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RECAP of problems in network biology

Biological problem
q Mapping regulatory network 

structure
q Dynamics and context 

specificity of networks
q Understanding design 

principles of biological 
networks

q Interpretation of sequence 
variants

q Identification of important 
genes

q Integrating different types of 
molecular genomic data

q Smoothing noisy matrices

Computational approaches
q Probabilistic graphical models
q Graph structure learning
q Multiple network learning
q Topological properties of 

graphs
q Graph clustering
q Graph alignment
q Diffusion on graphs



Topics in this section

• Graph-based approaches for gene prioritization
• Graph diffusion to clean up noisy matrices
• Graph diffusion to interpret sequence variants



Goals for today

• Gene prioritization
– Supervised methods
– Unsupervised methods

• GeneWanderer: Walking the Interactome for Prioritization of 
Candidate Disease Genes
– An example of supervised, graph diffusion-based approach

• Other applications of random walks on graphs



Gene prioritization

• Gene prioritization is the task of ranking the most important 
genes for a particular process or system under study through 
integrative computational analysis of public and private 
genomic data.

• Many  of the approaches developed were  originally for 
finding the important gene(s) from a linkage study
– A genomic locus associated with a disease that could have 

hundreds of genes
• However, many of the approaches are now being used to 

prioritize genes identified from high-throughput omics
experiments

Computational tools for prioritizing candidate genes: boosting disease gene discovery: 
Yves Moreau, Leon-Charles Tranchevent, Nature Review Genetics



Why gene prioritization?
• Identification of genes associated with diseases (and other complex traits) 

is important for gaining a molecular understanding of a disease
• Linkage analysis or omics-based measurements identifies lots of candidate 

genes
– Can narrow down a region of the genome that might be associated 

with a disease, or obtain a gene set
– But there are too many genes for follow-up analysis
– We just don’t have the resolution to pinpoint specific genes

• Gene prioritization has many applications
– What genes control a particular process?
– What genes are affected in a specific disease?
– What genes must be tested first to best complete a model of the 

system
– What genes (regulators) establish a particular cell type or fate?



Overview of approaches for gene 
prioritization

• Non-network based methods
– Similarity in different gene-level features can be used to 

predict/prioritize new genes
• sequence, expression and gene ontology 

• Network-based methods
– Supervised methods: need a small number of seed/known 

genes 
– Unsupervised methods
– Network model-based methods



Network-based prioritization

• Can we use interaction networks to prioritize what genes 
might be important?

• Suppose we have a set of candidate genes that we know are 
important
– Can we identify additional genes that are also important 

based on their proximity to the network?



Supervised network-based gene 
prioritization task definition

• Given 
– a list of candidate genes
– Background interaction network among genes
– A list of “known” genes (seed genes) for a particular 

process or disease
• Do
– Rank candidates genes based on their association to the 

known genes



Supervised Network-based gene 
prioritization
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Neighborhoods on graphs

• Network-based methods rely on defining neighborhoods of genes
• Neighborhoods of genes known for a disease can be used to 

prioritize additional genes
• Local neighborhood

– Immediate neighbor
– Shortest path

• Global neighborhood
– Based on more global measures of distance between nodes

• We have seen some ideas of neighborhoods on graphs in graph 
clustering



Local network neighborhood-based 
prioritization

• Available in many public software and tools
– MouseNET, GIANT, STRING

• Applied for filling holes in a pathway

reached when comparing the connectivity of different groups of
genes.

We observed that all groups of phenotype-associated genes have
a lower clustering coefficient than average, and most participate in
more biological pathways (Figure 6C). This conclusion holds true
when controlling for investigational biases. For example, Trp53,
with very high connectivity (Figure 1B) and particularly low
clustering coefficient (0.02252), is essential during both embryonic
perinatal and postnatal stages and plays a role in tumorigenesis,
the reproductive system, and has ten other high level phenotypes
(Table S1) according to the Mouse Genome Informatics (MGI)
database [18]. This result implies that hubs with low clustering
coefficient and participating in multiple pathways are important
buffers of the genome, and that mutations or other disruptions of
these genes are likely to be related to a detrimental phenotypes
and, likely, disease.

Comparison of Yeast and Mouse Functional Networks
Genome evolution on the sequence level has been studied

intensively during the past decades. Studies of functional evolution
on the genome-scale, on the other hand, require comprehensive
profiling of proteins, which is difficult due to largely incomplete
annotation of protein function in most organisms. Here, we
demonstrate that mouseNET is a valuable resource for cross-
species functional evolution studies by comparing it to the S.
cerevisiae network [2]. To avoid circularity caused by integration of
sequence similarity information, we generated a functional
network that excludes all orthology-based input data. Given these

mouse and yeast networks, we first investigated whether functional
linkages are conserved between pairs of orthologs as identified
through InParanoid [23]. Our results indicate that high-confi-
dence functional linkages in S. cerevisiae are strongly predictive of
functional linkages between orthologous gene pairs in mouse
(Figure 7A for statistical analysis).

We also investigated the conservation of functional neighbor-
hoods in the mouse and yeast networks. To make the datasets
comparable, we included only orthologous pairs in the conserva-
tion statistical analysis. We found that the two networks vary from
a high degree of conservation to almost no conservation (Figure 7B
and 7C). Functional linkages between proteins involved in
response to stress, response to endogenous stimulus, catabolic
process, DNA metabolism, cell cycle, and other core biological
processes and components were highly conserved between yeast
and mouse (Table 3), e.g., the ribosomal protein L15 (Rpl15,
MGI:1913730; Figure 7B and 7C). In contrast, functional
relationships in processes specific to higher organisms, including,
behavior, embryonic development, multicellular organismal de-
velopment and anatomical structure morphogenesis were limited
to the mouse network (Table 4). For example, the HtrA serine
peptidase 1 (Htra1, MGI:1929076) plays a role in BMP signaling
pathway [42], but its ortholog in yeast, YNL123W (Nma111, SGD:
S000005067) is involved in apoptosis and lipid metabolic process
[43,44] (Figure 7B and 7C). The newly generated interactions for
these mouse-specific functional networks originated through a
combination of orthologous pairs in yeast and novel connections
with existing genes or genes that have no ortholog in yeast

Figure 3. Analysis of MAPK pathway predictions based on the integrated functional network. Predictions were derived by iteratively
sampling 10 proteins from the known MAPK pathway and finding the closest 40 neighbors based on network adjacency. The results shown are based
on an aggregation of 300 such samplings. Bright blue denotes proteins annotated to the canonical MAPK pathway in KEGG. Many of the newly
predicted components, although not annotated in KEGG, are supported in the literature (Table S2) and are colored in red. Predictions without
literature support are colored in purple. Linkages predicted to be above 0.5 confidence level by our integrated network are shown.
doi:10.1371/journal.pcbi.1000165.g003

Functional Network for Mouse

PLoS Computational Biology | www.ploscompbiol.org 6 September 2008 | Volume 4 | Issue 9 | e1000165

Known 
members

Novel 
members

Predictions of novel pathway 
components from MouseNET



Global network neighborhood-based 
prioritization

• Global network neighborhood-based methods make use of 
the entire graph to define the similarity between two genes

• Given a graph connecting nodes, global similarity can be 
defined using
– Random walk
– Diffusion kernel
– Laplacian kernel
– Heat kernel



Goals for today

• Gene prioritization
– Supervised methods
– Unsupervised methods

• GeneWanderer: Walking the Interactome for Prioritization of 
Candidate Disease Genes
– An example of supervised, graph diffusion-based approach

• Other applications of random walks on graphs



Motivation of GeneWanderer

• There are many diseases for which we do not know the causal 
genes

• Previous approaches have used protein-protein interaction 
networks, but in a limited way
– Only local similarity was used

• Can we use global graph distance?
• Does global distance help and improve current prioritization 

techniques?

