73±0.8 0.67±0.1 0.69±0.7

SGA 0.76±1.5 0.67±0.0 0.67±0.2 0.76±0.3 0.70±0.2 0.67±0.0 0.69±0.2

SLAM 0.92±1.0 0.91±0.5 0.68±0.8 0.67±0.3 0.84±2.9 0.76±1.0 0.67±0.3

First numbers indicate an average F1 score of multiple experiments and second numbers following ± sign are standard deviations of last-digit (multiplied by 100).

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(A) PPI PR curve

Pr
ec

isi
on

0 20 40 60 80

0.
68

0.
72

0.
76

0.
80

(B) PPI F1 scores

F1
 sc

or
e

0 20 40 60 80 100 120

0.
5

0.
6

0.
7

0.
8

(C) PPI AUC scores

AU
C

HAC−ML
VBM
HAC−ES
HAC−Q
GDK
CNM
HAC−E

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(D) GEN PR curve

Recall

Pr
ec

isi
on

0 20 40 60 80

0.
68

0.
72

0.
76

0.
80

(E) GEN F1 scores

Missing links (%)

F1
 sc

or
e

0 20 40 60 80 100 120
0.

5
0.

6
0.

7
0.

8

(F) GEN AUC scores

Missing links (%)

AU
C

HAC−ML
VBM
HAC−ES
HAC−Q
CNM
HAC−E
GDK

Figure 1 Link prediction performance of Yeast data sets. A: Precision Recall (PR) curve of 80/20 cross-validation experiment (CV) in YEAST-PPI
dataset (10% missing links); B: F1 scores over different fractions of missing links in YEAST-PPI dataset from 1.5% to 90%; C: Area under ROC curve
(AUC) scores over different fractions of missing links in YEAST-PPI dataset; D: PR curve of a 80/20 CV in YEAST-GEN dataset; E: F1 scores in YEAST-
GEN dataset; F: AUC scores in YEAST-GEN dataset.

Park and Bader BMC Bioinformatics 2011, 12(Suppl 1):S44
http://www.biomedcentral.com/1471-2105/12/S1/S44

Page 6 of 10

Multi-resolution analysis of yeast PPI
network

of proteins and lipids [32,33]. As autophagy is a
response to starvation [30] to re-use available intracellu-
lar resources. We find that disjoint low-level clusters
correspond to “autophagy” and “golgi to plasma mem-
brane transport”, suggesting that different proteins are
responsible for transport in each direction. Moreover
seemingly distant relationship to “exocytosis” is under
investigation [34].

Synergy in mixed networks
The extension to multiple edge types was used to com-
pare link prediction for single yeast networks to link pre-
diction from simultaneous analysis of physical and
genetic interaction data (Table 3). Little evidence for
synergy is apparent: predictions for a specific network are
not improved by adding data from a second or third net-
work. This behavior has been observed before for joint
analysis of physical and genetic interactions [20,35].
This lack of synergy may arise from high-throughput

studies exploring different subsets of genes and

proteins. Moreover our joint analysis assumes different
types of edges are generated under a common group
structure, but this pattern might be disrupted by a
large fraction of false positive interactions, or some
edge types might conflict with others. In presence of
prevalent false positive interactions, physical and

Figure 4 Protein transport complex. Bottom level clusters: Different shapes and colors in the topmost and leftmost panel indicate different
bottom-level clusters; Other panels: Each box indicates one GO keyword and its enrichment within the subnetwork, and vertices belonging to
this GO category are highlighted by non-gray colors.

Table 3 Link prediction performance of joint analysis
HAC-ML Prediction of

Trained by PPI SGA GEN

PPI 0.75±1.6

SGA 0.77±1.0

GEN 0.78±1.4

PPI+SGA 0.69±0.5 0.73±0.8

PPI+GEN 0.71±1.1 0.79±0.5

SGA+GEN 0.77±1.0 0.78±1.1

PPI+SGA+GEN 0.68±1.2 0.73±0.3 0.78±0.6

Evaluation scheme was 85/15 cross-validation. First numbers indicate an
average F1 score of multiple experiments and second numbers following ±
sign are standard deviations of last-digit (multiplied by 100).

Park and Bader BMC Bioinformatics 2011, 12(Suppl 1):S44
http://www.biomedcentral.com/1471-2105/12/S1/S44

Page 8 of 10

Bottom level clusters
could provide greater
resolution to the GO
terms

Take away points
• Biological networks are modular
• Modules can be topological or functional
• We have seen two clustering algorithms
– Girvan-Newman algorithm

• based on edge-betweenness
• Can be viewed as top-down/divisive clustering algorithm

– Hierarchical Agglomerative clustering
• Combines SBM and HRG
• Enables one to find clusters and also their relationships
• Greedy probabilistic score for merging subtrees is fast
• Good performance on link prediction

