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Plan for this section

• Aligning two networks to identify conserved linear paths or 
small complexes
– PATHBLAST (Nov 8th)

• Global alignment of graphs using spectral methods
– IsoRank (Nov 13th)

• Global alignment of graphs using matrix factorization
– FUSE (Nov 15th)



Goals for today

• Introduction to the network alignment problem
• Classes of methods for network alignment
• Pairwise global network alignment
– Identifying linear paths
– Identifying complexes 



How are these organisms related?

Toh et al, Nature, 2011



Organisms can be compared at multiple 
levels

• Comparison at the sequence level
– Sequence alignment
– Phylogenetic tree construction

• Comparison at the expression level

• Comparison at the network level



Some terminology
• Homology

– Two sequences are said to be homologous if they are derived from a 
common ancestral sequence

• Orthology
– Two proteins in two organisms are said to be orthologs of each other if 

they are related by a common ancestor
• Paralogy

– Two proteins that are related by a duplication event within a species
• Match, mismatch, gaps

– Terms used in sequence alignment
• BLAST

– A software program used to align two molecular sequences that 
provides a statistical score (BLAST E-value) used to assess the quality 
of the alignment



How do sequences change between 
organisms?

• Substitutions

• Deletions

• Insertions

T H I  S  S E Q U E N C E

T H A T S E Q U E N C ESequence 2 

Sequence 1 

T H I S I S A S E Q U E N C E

T H I S _ _ _S E Q U E N C ESequence 2 

Sequence 1 

mismatch

gap
_ _ _ _S E Q U E N C E

T H I S S E Q U E N C ESequence 2 

Sequence 1 

gap



Alignment problem
• Sequence alignment

– Given the genomic sequence of two species, find the differences 
and similarities of the sequence

– Aims to find a correspondence between the positions of two 
sequences while minimizing the number of substitutions and 
gaps

• Network alignment
– Given molecular interaction networks from different organisms 

find the differences and similarities between them at the 
subnetwork level

– Aims to find a correspondence between the positions of two 
networks while minimizing the number of substitutions and 
gaps on the network



Sequence Alignment Examples

T H I  S  S E Q U E N C E

T H A T S E Q U E N C E
T H + + S E Q U E N C E

Sequence 2 

Sequence 1 

T H I  S  - - - S E Q U E N C E

T H A T I S A S E Q U E N C E
T H + +         S E Q U E N C E

Sequence 2 

Sequence 1 



Why is network alignment important?

• Important from an evolutionary perspective
– Are interactions of proteins with similar sequence 

conserved? 
– How do networks evolve?
– Is there a minimal set of interactions common to all 

species?
• Refine existing interaction networks



Different network alignment problems

Local Network 
alignment: Find locally 
similar subnetworks

Network query: Find instances of 
a small subnetwork in a larger 
network

Global network alignment: Align 
all nodes in one network to all 
nodes in the second network
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In this review, we survey the field of 
comparative network analysis with an 
emphasis on the arising computational 
problems and the different methods 
that have been used to tackle them, 
starting from heuristic approaches, go-
ing through parameterized algorithms 
that perform well on practical instances, 
and ending with optimal integer linear 
programming (ILP)-based solutions 
that rely on powerful, yet available, in-
dustrial solvers. We demonstrate the 
applications of these methods to predict 
protein function and interaction, infer 
the organization of protein-protein in-
teraction networks into their underlying 
functional modules, and link biological 
processes within and across species.

A Roadmap to Network 
Comparison Techniques
We view a PPI network of a given 
 species as a graph G = (V, E), where V is 
the set of proteins of the given species 
and E is the set of pairwise interactions 
among them. In a network compari-
son problem, one is given two or more 
 networks along with sequence infor-
mation for their member proteins. The 
goal is to identify similarities between 
the compared networks, which could 
be either local or global in nature 
(Figure 1). The underlying assump-
tion is that the networks have evolved 
from a  common ancestral network, 
and hence, evolutionarily related pro-
teins should display similar sequence 

and interaction patterns. For ease of 
presentation, we focus in the descrip-
tion below on pairwise comparisons, 
but the problems and their solutions 
 generalize to multiple networks.

