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RECAP of problems in network biology
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Biological problem

Mapping regulatory network
structure

Dynamics and context
specificity of networks

Understanding design
principles of biological
networks

Interpretation of sequence
variants

|Identification of important
genes

Integrating different types of
molecular genomic data

Smoothing noisy matrices

Computational approaches
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Probabilistic graphical models
Graph structure learning
Multiple network learning

Topological properties of
graphs

Graph clustering
Graph alignment
Diffusion on graphs



Topics in this section

* Graph-based approaches for gene prioritization
* Graph diffusion to clean up noisy matrices
* Graph diffusion to interpret sequence variants



Goals for today

Gene prioritization
— Supervised methods
— Unsupervised methods

GeneWanderer: Walking the Interactome for Prioritization of
Candidate Disease Genes

— An example of supervised, graph diffusion-based approach
Other applications of random walks on graphs



Gene prioritization

* Gene prioritization is the task of ranking the most important
genes for a particular process or system under study through
integrative computational analysis of public and private
genomic data.

* Many of the approaches developed were originally for
finding the important gene(s) from a linkage study

— A genomic locus associated with a disease that could have
hundreds of genes

 However, many of the approaches are now being used to
prioritize genes identified from high-throughput omics
experiments

Computational tools for prioritizing candidate genes: boosting disease gene discovery:
Yves Moreau, Leon-Charles Tranchevent, Nature Review Genetics



Why gene prioritization?

Identification of genes associated with diseases (and other complex traits)
is important for gaining a molecular understanding of a disease

Linkage analysis or omics-based measurements identifies lots of candidate
genes

— Can narrow down a region of the genome that might be associated
with a disease, or obtain a gene set

— But there are too many genes for follow-up analysis

— We just don’t have the resolution to pinpoint specific genes
Gene prioritization has many applications

— What genes control a particular process?

— What genes are affected in a specific disease?

— What genes must be tested first to best complete a model of the
system

— What genes (regulators) establish a particular cell type or fate?



Overview of approaches for gene
prioritization

e Non-network based methods

— Similarity in different gene-level features can be used to
predict/prioritize new genes

e sequence, expression and gene ontology
e Network-based methods

— Supervised methods: need a small number of seed/known
genes

— Unsupervised methods
— Network model-based methods



Network-based prioritization

Can we use interaction networks to prioritize what genes
might be important?

Suppose we have a set of candidate genes that we know are
important

— Can we identify additional genes that are also important
based on their proximity to the network?



Supervised network-based gene
prioritization task definition

* Given
— a list of candidate genes
— Background interaction network among genes

— A list of “known” genes (seed genes) for a particular
process or disease

* Do

— Rank candidates genes based on their association to the
known genes



Supervised Network-based gene
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Neighborhoods on graphs

Network-based methods rely on defining neighborhoods of genes

Neighborhoods of genes known for a disease can be used to
prioritize additional genes

Local neighborhood

— Immediate neighbor

— Shortest path

Global neighborhood

— Based on more global measures of distance between nodes

We have seen some ideas of neighborhoods on graphs in graph
clustering



Local network neighborhood-based
prioritization
* Available in many public software and tools

— MouseNET, GIANT, STRING
* Applied for filling holes in a pathway
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Global network neighborhood-based
prioritization

* Global network neighborhood-based methods make use of
the entire graph to define the similarity between two genes

* Given a graph connecting nodes, global similarity can be
defined using

— Random walk

— Diffusion kernel
— Laplacian kernel
— Heat kernel



Goals for today

* GeneWanderer: Walking the Interactome for Prioritization of
Candidate Disease Genes

— An example of supervised, graph diffusion-based approach



Motivation of GeneWanderer

* There are many diseases for which we do not know the causal
genes

* Previous approaches have used protein-protein interaction
networks, but in a limited way

— Only local similarity was used
 Can we use global graph distance?

* Does global distance help and improve current prioritization
techniques?

S. Kohler, S. Bauer, D. Horn, and P. N. Robinson, "Walking the interactome for prioritization
of candidate disease genes." American journal of human genetics, vol. 82, no. 4, pp. 949-
958, Apr. 2008. [Online]. Available: http://dx.doi.org/10.1016/j.ajhg.2008.02.013



Overview of GeneWanderer
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Motivation of using global distance

B ; g g,= 0.0115 C E i%= 0.0181 D % s,= 0.0346

Known gene: x
Candidate gene:y

* Global similarity is more sensitive and different for each of the above cases
* |In contrast, local shortest-path similarity is the same for all pairs
* Direct interactions will never select y as a candidate



Global graph distances used in
GeneWanderer

e Random walk with restarts

e Diffusion kernel



Random walk on graphs

A random walk is defined as a probabilistic traversal of a graph

At each time step, the walker transitions randomly to one of
the neighbors of the current node.

Typically one can start anywhere on the graph

But one can put priors on the walk based on what we know
about candidate genes.