S. Köhler, S. Bauer, D. Horn, and P. N. Robinson, "Walking the interactome for prioritization 
of candidate disease genes." American journal of human genetics, vol. 82, no. 4, pp. 949-
958, Apr. 2008. [Online]. Available: http://dx.doi.org/10.1016/j.ajhg.2008.02.013



Overview of GeneWanderer

data were available were given a rank of 100 (and therefore an

enrichment score of 0.5). No correction was made for intervals

within which some proteins had no interaction data. If a particular

method assigns an identical score to more than one gene, we as-

sume the worst case, in which the true disease gene is the last to

be sequenced from the set of equally ranked genes.

Another measure of performance of the algorithm is the

receiver-operating characteristic (ROC) analysis, which plots the

true-positive rate (TPR) versus the false-positive rate (FPR) subject

to the threshold separating the prediction classes. The TPR/FPR

is the rate of correctly/incorrectly classified samples of all samples

classified to class þ1. For evaluating rankings of disease-gene pre-

dictions, ROC values can be interpreted as a plot of the frequency

of the disease genes above the threshold versus the frequency of

disease genes below the threshold, where the threshold is a specific

position in the ranking.10 In order to compare different curves ob-

tained by ROC analysis, we calculate the area under the ROC curve

(AUROC) for each curve.

Results

In this work, we constructed an interaction network based
on a total of 35,910 interactions between human proteins

as well as 38,975 mapped interactions from four other spe-
cies. Additionally predicted protein interactions from the
STRING database26 were used (Table 1). We adapted a global
distance measure based on random walk with restart
(RWR) to define similarity between genes within this inter-
action network and to rank candidates on the basis of this
similarity to known diseases genes. Intuitively, the RWR
algorithm calculates the similarity between two genes, i
and j, on the basis of the likelihood that a random walk
through the interaction network starting at gene i will
finish at gene j, whereby all possible paths between the
two genes are taken into account. In our implementation,
we let the random walk start with equal probability from
each of the known disease-gene family members in order
to search for an additional family member in the linkage
interval (Figure 1). For comparison, we also implemented
a similar global search algorithm based on the diffusion
kernel (DK), which conceptually performs a different
type of random walk calculated by matrix exponentiation
(see Material and Methods for mathematical details). In
order to compare the performance of global and local net-
work search algorithms, we implemented two previous

Figure 1. Disease-Gene Prioritization
(A) All candidate genes contained in the linkage interval are mapped to the interaction network, as are all previously known disease genes
of the family in question. Our method then assigns a score to each of the candidate genes, with investigation of the relative location of
the candidate to all of the known ‘‘disease genes’’ by the use of global network-distance measures. The genes in the linkage interval are
ranked according to the score in order to define a priority list of candidates for further biological investigation.
(B–D) Each of the three subnetworks displays a different configuration consisting of the same number of nodes. The global distance be-
tween a hypothetical disease gene (x) and a candidate gene (y) is different in each case. In (B), proteins x and y are connected via a hub
node with many other connections, so that the global similarity (sxy) is less than in (C), where x and y are connected by a protein with
fewer connections than those of the hub. On the other hand, nodes that are connected by multiple paths (D) receive a higher similarity
than do nodes connected by only one path. Note that the shortest path between x and y is identical in each case (B–D), so that distance
measures relying on such local information cannot differentiate between these three types of connection. In particular, the approach
taking only direct interactions with gene x into account would identify gene y as a candidate in none of the three cases.

The American Journal of Human Genetics 82, 949–958, April 2008 951



Motivation of using global distance

data were available were given a rank of 100 (and therefore an

enrichment score of 0.5). No correction was made for intervals

within which some proteins had no interaction data. If a particular

method assigns an identical score to more than one gene, we as-

sume the worst case, in which the true disease gene is the last to

be sequenced from the set of equally ranked genes.

Another measure of performance of the algorithm is the

receiver-operating characteristic (ROC) analysis, which plots the

true-positive rate (TPR) versus the false-positive rate (FPR) subject

to the threshold separating the prediction classes. The TPR/FPR

is the rate of correctly/incorrectly classified samples of all samples

classified to class þ1. For evaluating rankings of disease-gene pre-

dictions, ROC values can be interpreted as a plot of the frequency

of the disease genes above the threshold versus the frequency of

disease genes below the threshold, where the threshold is a specific

position in the ranking.10 In order to compare different curves ob-

tained by ROC analysis, we calculate the area under the ROC curve

(AUROC) for each curve.

Results

In this work, we constructed an interaction network based
on a total of 35,910 interactions between human proteins

as well as 38,975 mapped interactions from four other spe-
cies. Additionally predicted protein interactions from the
STRING database26 were used (Table 1). We adapted a global
distance measure based on random walk with restart
(RWR) to define similarity between genes within this inter-
action network and to rank candidates on the basis of this
similarity to known diseases genes. Intuitively, the RWR
algorithm calculates the similarity between two genes, i
and j, on the basis of the likelihood that a random walk
through the interaction network starting at gene i will
finish at gene j, whereby all possible paths between the
two genes are taken into account. In our implementation,
we let the random walk start with equal probability from
each of the known disease-gene family members in order
to search for an additional family member in the linkage
interval (Figure 1). For comparison, we also implemented
a similar global search algorithm based on the diffusion
kernel (DK), which conceptually performs a different
type of random walk calculated by matrix exponentiation
(see Material and Methods for mathematical details). In
order to compare the performance of global and local net-
work search algorithms, we implemented two previous

Figure 1. Disease-Gene Prioritization
(A) All candidate genes contained in the linkage interval are mapped to the interaction network, as are all previously known disease genes
of the family in question. Our method then assigns a score to each of the candidate genes, with investigation of the relative location of
the candidate to all of the known ‘‘disease genes’’ by the use of global network-distance measures. The genes in the linkage interval are
ranked according to the score in order to define a priority list of candidates for further biological investigation.
(B–D) Each of the three subnetworks displays a different configuration consisting of the same number of nodes. The global distance be-
tween a hypothetical disease gene (x) and a candidate gene (y) is different in each case. In (B), proteins x and y are connected via a hub
node with many other connections, so that the global similarity (sxy) is less than in (C), where x and y are connected by a protein with
fewer connections than those of the hub. On the other hand, nodes that are connected by multiple paths (D) receive a higher similarity
than do nodes connected by only one path. Note that the shortest path between x and y is identical in each case (B–D), so that distance
measures relying on such local information cannot differentiate between these three types of connection. In particular, the approach
taking only direct interactions with gene x into account would identify gene y as a candidate in none of the three cases.

The American Journal of Human Genetics 82, 949–958, April 2008 951

• Global similarity is more sensitive and different for each of the above cases
• In contrast, local shortest-path similarity is the same for all pairs
• Direct interactions will never select y as a candidate 

Known gene: x
Candidate gene: y



Global graph distances used in 
GeneWanderer

• Random walk with restarts

• Diffusion kernel



Random walk on graphs

• A random walk is defined as a probabilistic traversal of a graph
• At each time step, the walker transitions randomly to one of 

the neighbors of the current node.
• Typically one can start anywhere on the graph
• But one can put priors on the walk based on what we know 

about candidate genes.
• The random walk converges to some distribution of the 

number of times a gene is visited. 
• The distribution can be used to rank genes



Random walk on graphs

• Random walk on a graph requires us to define transition 
probabilities

• Transition probability is obtained by dividing each entry by the 
row sum or column sum

• One step of the random walk corresponds to one matrix 
multiplication of the transition matrix

• Suppose we started at node a, what is the probability of 
reaching other nodes after t steps?