Most algorithms for network com-
parison score the similarity of two sub-
networks by first computing a many-to-
many mapping between their vertices 
(with possibly some unmatched verti-
ces in either network) and then scoring 
the similarity of proteins and interac-
tions under this mapping. Proteins 
are commonly compared by their as-
sociated amino-acid sequences, us-
ing a sequence comparison tool such 
as BLAST.3 The similarity score of any 
two sequences is given as a p-value, 
denoting the chance of observing such 
sequence similarity at random. Signifi-
cant p-values imply closer evolutionary 
distance and, hence, higher chances of 
sharing similar functions. Interactions 
are compared in a variety of ways; the 
simplest and most common of which 
is to count the number of conserved in-
teractions. Formally, given a mapping 
) of proteins between two networks 
(associating proteins of one network 
with sets of proteins in the other net-
work), an interaction (u, v) in one spe-
cies is said to be conserved in the other 
species if there exist uc� )(u) and vc� 
)(v) such that uc�and v c interact.

Historically, the first considered 
problem variant was local network 
alignment (Figure 1a), where the goal 
is to identify local regions that are 
similar across the networks being 
compared. To this end, one defines a 
scoring function that measures the 
similarity of a pair of subnetworks, one 
from each species, in terms of their 
topology and member proteins. To 
guide the search for high scoring, or 
significant matches, the scoring func-
tion is often designed to favor a certain 
class of  subnetworks, such as dense 
subnetworks that serve as a model 
for protein complexes,13,16,32 or paths 
that serve as a model for protein path-
ways.17,18 In the related network query-
ing problem (illustrated in Figure 1b in 
an astronomical context), a match is 
sought between a query subnetwork, 
representing a known functional 
component of a well-studied species, 
and a relatively unexplored network 
of some other organism. The match 
could be exact (that is, an isomorphic 

Figure 1. Computational problems in comparative network analysis. 

(a) In local network  alignment, 
we wish to identify local regions 
that are similar across multiple 
networks. The similarity 
combines topological similarity 
and node similarity. When 
looking for matching dense 
subgraphs, the solution may 
align nodes {1, 2, 3, 4} to either 
{A, B, C, D} or {E, F, G, H}. 

(b) In  network querying, 
instances of a small network 
are searched for in another, 
usually much larger, network. 
For illustration purposes, 
assume we define a network 
based on the sky map where 
nodes represent the stars. Close 
stars are connected by an edge 
and the similarity between 
stars is determined according 
to their luminosity (graphically 
represented by both size and 
color). A known constellation 
may serve as a query to look  
for similar patterns. 

(c) In global network alignment, 
the goal is to align all the 
nodes from one network with 
those of the other network, 
while optimizing node and edge 
similarity. In the given example, 
assuming all nodes are equally 
similar, a clique such as  
the one given by the nodes  
{1, 2, 3, 4} could be locally  
aligned to either {A, B, C, D} or  
{E, F, G, H}. However, when 
globally aligning the entire 
networks, the additional 
information given by the topology 
of the nodes {5, 6, 7, 8, 9} 
disambiguates the choice.

(a)

(b)

(c)
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Nir Atias and Roded Sharan, May 2012, ACM Communications



Different types of network alignment 
problems

Problem type Description Methods
Local alignment Align small parts of 

the network
PathBLAST, LocalAli

Global alignment Align the entire 
network

FUSE, IsoRank

Pairwise alignment Align two networks PathBLAST

Multiple network 
alignment

Align more than 
two networks

FUSE, IsoRank, 
LocalAli

NetworkQuery Search for a small 
network in a larger 
network

NetGrep, QNet, 
QPath

Adapted from Nir Atias and Roded Sharan, May 2012, ACM Communications



What makes network alignment difficult?

• The set of genes/proteins between species are not the same
• The correspondence between genes of one species and the 

genes of another species is not one-to-one
– Although many algorithms assume one-to-one mapping

• Underlying networks might be noisy and/or incomplete



Goals for today

• Introduction to the network alignment problem
• Classes of methods for network alignment
• Pairwise global network alignment
– Identifying linear paths
– Identifying complexes 



Pairwise network alignment approach
• Conserved pathways within bacteria and yeast as revealed by global 

protein network alignment 
• B. P. Kelley, R. Sharan, R. M. Karp, T. Sittler, D. E. Root, B. R. 