The random walk converges to some distribution of the
number of times a gene is visited.

The distribution can be used to rank genes



Random walk on graphs

Random walk on a graph requires us to define transition
probabilities

Transition probability is obtained by dividing each entry by the
row sum or column sum

One step of the random walk corresponds to one matrix
multiplication of the transition matrix

Suppose we started at node a, what is the probability of
reaching other nodes after t steps?

" power of the transition matrix tell us the probability of
reaching node j from node i after 7 steps on the random walk



A: Adjacency magrix

a c d
alo |1 |o |1 |oO
b |1 0 1 0 0
clo |1 |o |1 1
di1 |o |1 |o o
elo |o |1 |o o

a b C d e
alo |05 |o |05 |0
b 105 |0 1/3 |0 0
clo |05 |0 |05 |1
dlos |o |1/3 [0 o
elo |0 |1/3 |0 o

Network adapted from IsoRank paper

Transition matrix of a graph

v

Column-normalized adjacency matrix

a b c d :e
a |0 |05 |0 |05 |0
b 105 |0 05 |0 0
clo |1/3 |0 |1/3 |1/3
dlos |0 |05 [0 |0
elo |o |1 |o o

Row-normalized adjacency matrix




Random Walk with Restarts (RWR)

Allow the random walker to restart occasionally
1
p =(1-nWp' +rp’
Prior probability of starting at a node

W is the column normalized adjacency matrix
— Not clear if the adjacency matrix was weighted
r controls how often we restart the random walk

pY was set such that the random walk would start at any of the
known genes with equal probability

Rank candidate genes based on the p™*! when p’ and p™*/ are really
close

In other words, this means that p’*/ is the steady state distribution



RWR continued

* Intuitively, this approach gives the probability of reaching a
specific node, given that a random walk starts at a given node,
while taking all intermediate paths into account

* By making the random walk start from known disease genes
we obtain a global proximity measure from these known
genes




A: Adjacency magrix

RWR example

a c d e
alo |1 |o |1 |oO
b |1 0 1 0 0
clo |1 |o |1 1
di1 Jo |1 |o |o
elo |0 |1 |o |o

a b C d e
alo0 |05 |0 |05 |0
b 105 |0 1/3 |0 0
clo |05 |0 |05 |1
dios |0 |1/3 |0 |0
€elo |0 |1/3 |o |o

W Column-normalized adjacency matrix

Network adapted from IsoRank paper



RWR example contd

 Assume that a and b are “known genes”
* py: [0.50.5000]
* Letr=0.7

0.0712 0.007/6

Iteration 1 Iteration 2

lteration 6
(convergence)

Iteration O



RWR example contd

 Assume that a and b are “known genes”
* py: [0.50.5000]
* Letr=0.5

0.1141 0.0217

Iteration 1 Iteration 2

lteration 8
(convergence)

Iteration O



Global graph distances used in
GeneWanderer

e Diffusion kernel



Kernel

A Kernel k is a function that maps pairs of objects to a real-
valued space

It enables one to define very general similarity functions
between pairs of objects

Let X denote a set of objects of a particular type

— For example the set of images or a set of trees
A kernel k is defined as

k:f(X,X)— R



Diffusion kernel

* Diffusion kernel K of a graph is defined a function of the
graph Laplacian L

— K=exp(-bL)

* Graph Laplacian L=D-A
— D is the diagonal degree of matrix
— A is the adjacency matrix

— The rank of a gene jis given by a score depending upon its
proximity from other disease genes

score(j) = Z K

ie disease gene family



Diffusion kernel

* The diffusion kernel gives a ranking of a new gene using the
sum of a global distance measure from all known genes of a
disease

 Specifically the j» column corresponds to the stationary
distribution of a random walk that started at node ;.



Diffusion kernel example

* Again let’s consider the same example graph as before

A D
a b c d e a b C
alo 1 0 1 0 al 2 0 0 0 0
b1 0 1 0 0 bl 0 2 0 0 0
clo 1 0 1 1 clo 0 3 0 0
diq 0 1 |o |o do |o |o |2 0
€lo 0 1 0 0 elo 0 0 0 1
L=D-A
al2 -1 0 -1 0
bi-1 |2 1 |0 0
€lo -1 |3 -1 |-1
dia Jo |1 |2 o
€lo 0 -1 |0 1




Diffusion kernel example contd

L=D-A K=exp(-0.1*L)
al2 (1 |0 |1 |O 2082 1111 [1.11 1
b|-1 |2 |-1 |0 O bl1.11 082 |1.11 |1 1
cl0 |-1 |3 1 - c|1 1.11 |0.74 | 1.11 | 1.11
dj-1 |0 |1 ]2 |0 d|1.11 |1 1.1 |0.82 |1
e|0 O [-1 |0 1 e |1 1 111 |1 |09