• tth power of the transition matrix tell us the probability of 
reaching node j from node i after t steps on the random walk



Transition matrix of a graph

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0

a
b
c
d
e

a b c d e

0 0.5 0 0.5 0
0.5 0 1/3 0 0
0 0.5 0 0.5 1
0.5 0 1/3 0 0
0 0 1/3 0 0

a
b
c
d
e

a b c d e

A: Adjacency matrix

Column-normalized adjacency matrix
Network adapted from IsoRank paper

a

b

c

d e

0 0.5 0 0.5 0
0.5 0 0.5 0 0
0 1/3 0 1/3 1/3
0.5 0 0.5 0 0
0 0 1 0 0

a
b
c
d
e

a b c d e

Row-normalized adjacency matrix



Random Walk with Restarts (RWR)
• Allow the random walker to restart occasionally

• W is the column normalized adjacency matrix
– Not clear if the adjacency matrix was weighted

• r controls how often we restart the random walk
• p0 was set such that the random walk would start at any of the 

known genes with equal probability
• Rank candidate genes based on the pt+1 when pt and pt+1 are really 

close
• In other words, this means that pt+1 is the steady state distribution

links to the corresponding entries in the OMIM database is given

as Table S1, available online.

Protein-Protein Interaction Data
The protein-protein interaction (PPI) network is represented by an

undirected graph with nodes representing the genes and edges rep-

resenting the mapped interactions of the proteins encoded by the

genes. To construct the network, five protein-protein interaction

datasets from human, Mus musculus, Drosophila melanogaster, Cae-

norhabditis elegans, and Saccharomyces cerevisiae were downloaded

from Entrez Gene19 on the 1st of July 2007. These datasets com-

prise interactions extracted from HPRD,20 BIND,21 and BioGrid22.

Additional interactions were extracted from IntACT,23 and DIP.24

Protein interactions were mapped to the genes coding for the pro-

teins, and redundant interactions stemming from multiple data

sources were removed. Interactions from the four nonhuman spe-

cies were mapped to homologous human genes identified by In-

paranoid25 analysis with a threshold Inparalog score of 0.8. If

both interaction partners could be mapped to human proteins,

the interaction was used.

We also used data from STRING,26 which is a comprehensive

dataset containing functional links between proteins on the basis

of both experimental evidence for protein-protein interactions as

well as interactions predicted by comparative genomics and text

mining. STRING uses a scoring system that is intended to reflect

the evidence of predicted interactions. For the present study, we

included interactions with a score of at least 0.4, which corre-

sponds to a medium-confidence network27 (Table 1).

Disease-Gene Prediction
The general idea of the approach is depicted in Figure 1. The details

of how the ranks were obtained are given below.

Random Walk
The random walk on graphs28 is defined as an iterative walker’s

transition from its current node to a randomly selected neighbor

starting at a given source node, s. Here, we used a variant of the

random walk in which we additionally allow the restart of the

walk in every time step at node s with probability r. Formally,

the random walk with restart is defined as:

ptþ1 ¼ ð1$ rÞWpt þ rp0

where W is the column-normalized adjacency matrix of the graph

and pt is a vector in which the i-th element holds the probability

of being at node i at time step t.

In our application, the initial probability vector p0 was con-

structed such that equal probabilities were assigned to the nodes

representing members of the disease, with the sum of the probabil-

ities equal to 1. This is equivalent to letting the random walker

begin from each of the known disease genes with equal probabil-

ity. Candidate genes were ranked according to the values in the

steady-state probability vector pN. This was obtained at query

time by performing the iteration until the change between pt

and ptþ1 (measured by the L1 norm) fell below 10$6.

Diffusion Kernel
The diffusion kernel K of a graph G is defined as K ¼ e$bL, where,

intuitively, b controls the magnitude of the diffusion. The matrix

L is the Laplacian of the graph, defined as D $ A, where A is the

adjacency matrix of the interaction graph and D is a diagonal ma-

trix containing the nodes’ degrees.29 With the use of K, the rank

for each candidate gene j was assigned in accordance with its score

defined as

scoreðjÞ ¼
X

i˛disease gene family

Kij

For a sufficient small b the diffusion kernel can be seen as a lazy

random walk consisting of transitions to one of each of the current

node’s neighbors with probability of b, whereby the walker re-

mains at the current node i with a probability of 1 $ dib (with di

being the degree of node i). The column vector j of the matrix K

then represents the steady-state probability vector of the random

walk when starting at node j.

Other Methods
For comparison with previously published methods, we have im-

plemented screens of candidate genes in a linkage interval for di-

rect interactions (DI) with other known disease-family proteins,17

whereby genes are predicted as potential disease genes if they have

a direct interaction to known disease genes. We implemented

a ranking of candidate genes according to the single shortest

path (SP) to any known disease protein in the family (comparable

to the CPS method in 18).

Furthermore, we ranked the genes in our test set with PROS-

PECTR, which uses a variety of sequence-based features, such as

gene length, to train an alternating decision tree to rank genes

in the order of likelihood of involvement in disease.13 Addition-

ally, the internet implementation of ENDEAVOUR10 was used to

test the genes listed in Table 2.

Performance Measurement
For each disease gene we defined the artificial linkage interval to

be the set of genes containing the first 100 genes located nearest

to the disease gene according to their genomic distance on the

same chromosome. In order to measure the performance of the

whole optimization and training procedure, leave-one-out cross-

validation was used for each disease-gene family. If a ranking

method gives the actual disease gene the highest ranking and it

is sequenced first, there is an enrichment of 50-fold. In general,

the formula is Enrichment¼ 50/(rank) for an interval of 100 genes.

For the present analysis, disease genes for which no interaction

Table 1. Networks Tested in this Work

Network
Number of
Interactors

Number of
Interactions

Human 9169 35,910
Mapped:

Worm 684 (146) 831 (768)
Mouse 1412 (78) 1972 (853)
Fruitfly 2176 (590) 4930 (4,613)
Yeast 1557 (441) 33,396 (32,855)

Total Human and Mapped 10,231 74,885
STRING 12,594 209,089
All Data Sources 13,726 258,314
All Data Sources Excluding
Text-Mining Data

11,673 133,612

‘‘Mapped’’ indicates protein-protein interaction data mapped to orthologous
human proteins. The number of new interactors/interactions that were
added to the interaction network by mapping is shown in parentheses.
‘‘All Data Sources’’ denotes the STRING data, human, and mapped interac-
tions.

950 The American Journal of Human Genetics 82, 949–958, April 2008

Prior probability of starting at a node



RWR continued

• Intuitively, this approach gives the probability of reaching a 
specific node, given that a random walk starts at a given node, 
while taking all intermediate paths into account

• By making the random walk start from known disease genes 
we obtain a global proximity measure from these known 
genes



RWR example

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0

a
b
c
d
e

a b c d e

W

0 0.5 0 0.5 0
0.5 0 1/3 0 0
0 0.5 0 0.5 1
0.5 0 1/3 0 0
0 0 1/3 0 0

a
b
c
d
e

a b c d e

A: Adjacency matrix

Column-normalized adjacency matrix Network adapted from IsoRank paper
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b
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RWR example contd

• Assume that a and b are “known genes”
• p0:  [0.5 0.5 0 0 0]
• Let r=0.7

a

b

c

d e

Iteration 0

0.5

0.5

0

0 0
Iteration 1

a

b

c

d e

0.4250 

0.4250 

0.0750 
0.0750 

0

Iteration 2

a

b

c

d e

0.4250 

0.4213 

0.0750 

0.0713 
0.0075

Iteration 6 
(convergence)

a

b

c

d e

0.4239 

0.4212 

0.0761 

0.0712 0.0076



RWR example contd

• Assume that a and b are “known genes”
• p0:  [0.5 0.5 0 0 0]
• Let r=0.5

a

b

c

d e

Iteration 0

0.5

0.5

0

0 0
Iteration 1

a

b

c

d e

0.3750

0.3750

0.1250
0.1250

0

Iteration 2

a

b

c

d e

0.3750

0.3646

0.1250

0.1146
0.0208

Iteration 8 
(convergence)

a

b

c

d e

0.3696

0.3641

0.1304

0.1141 0.0217



Global graph distances used in 
GeneWanderer

• Random walk with restarts

• Diffusion kernel



Kernel

• A Kernel k is a function that maps pairs of objects to a real-
valued space

• It enables one to define very general similarity functions 
between pairs of objects

• Let denote a set of objects of a particular type
– For example the set of images or a set of trees

• A kernel k is defined as

k : f(X ,X ) ! R

X



Diffusion kernel

• Diffusion kernel K of a graph is defined a function of the 
graph Laplacian L
– K=exp(-bL)

• Graph Laplacian L=D-A
– D is the diagonal degree of matrix
– A is the adjacency matrix
– The rank of a gene j is given by a score depending upon its 

proximity from other disease genes

links to the corresponding entries in the OMIM database is given

as Table S1, available online.