Stockwell, and T. Ideker, PNAS 2003
• Identification of Protein Complexes by Comparative Analysis of Yeast and 

Bacterial Protein Interaction Data 
• R. Sharan, T. Ideker, B. Kelley, R. Shamir, and R. M. Karp, Journal of 

Computational Biology, 2004



Defining a pairwise alignment problem

• Given
– Two graphs 

• G1=(V1,E1)
• G2=(V2,E2)

– V1 and V2 correspond to vertex set
– E1 and E2 correspond to the interaction set 

– A possibly incomplete many-to-many mapping between V1 and V2
• Do

– Identify regions that are similar across the networks being compared 
• Typically done by

– Generating a network alignment graph
– Defining a scoring function that assesses both node and topological 

similarity



Network alignment example

A

B

C

D

a

b

d

Path in a PPI 
network in species 1

Path in a PPI 
network in species 2

Protein-protein interaction 
(PPI) in species 2

Protein-protein 
interaction (PPI) in 
species 1

Sequence 
homology



Gaps and mismatches in network 
alignment

• Mismatch
– Occurs when aligned proteins in the network alignment do 

not share sequence homology
– This boils down to pair (A,B) in one species connected to 

pair (a,b) in another species by a distance of 2.

• Gap
– Occurs when a protein interaction in one path skips over a 

protein in the other network



Network alignment graph

S!P" ! !
v!P

log10
p!v"

prandom
" !

e!P

log10
q!e"

qrandom
,

where p(v) is the probability of true homology within the protein
pair represented by v, given its pairwise protein sequence
similarity expressed as a BLAST E value, and q(e) is the proba-
bility that the protein–protein interactions represented by e are
real, i.e., not false-positive errors. The background probabilities
prandom and qrandom are the expected values of p(v) and q(e) over
all vertices and edges in the global alignment graph. Protein
sequence alignments and associated E values were computed by
using BLAST 2.0 (17) with parameters b # 0, e # 1 $ 106, f #
‘‘C;S’’, and v # 6 $ 105. Unalignable proteins were assigned a
maximum E value of 5.

Optimal Pathway Alignments and Significance. For acyclic graphs,
the highest-scoring path of length L can be found in linear time
by using a procedure based on dynamic programming as de-
scribed in Supporting Materials and Methods. Because the global
alignment graph may contain cycles, we first generate a sufficient
number, 5L!, of acyclic subgraphs by random removal of edges
from the global alignment graph and then aggregate the results
of running dynamic programming on each.

Because conserved regions of the network could be highly
interconnected (e.g., a conserved protein complex), it was
sometimes possible to identify a large number of distinct paths
involving the same small set of proteins. Rather than enumerate
each of these, we used PATHBLAST in consecutive stages. For
each stage k, we recorded the set of 50 highest-scoring pathway
alignments (with average score %Sk&) and then removed their
vertices and edges from the alignment graph before the next
stage. The p value of each stage was assessed by comparing %Sk&
to the distribution of average scores %S1& observed over 100
random global alignment graphs (constructed as per Table 1)
and assigned to every conserved network region resulting from
that stage (Figs. 2 and 3). The p values for pathway queries (Fig.
4) were computed individually, not in stages, by comparing each
pathway-alignment score to the best scores achieved over 100
random alignment graphs involving the query and target (yeast)
network.

Software Availability. PATHBLAST is available at www.pathblast.
org.

Results
Yeast vs. Bacteria: Orthologous Pathways Between the Networks of
Two Species. We first performed a global alignment between the
protein–protein interaction networks of yeast (S. cerevisiae) and
bacteria (H. pylori). To construct the yeast network, we down-
loaded the 14,489 interactions among 4,688 yeast proteins
present in the Database of Interacting Proteins (18) as of
November 2002. These interactions represented a pooled col-
lection of several data sets derived through systematic coimmu-
noprecipitation and two-hybrid studies. The H. pylori network
was also obtained from the Database of Interacting Proteins and
represented a single two-hybrid study identifying 1,465 interac-
tions among 732 proteins (6). Protein sequences for both species
were obtained from the Protein Information Resource (19).