Assume a, and b are known genes

Score of c: K(a,c)+K(b,c)= 1+1.1=2.11
Score of d: K(a,d) +K(b,d)=2.11
Score of e: K(a,e)+K(b,e)=1+1=2



Competing methods

Direct interactions (DlI)

— A gene is predicted as a disease gene for disease j if it is a direct
neighbor of a gene associated with a known gene of disease j

Shortest path (SP)

— Rank gene based on the single shortest path to any known
disease gene for disease j

ENDEAVOUR

— Integrates gene expression, protein domain information,
literature annotation

— Based on an ensemble method, each component of the
ensemble corresponds to a dataset

PROSPECTR

— Sequence-based features using an alternating decision tree to
output a likelihood of a gene to belong to a disease



Dataset

Data source:
— Online Mendelian Inheritance in Man (OMIM)
* An Online Catalog of Human Genes and Genetic Disorders
— Literature search to find genes clearly
110 different disease-gene families spanning different types of diseases:

— 86 genetically heterogeneous disorders in which mutations in distinct genes are
associated with similar or even indistinguishable phenotypes;

— 12 cancer syndromes comprising genes associated with hereditary cancer,
increased risk, or somatic mutation in a given cancer type;

— 12 complex (polygenic) disorders that are known to be influenced by variation in
multiple genes

Total of 783 genes with 665 distinct genes
— Some genes are associated with multiple diseases

— Each family has 7 genes on average, largest family has 41 genes, smallest had 3
genes

Interaction network of 35,910 genes from human and 38,975 from other organisms
— Include experimentally verified and predicted interactions



Evaluation strategy

For each disease gene define an artificial linkage interval by selection 100
closest genes on the same chromosome

Evaluate performance based on leave one out for each disease gene family

Two assessment measures

— An enrichment score: General idea is to compare the predicted rank to
a rank obtained by random

* Let g, be the rank of a particular gene
* Enrichment score is defined as 50/g, ..

 If a true disease gene is ranked the highest, it has an enrichment
score of 50

* For all other genes, we have assigned a rank of 100.
— Receiver Operator Curves (ROC)

* Plot True Positive Rate (TPR) versus False Positive Rate (FPR) and
compute Area Under the ROC (AUROC)



Global graph-based measures have
greater score enrichment compared to

local measures
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ROC analysis further supports enrichment
analysis
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RWR outperforms existing local network
based methods on seven disease genes
that do not have the literature bias

Table 2. Performance of Five Candidate-Gene-Prioritization
Methods on Seven Recently Identified Monogenic Disease

Genes

Rankings

Random
Family Gene Walk ENDEAVOUR SP DI  SQ
Nephronophthisis GLIS2*” 100 43 100 100 3*
ARVD Jup® 1* 1* 1* 2 67
RP TOPORS*® 23 69 20* 100 56
RP NR2E3*° 2 2 18 100 1*
Noonan Syndrome RAFI*'  1* 3 4 4 42
Brachydactyly NOG* 1* 5 1*  1* 34
CMT4H FGD4** 13 2* 27 100 9

Mean Enrichment 25.9* 18.4 17.2 12.8 10.9




Shortest path fails but RWR successfully
identifies disease genes
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Summary of GeneWanderer results

Global similarity measured using both random walk and diffusion
kernels are vastly superior than local distance measures

The authors generated a test set using a linkage based analysis

— This is more realistic and similar to existing linkage-based
approaches to find genes

— Others have used a random set of test genes, which might not
be correct because similar genes tend to cluster on
chromosomes

How to define disease gene families?

— This method needs known genes, although not many. Was
shown to work for as small as 3 genes.

— Existing approaches like ENDEAVOUR may not work



Concluding remarks

Phenotypically similar diseases likely represent perturbations to the
same subnetwork or are topologically close.

This approach works for situations where there are some known
genes that can be used to rank other genes with respect to them

— But this may not be the case always. How to extend?
Current interaction networks are incomplete
Each disease was considered one at a time

— Can we share information between diseases to better prioritize
genes?

Recent approaches go beyond genes: prioritizing GWAS sequence
variants (NetWAS from GIANT http://giant.princeton.edu )



http://giant.princeton.edu

Other applications of random walks

* Hi-C matrix denoising

* Single cell RNA-seq data denoising



Using random walks for denoising Hi-C
data

Nodes in the graph
represent genomic regions I }" I '}&‘

Edge weight is the counts
of interactions (A1) (A1)2

Denoising is done by taking

powers of the row sum-  Contact
- . map A1

based transition matrix | §

This gives you the (A2) (A2)?
probability of reaching Contact 3
region j from regioniin¢ mapA2 :
steps for a random walk

originating on region i

H 0.005

15Mb 40Mb 15Mb 40Mb



Using random walks to smooth scRNA-seq
} data
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van Dijk et al., Cell 2018



moothing using MAGIC enhances scRNA-
seq data signal

Before MAGIC After MAGIC
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