Protein-Protein Interaction Data
The protein-protein interaction (PPI) network is represented by an

undirected graph with nodes representing the genes and edges rep-

resenting the mapped interactions of the proteins encoded by the

genes. To construct the network, five protein-protein interaction

datasets from human, Mus musculus, Drosophila melanogaster, Cae-

norhabditis elegans, and Saccharomyces cerevisiae were downloaded

from Entrez Gene19 on the 1st of July 2007. These datasets com-

prise interactions extracted from HPRD,20 BIND,21 and BioGrid22.

Additional interactions were extracted from IntACT,23 and DIP.24

Protein interactions were mapped to the genes coding for the pro-

teins, and redundant interactions stemming from multiple data

sources were removed. Interactions from the four nonhuman spe-

cies were mapped to homologous human genes identified by In-

paranoid25 analysis with a threshold Inparalog score of 0.8. If

both interaction partners could be mapped to human proteins,

the interaction was used.

We also used data from STRING,26 which is a comprehensive

dataset containing functional links between proteins on the basis

of both experimental evidence for protein-protein interactions as

well as interactions predicted by comparative genomics and text

mining. STRING uses a scoring system that is intended to reflect

the evidence of predicted interactions. For the present study, we

included interactions with a score of at least 0.4, which corre-

sponds to a medium-confidence network27 (Table 1).

Disease-Gene Prediction
The general idea of the approach is depicted in Figure 1. The details

of how the ranks were obtained are given below.

Random Walk
The random walk on graphs28 is defined as an iterative walker’s

transition from its current node to a randomly selected neighbor

starting at a given source node, s. Here, we used a variant of the

random walk in which we additionally allow the restart of the

walk in every time step at node s with probability r. Formally,

the random walk with restart is defined as:

ptþ1 ¼ ð1$ rÞWpt þ rp0

where W is the column-normalized adjacency matrix of the graph

and pt is a vector in which the i-th element holds the probability

of being at node i at time step t.

In our application, the initial probability vector p0 was con-

structed such that equal probabilities were assigned to the nodes

representing members of the disease, with the sum of the probabil-

ities equal to 1. This is equivalent to letting the random walker

begin from each of the known disease genes with equal probabil-

ity. Candidate genes were ranked according to the values in the

steady-state probability vector pN. This was obtained at query

time by performing the iteration until the change between pt

and ptþ1 (measured by the L1 norm) fell below 10$6.

Diffusion Kernel
The diffusion kernel K of a graph G is defined as K ¼ e$bL, where,

intuitively, b controls the magnitude of the diffusion. The matrix

L is the Laplacian of the graph, defined as D $ A, where A is the

adjacency matrix of the interaction graph and D is a diagonal ma-

trix containing the nodes’ degrees.29 With the use of K, the rank

for each candidate gene j was assigned in accordance with its score

defined as

scoreðjÞ ¼
X

i˛disease gene family

Kij

For a sufficient small b the diffusion kernel can be seen as a lazy

random walk consisting of transitions to one of each of the current

node’s neighbors with probability of b, whereby the walker re-

mains at the current node i with a probability of 1 $ dib (with di

being the degree of node i). The column vector j of the matrix K

then represents the steady-state probability vector of the random

walk when starting at node j.

Other Methods
For comparison with previously published methods, we have im-

plemented screens of candidate genes in a linkage interval for di-

rect interactions (DI) with other known disease-family proteins,17

whereby genes are predicted as potential disease genes if they have

a direct interaction to known disease genes. We implemented

a ranking of candidate genes according to the single shortest

path (SP) to any known disease protein in the family (comparable

to the CPS method in 18).

Furthermore, we ranked the genes in our test set with PROS-

PECTR, which uses a variety of sequence-based features, such as

gene length, to train an alternating decision tree to rank genes

in the order of likelihood of involvement in disease.13 Addition-

ally, the internet implementation of ENDEAVOUR10 was used to

test the genes listed in Table 2.

Performance Measurement
For each disease gene we defined the artificial linkage interval to

be the set of genes containing the first 100 genes located nearest

to the disease gene according to their genomic distance on the

same chromosome. In order to measure the performance of the

whole optimization and training procedure, leave-one-out cross-

validation was used for each disease-gene family. If a ranking

method gives the actual disease gene the highest ranking and it

is sequenced first, there is an enrichment of 50-fold. In general,

the formula is Enrichment¼ 50/(rank) for an interval of 100 genes.

For the present analysis, disease genes for which no interaction

Table 1. Networks Tested in this Work

Network
Number of
Interactors

Number of
Interactions

Human 9169 35,910
Mapped:

Worm 684 (146) 831 (768)
Mouse 1412 (78) 1972 (853)
Fruitfly 2176 (590) 4930 (4,613)
Yeast 1557 (441) 33,396 (32,855)

Total Human and Mapped 10,231 74,885
STRING 12,594 209,089
All Data Sources 13,726 258,314
All Data Sources Excluding
Text-Mining Data

11,673 133,612

‘‘Mapped’’ indicates protein-protein interaction data mapped to orthologous
human proteins. The number of new interactors/interactions that were
added to the interaction network by mapping is shown in parentheses.
‘‘All Data Sources’’ denotes the STRING data, human, and mapped interac-
tions.
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Diffusion kernel

• The diffusion kernel gives a ranking of a new gene using the 
sum of a global distance measure from all known genes of a 
disease

• Specifically the jth column corresponds to the stationary 
distribution of a random walk that started at node j.



Diffusion kernel example

• Again let’s consider the  same example graph as before

a

b

c

d e

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 0
0 0 1 0 0

a
b
c
d
e

a b c d e
A D

2 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1

a
b
c
d
e

a b c d e

2 -1 0 -1 0
-1 2 -1 0 0
0 -1 3 -1 -1
-1 0 -1 2 0
0 0 -1 0 1

L=D-A
a
b
c
d
e



Diffusion kernel example contd
2 -1 0 -1 0
-1 2 -1 0 0
0 -1 3 -1 -1
-1 0 -1 2 0
0 0 -1 0 1

L=D-A

0.82 1.11 1 1.11 1
1.11 0.82 1.11 1 1
1 1.11 0.74 1.11 1.11
1.11 1 1.1 0.82 1
1 1 1.11 1 0.9

K=exp(-0.1*L)

Score of c: K(a,c)+K(b,c)= 1+1.1=2.11
Score of d: K(a,d) +K(b,d)=2.11 
Score of e: K(a,e)+K(b,e)=1+1=2

a
b
c
d
e

a
b
c
d
e

Assume a, and b are known genes



Competing methods
• Direct interactions (DI)

– A gene is predicted as a disease gene for disease j if it is a direct 
neighbor of a gene associated with a known gene of disease j

• Shortest path (SP)
– Rank gene based on the single shortest path to any known 

disease gene for disease j
• ENDEAVOUR

– Integrates gene expression, protein domain information, 
literature annotation

– Based on an ensemble method, each component of the 
ensemble corresponds to a dataset 

• PROSPECTR
– Sequence-based features using an alternating decision tree to 

output a likelihood of a gene to belong to a disease



Dataset
• Data source:

– Online Mendelian Inheritance in Man (OMIM)
• An Online Catalog of Human Genes and Genetic Disorders 

– Literature search to find genes clearly
• 110 different disease-gene families spanning different types of diseases:

– 86 genetically heterogeneous disorders in which mutations in distinct genes are 
associated with similar or even indistinguishable phenotypes; 

– 12 cancer syndromes comprising genes associated with hereditary cancer, 
increased risk, or somatic mutation in a given cancer type; 

– 12 complex (polygenic) disorders that are known to be influenced by variation in 
multiple genes

• Total of 783 genes with 665 distinct genes
– Some genes are associated with multiple diseases
– Each family has 7 genes on average, largest family has 41 genes, smallest had 3 

genes
• Interaction network of 35,910 genes from human and 38,975 from other organisms

– Include experimentally verified and predicted interactions



Evaluation strategy
• For each disease gene define an artificial linkage interval by selection 100 

closest genes on the same chromosome
• Evaluate performance based on leave one out for each disease gene family
• Two assessment measures

– An enrichment score: General idea is to compare the predicted rank to 
a rank obtained by random
• Let grank be the rank of a particular gene
• Enrichment score is defined as 50/grank
• If a true disease gene is ranked the highest, it has an enrichment 

score of 50
• For all other genes, we have assigned a rank of 100. 

– Receiver Operator Curves (ROC)
• Plot True Positive Rate (TPR) versus False Positive Rate (FPR) and 

compute Area Under the ROC (AUROC)



Global graph-based measures have 
greater score enrichment compared to 

local measures

performance of this mapped network was only slightly
inferior to the network with only human data used, but
given the higher coverage it could be preferable for search-
ing for novel disease genes (Figure 3B). The network with
only medium-confidence STRING data used showed the
best performance of all networks, but fewer genes are
covered in this network than in the complete network
(cf. Table 1).

The highest area under the ROC curve (AUROC) was
98% with text mining and 91% without (Figure 3B). The
improved performance of the network including literature
data confirms previous observations10 that testing gene-
prioritization methods on known disease genes might
introduce a bias because a given gene is likely to be inten-
sively studied in the years following its identification as a
human disease gene. This ‘‘previous-knowledge bias’’
means that methods relying on text mining or targeted
experimental studies on individual genes may perform bet-
ter on historical training data (such as the 110 disease-gene
families described above) than in a prospective setting in
which novel disease genes are sought.

In order to simulate the real-life search for an unknown
novel disease gene, we therefore chose seven disease genes
that were discovered in 2007 and belong to some of the
families investigated in this work. The identification of

the disease associations of these genes was published sub-
sequent to the creation date of the STRING database we
used, so that we expect minimal publication bias. We
tested these seven genes as above and also tested the per-
formance of ENDEAVOR,10 which has outperformed all
other previously published methods. RWR achieved a
mean enrichment of 26-fold, which was superior to the
results of all other methods (Table 2).

Figures 4 and 5 display the interaction networks associ-
ated with two disease-gene families for which the RWR
ranked each disease gene (red) in first place. For compari-
son, unrelated genes that mistakenly receive the highest
rank by the SP method are shown in yellow. For the pro-
tein-interaction network associated with bare lymphocyte
syndrome type 1 (Figure 4), it is apparent that the disease
genes are connected to one another by multiple paths,
comparable to Figure 1D, whereas the unrelated genes
are connected to the true disease genes by single paths
only. As noted above, current databases of human protein
interactions are far from complete. This is clearly problem-
atic for predictions based upon direct interactions with dis-
ease genes, because a lack of direct interactions to disease
genes will automatically result in a false-negative predic-
tion. On the other hand, our method appears to be more
tolerant of incomplete data. For instance, the disease-gene

Figure 2. Cross-Validation Results
Enrichment analyses for the all-interactions network without STRING text-mining data are shown. Genes within an artificial linkage in-
terval containing 100 genes were ranked according to the methods indicated. The mean enrichment reflects the position of the true dis-
ease gene in the prioritized list and is thereby related to the amount of time saved by the sequencing of candidate genes in the order
calculated by the respective algorithm (see Material and Methods). Two different methods for evaluating genes with equal scores were
evaluated.
(A) If multiple genes receive the same score, the worst case is assumed whereby the true disease gene is the last to be sequenced.
(B) If multiple genes receive the same score, each gene is given the mean rank of all tied genes. The complete list of results for each
disease-gene family is available in Table S2.
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ROC analysis further supports enrichment 
analysis

family for Stickler syndrome comprises COL2A1, COL9A1,
COLA11, and COL11A2. Collagen XI is a heterotrimeric
molecule consisting of alpha 1, alpha 2, and alpha 3 colla-
gen chains; in cartilage, it assembles with collagens II and
IX to produce an extensive network of thin, heterotypic
collagen fibrils.32 However, these interactions are not cur-
rently listed in the protein-interaction databases used for
our study. Nonetheless, the RWR method made the correct
predictions on the basis of a dense network of other inter-
acting proteins between the disease genes (again compara-
ble to Figure 1D). On the other hand, the unrelated genes
that mistakenly receive the highest rank by the SP method
themselves have numerous other interaction partners, so
that a single path to a single true disease gene is not
weighted highly by the RWR method (Figure 5).

Discussion

Several approaches have been published for the prioritiza-
tion of candidate disease genes, which included functional
as well as sequence-based methods. However, the emerging
amounts of protein-protein interaction data have only

sparsely been used for this problem, by investigation of
either the direct interactions to other disease genes10,17,33

or the shortest-path distance to known disease genes.18

In this work, we have presented a novel method for
candidate-gene prioritization based on the random walk
method, which we use to calculate a score reflecting the
global similarity of candidate genes to known members
of a disease-gene family (Figure 1).

There are a number of issues to consider when compar-
ing the results of different methods for computational
disease-gene prediction or prioritization. Given the cost
and effort involved in characterizing novel disease genes,
prospective comparisons on large numbers of disease loci
have not been performed. Therefore, most groups have
measured the performance of their algorithms by using
collections of known disease genes. That is, a disease-
gene family is defined, and the method is tested on each
of the members of the family in turn by use of the remain-
ing members of the family as positive examples. In this
context, we feel it is important to create a realistic test
scenario. We have defined artificial linkage intervals
containing 100 genes around each of the disease genes
being tested in order to simulate the situation facing

Figure 3. Cross-Validation Results
Rank ROC curves were generated for the 110 disease-gene families described in this work. The methods used to calculate the individual
ROC curves are indicated in the figure. Intuitively, the area under the ROC curve (AUROC) reflects the false-positive rate needed to achieve
various levels of sensitivity, with a perfect classifier having an AUROC of 100% and a random classifier having an AUROC of 50%. For
comparison, we excluded disease genes with no interaction data, which were 15 genes in the all-data-sources network, 63 genes in
the same network without text-mining data, 35 genes in the STRING network, 114 with the human and mapped data, and 139 in the
human network.
(A) Comparison of different methods for the all-interactions network without STRING text-mining data. The curve labeled ‘‘random order’’
displays the results obtained by the sequencing of genes within the linkage interval at random, i.e., without use of any prioritization
method.
(B) Comparison of different data sources with RWR analysis.
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RWR outperforms existing local network 
based methods on seven disease genes 

that do not have the literature bias

methods based on searching for disease genes among
direct-interaction partners of candidate genes and search-
ing for the single shortest path to a known disease gene,
and we also utilized PROSPECTR, a previously described
sequence-based ranking system.13 We tested our method
on 86 genetically heterogeneous disorders in which muta-
tions in distinct genes are associated with similar or even
indistinguishable phenotypes; 12 cancer syndromes com-
prising genes associated with hereditary cancer, increased
risk, or somatic mutation in a given cancer type; and 12
complex (polygenic) disorders that are known to be influ-
enced by variation in multiple genes. For every such fam-
ily, we then performed leave-one-out cross-validation (see
Material and Methods).

Using the network containing all interactions (including
text-mining data) and the RWR technique, we ranked
all genes of 43 disease-gene families first (50-fold enrich-
ment). For instance, all genes of Hirschsprung disease
(six genes), Waardenburg syndrome (six genes), adrenoleu-
kodystrophy (five genes), and limb-girdle muscular dystro-
phy (14 genes) families were ranked first. On average, we
achieved an enrichment score of 44-fold for all 783 disease
genes using all data sources including the text-mining
component of STRING. Similar but slightly inferior results
were obtained for the other global search method based on
the DK. Leaving out text mining data, the RWR achieved
a mean enrichment of 27-fold for all 110 disease families.
The best results were obtained for families of heteroge-
neous monogenic diseases. However, there was an espe-
cially clear advantage for the RWR and DK methods

for polygenic disorders and cancer families compared to
the other methods, although the overall performance of
all methods was somewhat less than with the monogenic
disorders (Figure 2A).

The above comparison (Figure 2A) was performed by as-
sumption of the worst case for genes with equal scores, i.e.,
that the true disease gene is sequenced last among the set
of equally ranked genes. In the complete network (without
text-mining data), genes have an average of 22.9 direct
neighbors. There is a mean path length of 3.7 between ran-
dom pairs of genes. Therefore, there are a lot of direct inter-
actions, and nodes are rarely far apart in the interactome.
One consequence of this for methods such as DI and SP
is that it is not very unlikely to observe interactions that
are unrelated to the disease gene family. In 61% of the cases
in which the DI method correctly identified the true dis-
ease gene, it additionally identified other unrelated genes
with a direct interaction to a known disease gene. On the
other hand, in only 1.4% of the cases in which the true dis-
ease gene was ranked in first place by the RWR method was
another, unrelated gene also given the same score. There-
fore, the RWR method is better able to discriminate among
genes within a dense network of interactions. However,
even if all genes with equal scores are assigned the mean
rank, our method clearly outperforms the methods based
on local distance measures (Figure 2B).

We additionally used ROC analysis to compare the vari-
ous methods shown in Figure 2A, confirming the perfor-
mance advantage of RWR and DK analysis compared to
the local interaction screens (DI, SP) and a sequence-based
analysis (Figure 3A).

We then used ROC analysis to compare the performance
of RWR using interaction networks constructed from
several different data sources. Because the different data
sources cover different numbers of genes, we included
only those genes for which interaction data was available
in the ROC analysis (768 of 783 genes for all data sources,
720 of 783 genes for all data sources except text mining,
748 of 783 genes for the STRING network, 669 of 783 genes
for the human and mapped data, and 664 of 783 genes for
the human data).

Present estimates suggest that only about 10% of all hu-
man protein-protein interactions have been described.30

The choice of data source to use for proteome analyses
essentially amounts to a choice between coverage and ac-
curacy. Protein-protein interactions are often evolution-
arily conserved,31 suggesting the mapping of interactions
between orthologous proteins in other organisms to the
human interactome. Additionally, text mining has been
used as one of the components of STRING to predict pro-
tein-protein interactions.27 Although these computational
techniques increase the coverage of proteins and interac-
tions, they presumably come at the cost of reducing the
overall accuracy of the data by introducing false-positive
interactions. Mapping interactions from four other species
increased the number of genes included in the human PPI
network by over 1000 additional genes (cf. Table 1). The

Table 2. Performance of Five Candidate-Gene-Prioritization
Methods on Seven Recently Identified Monogenic Disease
Genes

Family Gene

Rankings

Random
Walk ENDEAVOUR SP DI SQ

Nephronophthisis GLIS237 100 43 100 100 3*
ARVD JUP38 1* 1* 1* 2 67
RP TOPORS39 23 69 20* 100 56
RP NR2E340 2 2 18 100 1*
Noonan Syndrome RAF141 1* 3 4 4 42
Brachydactyly NOG42 1* 5 1* 1* 34
CMT4H FGD443 13 2* 27 100 9

Mean Enrichment 25.9* 18.4 17.2 12.8 10.9

Results of random walk, two local network algorithms, ENDEAVOUR,10 and
the sequence analysis program PROSPECTR12 for the prediction of recently
published genes causing monogenic diseases within artificial linkage inter-
vals containing 100 genes.
‘‘SP’’ denotes ranking according to shortest path.
‘‘DI’’ denotes ranking according to direct interaction with a known disease
protein.
‘‘SQ’’ denotes ranking by sequence analysis with PROSPECTR.
‘‘ARVD’’ denotes arrhythmogenic right ventricular dysplasia.
‘‘RP’’ denotes retinitis pigmentosa.
‘‘CMT4H’’ denotes Charcot-Marie-Tooth type 4H.
* indicates best performance.
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Shortest path fails but RWR successfully 
identifies disease genes

positional-cloning projects. It is less appropriate to use
some number of genes chosen at random, as was done to
test some other methods,10 because of the tendency of sim-
ilar genes to cluster in chromosomal neighborhoods. For
instance, genes in the same metabolic pathway show sta-
tistically significant genomic clustering as compared to
randomly chosen genes.34 Additionally, we found that pro-
teins coded by genes in the contiguous intervals around
disease genes are located in greater proximity to the corre-
sponding disease-gene family members in the PPI network
than are proteins coded by randomly chosen genes; com-
parison of mean shortest-path distance from genes other
than the disease gene within the 100-gene artificial inter-
val with the corresponding mean distance among 100 ran-
domly chosen genes showed a small but highly significant
difference: 3.46 for the ’’interval genes’’ and 3.58 for the
randomly chosen genes, corresponding to a p value of
2.2 3 10!16 (data not shown).

Another important issue lies in the definition of the
disease-gene families. In this work, we have defined 110
disease-gene families by using both the OMIM database1

and domain knowledge (D.H., P.N.R.) (see Table S1). We
claim that this is the largest publicly available list of
disease-gene families available for the testing of gene-prior-
itization methods. Also important is the range of disease-
gene families and of genes for which a given method is ap-
plicable. In general, methods based on sequence analysis13

have no restrictions. Methods based on functional annota-
tion5–12 have no restrictions but will presumably function
poorly for novel disease genes for which little or no func-

tional annotations are available. Especially as more pro-
tein-protein interaction data becomes available, we expect
that methods using this type of data will become ever more
accurate in their prediction of novel disease genes. Some of
these methods are limited to genes having direct interac-
tions with other known disease genes.17,33 Our method
can only be used for genes for which protein-protein inter-
actions are known or predicted, but it does not require
direct interactions. Thus, with our method, no prediction
was possible for 15 of the 783 genes tested. Many dis-
ease-gene families as currently defined contain but two
or three members (see Table S1). Our method was tested
with families as small as three members, meaning that
two genes at a time were used as positive examples. Other
published methods have been tested with the use of larger
families (for instance, ENDEAVOUR10 was tested with fam-
ilies of eight or more genes), so it is unclear how these
methods will perform for smaller disease-gene families.

Therefore, we claim that we have used a realistic and bi-
ologically relevant testing strategy to measure the perfor-
mance of our methods. We have shown that the two global
distance measurements (RWR, DK) clearly outperform two
local network-search methods (DI, SP) and the sequence-
based method PROSPECTR.13 Additionally, we used a panel
of recently identified monogenic disease genes to compare
RWR with both the local network search methods and
PROSPECTR, as well as with ENDEAVOUR.10 We expect
the influence of publication of functional data concerning
these new disease genes to be minimal, because their dis-
covery was published subsequent to the version of the

Figure 4. Bare Lymphocyte Syndrome Type 1 Protein-Interaction Network
The protein-interaction network associated with bare lymphocyte syndrome type 1, which comprises the genes TAP1, TAP2, and TAPBP.
Each of these genes is shown in red. The DI and SP methods additionally identified the unrelated genes PSMB8 and PSMB9 (shown in
yellow) as potential disease genes because they each have an interaction with one of the true disease genes. The RWR method ranks
the true disease genes higher because each true disease gene has interactions with two other family members and because there is a dense
net of proteins that connect the disease genes via paths with two interactions. All proteins connected to the correct or incorrect can-
didates by a single interaction are additionally displayed. The graphic was generated with Cytoscape.44
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False positives from SP and DI Dense network with multiple alternate paths 
is used by RWR to correctly rank genes

For bare lymphocyte syndrome type 1, 



RWR can identify genes based on indirect 
paths

STRING database we used. Although no single method was
superior for all of the genes tested, our RWR method out-
performed all other methods on average (Table 2 ).

It has recently become clear that networks pervade all
aspects of human health and that a network approach to
the analysis of cellular functions affected by genes and
gene products, rather than just a list of ’’disease genes,’’
will be necessary for the understanding of disease mecha-
nisms35 and that proteins mutated in phenotypically sim-
ilar diseases might form highly interlinked subnetworks
within the larger protein interaction network.36 In this
work, we have shown that network algorithms that mea-

sure not only direct and shortest-path interactions but
also take the global structure of the interactome into
account have a clear performance advantage in the priori-
tization of candidate disease genes. We suggest that this
supports the assumption that phenotypically similar dis-
eases are associated with disturbances of subnetworks
within the protein interactome and that exploration of
global network structures with appropriate graph-theoretic
algorithms will become an important resource for under-
standing of the biology of disease.

We have developed GeneWanderer, a freely available im-
plementation of all four network algorithms. Scientists

Figure 5. Stickler Syndrome Protein-Interaction Network
The protein-interaction network associated with Stickler syndrome comprises the genes COL2A1, COL9A1, COL11A1, and COL11A2. There is
no direct path between any pair of disease genes. Therefore, the DI method will not make any correct prediction. A number of false pre-
dictions of the SP method are shown in yellow. Most of these genes have a large number of direct interactions with other proteins, so that
the weight of any single interaction is small in the RWR and DK methods. Each of them has a single path of length 2 with one of the true
disease genes. In contrast, the true disease genes each have multiple paths of length 2 with other disease genes and therefore receive
a correspondly high score from the RWR and DK methods. For instance, the genes COL11A1, COL11A2, and COL2A1 are connected to one
another by 14 other genes. The graphic was generated as in Figure 4.
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1. There are no direct 
connections 
between disease 
genes, so DI will 
not work

2. Shortest path has 
high false positives 
(yellow)

3. RWR correctly 
identifies new 
genes (red)



Summary of GeneWanderer results

• Global similarity measured using both random walk and diffusion 
kernels are vastly superior than local distance measures

• The authors generated a test set using a linkage based analysis
– This is more realistic and similar to existing linkage-based 

approaches to find genes
– Others have used a random set of test genes, which might not 

be correct because similar genes tend to cluster on 
chromosomes

• How to define disease gene families?
– This method needs known genes, although not many. Was 

shown to work for as small as 3 genes. 
– Existing approaches like ENDEAVOUR may not work



Concluding remarks

• Phenotypically similar diseases likely represent perturbations to the 
same subnetwork or are topologically close.

• This approach works for situations where there are some known 
genes that can be used to rank other genes with respect to them

– But this may not be the case always. How to extend?

• Current interaction networks are incomplete

• Each disease was considered one at a time

– Can we share information between diseases to better prioritize 
genes?

• Recent approaches go beyond genes: prioritizing GWAS sequence 
variants (NetWAS from GIANT http://giant.princeton.edu )

http://giant.princeton.edu


Other applications of random walks

• Hi-C matrix denoising
• Single cell RNA-seq data denoising



Using random walks for denoising Hi-C 
data

• Nodes in the graph 
represent genomic regions

• Edge weight is the counts
of interactions

• Denoising is done by taking 
powers of the row sum-
based transition matrix

• This gives you the
probability of reaching
region j from region i in t 
steps for a random walk 
originating on region i

an ideal concordance score would be able to measure similarity

across multiple scales. Second, genome-wide contact maps such as

those from Hi-C experiments measure a very large space of possible

contacts and hence require deep sequencing (>billion reads) for reli-

able estimates of contact frequency. Due to cost and material con-

straints, typical Hi-C datasets are sequenced at significantly lower

coverage [e.g. 100 M reads (Lajoie et al., 2015)]. These under-

sampled datasets exhibit a large proportion of contacts with low

observed counts with high variance (Carty et al., 2017) including

some contacts with 0 observed counts, a phenomenon known as

stochastic dropout. To address this issue, we propose a denoising

approach to smooth contact maps by leveraging random walks on

the contact map graph, before comparing these maps.

2.3 The GenomeDISCO score for estimating the
concordance of contact maps
We estimate concordance between a pair of chromatin contact

maps, A1 and A2, as follows (Fig. 1A).

2.3.1 Equalizing sequencing depth

To avoid artificial differences due to sequencing depth (see

Supplementary Fig. S2), we first equalize the sequencing depth of

the pair of datasets to be compared by randomly subsampling the

count matrix to the minimum depth of the two datasets.

2.3.2 Denoising contact maps using random walks

We denoise each contact map independently using random walks on

the contact maps. For every pair of nodes i and j in a contact map,

we ask the question: if we start a random walk at node i based on

the observed contact map transition probability matrix and allow

the walk to take t steps, what is the probability we will reach node

j? If there are many high-probability paths in the network that con-

nect node i and node j, it increases our confidence that nodes i and j

are in contact. The probability of reaching node j after a random

walk of t steps starting from node i is the ði; jÞth entry of the matrix

obtained by multiplying the transition probability matrix with itself

t times, i.e. Atð Þij. We define the optimal value for the steps par-

ameter t for Hi-C data, as the one that maximizes the ability of the

concordance score to distinguish between biological replicates and

non-replicate reference datasets (See Section 2.4 for details).

2.3.3 Computing the difference between denoised contact maps

The denoised versions of contact maps A1 and A2, after t steps of

random walk are A1tð Þ and A2tð Þ, respectively. We compute the dif-

ference dtðA1;A2Þ between A1 and A2 as the L1 distance between

the two denoised contact maps A1tð Þ and A2tð Þ, divided by the aver-

age number of non-zero nodes in the two original contact maps A1

and A2:

dt A1;A2ð Þ¼
P

i

P
jjðA1tÞij$ðA2tÞijj

Nnonzero¼1
2 jfA1ij

P
jA1ij>0gjþ jfA2ij

P
jA2ij>0gj

!"

Since each row of A1 and A2 sums to 1, the weighted degree (sum

of weights of all edges to/from a node) of each node is 1. Hence,

dtðA1;A2Þ scores range from 0 to 2, with small values indicating

high similarity.

2.3.4 Converting the difference to a concordance score

We define the concordance score as R A1;A2; tð Þ ¼ 1$dtðA1;A2Þ.
The concordance scores range from $1 to 1, with larger values

indicating greater similarity. We obtain a single genome-wide score

as the average of the scores across all chromosomes.

2.4 Estimating the optimal number of random walk

steps (t)
The number of steps t of the random walk on the contact map graph

determines the amount of smoothing or denoising of a contact map.

We define an optimal value of t as one that would provide sufficient

denoising so as to improve concordance between contact maps of

replicate experiments while preserving differences between contact

maps from distinct cellular contexts. We used a collection of high

quality benchmark Hi-C datasets with replicate experiments from

diverse human cell-lines (Rao et al., 2014) to optimize t. Using half

the experiments as a training set and the remaining half as a test set,

we asked which value of t leads to the optimal separation of biolo-

gical replicates from non-replicate samples, as measured with the

A STEP 1. Smooth each contact map using  
random walks on graphs

Contact  
map A1

Contact  
map A2

t = 1 t = 2 t = 3

(A1) - (A2) (A1)2 - (A2)2 (A1)3 - (A2)3

Difference  
matrix

STEP 2. Obtain concordance score from comparing 
smoothed contact maps

B

Difference score (t) = 

(A1) (A1)2 (A1)3

(A2) (A2)2 (A2)3

 |(A1)t - (A2)t|ij
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Concordance score (t) = 1 - Difference score (t)
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Fig. 1. Overview of GenomeDISCO. (A) GenomeDISCO consists of two steps.

The first step in comparing two contact maps, A1 and A2, consists of smooth-

ing each contact map using random walks. Depicted are the smoothed con-

tact maps, at different levels of smoothing controlled by the parameter t ,

which specifies the number of steps of random walk used for denoising. The

second step consists of computing a difference score between the smoothed

contact maps, as a function of t . (B) Procedure for identifying the optimal

value for t . We computed concordance scores for pairs of samples that are ei-

ther biological replicates from the same cell type or pairs of samples from dif-

ferent cell types. We assume that the optimal value of t will produce scores

that can accurately classify pairs of samples into ‘biological replicates’ and

‘different cell types’. For each value of t , we measure classification perform-

ance using the auPRC, finding t ¼3 to be optimal
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Using random walks to smooth scRNA-seq
data

each individual cell, based on data diffusion between similar
cells. For a given cell, MAGIC first identifies the cells that are
most similar and aggregates gene expression across these
highly similar cells to impute gene expression that corrects for
dropout and other sources of noise. However, due to data
sparsity, nearest neighbors in the raw data do not necessarily
represent the most biologically similar cells. Therefore, we use
data diffusion to construct a weighted affinity matrix represent-
ing a more faithful neighborhood of similar cells, and then use
this matrix to restore the data. With a sufficient number of cells,

this process (illustrated in Figure 1) increases weights on cells
that share similarity across a majority of biological processes.
Constructing the affinity matrix proceeds as follows: first PCA

is used as a preprocessing step, similar to other graph-based
approaches (Haghverdi et al., 2016; Setty et al., 2016; Shekhar
et al., 2016). MAGIC uses an adaptive (width) Gaussian kernel
to convert distances into affinities, so that similarity between
two cells decreases exponentially with their distance. The adap-
tive kernel serves to equalize the effective number of neighbors
for each cell, which helps recover finer structure in the data,
whereas the non-adaptive kernel collapses the data into the
densest regions (Figures S1A and S1B). From the affinity matrix,
we create a Markov transition matrix, M, representing the prob-
ability distribution of transitioning from one cell to another in a
single step.
Owing to technical noise, the ability to distinguish between

similarity due to biological correspondence versus spurious
chance is not possible. Mimicking scRNA-seq, if we randomly
subsample a fraction of the transcripts, the expression observed
across identical cells can appear dissimilar. However, these cells
likely share many neighbors, whereas spurious edges connect
cells that share few neighbors. Raising M to the power t results
in a matrix where each entry represents the probability that a
randomwalk of length t starting at cell iwill reach cell j (Figure 1v),
a process akin to diffusion. While the exponentiated Markov af-
finity matrix increases the number of cell neighbors, unlike the ef-
fect of increasing k in kNN-imputation, MAGIC does not bluntly
smooth and average over increasingly distant cells. Instead,
exponentiation refines cell affinities, increasing the weight of
similarity along axes that follow data density, thus phenotypically
similar cells have strongly weighted affinities, whereas spurious
neighbors are down-weighted.
In the imputation step, MAGIC learns from cells in each neigh-

borhood through multiplying the transition matrix by the original
data matrix (Figure 1vi), effectively restoring cells to the underly-
ing manifold. In this data diffusion process, cells share informa-
tion through local neighbors in a process that is mathematically
akin to diffusing heat through the data, where raising the diffu-
sion operator to the t-thpower is akin to a t-step random walk
through the data. Exponentiation is essentially a low-pass filter
on the eigenvalues, which serves to eliminate noise dimensions
with small eigenvalues, while simultaneously learning the mani-
fold structure. While we use PCA to gain more robustness for
computing the affinity matrix, the imputation is performed using
the count matrix before PCA. Thus, while we average data
across cells, each individual cell retains a unique neighborhood,
resulting in a unique expression vector.
To select an optimal t, we consider the impact of t on the final

imputed data. We evaluate the degree of change between the
imputed data at time t and time t-1 and stop after this value sta-
bilizes. As t increases, we observe two regimes (Figures S1C and
S1D), a rapidly changing imputation regime, and after conver-
gence, a smoothing regime. In the imputation regime, the first
few steps of diffusion learn the manifold structure and remove
the noise dimensions. As t increases, we rapidly capture rela-
tions between cells that are biologically very similar, and only ap-
peared different due to collection artifacts. At larger values of t,
the structure of the data has already been recovered and

Figure 1. Steps of the MAGIC Algorithm
(i) The input data consist of amatrix of cells by genes (middle) of the data (right).

(ii) We compute a cell-by-cell distance matrix. (iii) The distance matrix is

converted to an affinity matrix (middle) using a Gaussian kernel. A graphical

depiction of the kernel function is shown (right). (iv) The affinities are normal-

ized, resulting in a Markov matrix (middle). The normalized affinities are shown

for a single point as transition probabilities (right). (v) To perform diffusion, we

exponentiate the Markov matrix to a chosen power t. (vi) We multiply the ex-

ponentiated Markov matrix (left) by the original data matrix (middle) to obtain a

denoised and imputed data matrix (right).

See also Figure S1.
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Smoothing using MAGIC enhances scRNA-
seq data signal

diffusing further would smooth out trends that likely represent
real biology. The knee-point (Figure S1C), determines an
optimal t. A synthetic dataset demonstrates that best correspon-
dence between the ground truth and imputed data is achieved at
the defined optimal t (Figure S1D). See STAR Methods for more
details.

Figure 2. MAGIC Applied to Mouse Myeloid
Progenitor Data
Mouse bone marrow dataset (Paul et al., 2015).

(A) Gene expression matrix for hematopoietic

genes (top) and characteristic surface markers of

immune subsets (bottom) before and after MAGIC.

See also Figure S2A.

(B) Scatterplots of several gene-gene relationships

after different amounts of diffusion. In these scat-

terplots, each dot represents a single cell, plotted

according to its expression values (measured at

t = 0 and imputed for t = 1,3,7), and colored based

on the clusters identified in Paul et al. (2015).

(C) Shows a 3D relationship before and after

MAGIC (with diffusion time t = 7).

(D) FACS measurements of CD34 and FCGR3

protein levels versus transcript levels, before

and after MAGIC. Both FACS measurements

and mRNA levels are log-scaled as per FACS

conventions.

MAGIC Enhances Structures in
Bone Marrow
We first evaluated MAGIC on a mouse
bone marrow dataset (Paul et al., 2015),
collected with MARS-seq2 (Jaitin et al.,
2014). The data matrix is sparse and cells
are missing many canonical genes in their
respective cell types (Figure 2A). At the
transcript level, canonical surfacemarkers
typically used to identify immune subsets
are lowly expressed and hence detected
at low levels. For example, in themonocyte
clusters C14, C15, only 1.6%cells express
CD14 and 5.8% cells express CD11b, and
only10%of thedendritic cells (clusterC11)
express CD32. After MAGIC (npca = 100,
ka = 4, t = 7), 94% of monocytes express
CD14, 98% express CD11b, and 97% of
dendritic cells express CD32 at significant
levels (Figure S2A).
The sparsity of the data is more evident

when viewing the data with biaxial plots
(Figure 2B, t = 0). It is rare for both genes
to be observed simultaneously in any
given cell, obscuring relationships be-
tween genes. MAGIC restores missing
values and relationships, recreating
the biaxial plots typically seen in flow
cytometry. Figure 2B shows established
relationships during hematopoiesis that
are undetectable in the raw data. By

superimposing the reported clusters onto the biaxial plots, we
see that cells are grouped by cluster, and gene-gene relations
gradually change between clusters as the cells mature and
differentiate. The effects of the diffusion process are also
demonstrated: a clear and well-formed structure emerges as t
(number of times the matrix is exponentiated) grows. Figure 2C
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