Table 1 compares the bacterial"yeast global alignment graph
to those that resulted if the protein networks were randomized
by permuting the protein names. Both the graph size and the best
pathway-alignment scores were significantly larger for real than
for random data, suggesting that the two species shared con-
served interaction pathways. Surprisingly, conservation of direct
interaction pairs between the yeast and bacterial networks was
rare (only 7 direct edges vs. 2.5 ' 1.9 in random data, probably
due to low coverage or quality of interactions). However, the use

Table 1. Combining protein networks as a global alignment graph

Vertices
(homologs)

Edges

CPU, min

Score

Total Direct Gap Mismatch Best* Best 50†

Yeast vs. H. pylori (Ecutoff # 10( 2) 829 2,036 7 260 1,769 0.38 8.1 7.5
Random: mean ' SD 509.0 ' 128.0 2.5 ' 1.9 68.8 ' 23.8 437.7 ' 110.3 0.4 ' 0.02 6.1 ' 0.8 4.8 ' 0.7

Yeast vs. yeast (Ecutoff # 10( 10) 5,593 1,389 1,389 N"A N"A 7.08 11.9 11.0
Random: mean ' SD 62.3 ' 29.4 62.3 ' 29.4 N"A N"A 6.9 ' 0.2 ( 4.1 ' 9.5 ( 15.3 ' 6.5

Protein interaction networks drawn from either yeast and H. pylori or yeast and yeast were merged as a global alignment graph: The resulting numbers of
vertices and edges are given along with the CPU time required for merging. Also shown is the best pathway alignment score and the average of the best 50 scores
achieved in the graph for paths of four vertices. Alignment graphs were compared to random graphs constructed by permuting the protein names on each
network before merging (mean ' SD for 100 permutations). N"A, not applicable.
*p # 0.006 and 0.05 for yeast vs. H. pylori and yeast vs. yeast, respectively.
†p # 1.7 $ 10( 5 and 2.4 $ 10( 5 for yeast vs. H. pylori and yeast vs. yeast, respectively.

Fig. 1. Example pathway alignment and merged representation. (a) Vertical
solid lines indicate direct protein–protein interactions within a single path-
way, and horizontal dotted lines link proteins with significant sequence
similarity (BLAST E value # Ecutoff). An interaction in one pathway may skip over
a protein in the other (protein C), introducing a ‘‘gap.’’ Proteins at a particular
position that are dissimilar in sequence (E value ) Ecutoff, proteins E and g)
introduce a ‘‘mismatch.’’ The same protein pair may not occur more than once
per pathway, and neither gaps nor mismatches may occur consecutively. (b)
Pathways are combined as a global alignment graph in which each node
represents a homologous protein pair and links represent protein interaction
relationships of three types: direct interaction, gap (one interaction is indi-
rect), and mismatch (both interactions are indirect).

Kelley et al. PNAS # September 30, 2003 # vol. 100 # no. 20 # 11395
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The network 
alignment problem 
of finding conserved 
paths boils down to 
finding a high 
scoring path in a 
new network called 
the “network 
alignment” graph.

Each vertex in the 
alignment graph is 
represented by a pair of 
vertices and a 
corresponding numeric 
score (BLAST E-value) that 
specifies the sequence 
similarity

Each edge corresponds to 
to “interactions” in the 
original graph



Sketch of a network alignment approach
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subgraph under some mapping of the 
proteins between the two species) or 
inexact, allowing unmatched nodes 
on either subnetwork. This problem 
was first studied by Kelley et al.17 in the 
context of local network alignment; 
its later development accompanied 
the growth in the number of mapped 
organ isms.5,7,9,33 The third problem 
that has been considered is global net-
work alignment (Figure 1c), where one 
wishes to align whole networks, one 
against the other.4,34 In its simplest 
form, the problem calls for identifying 
a 1-1 mapping between the proteins 
of two species so as to optimize some 
conservation criterion, such as the 
number of conserved interactions be-
tween the two networks.

All these problems are NP-hard as 
they generalize graph and subgraph 
isomorphism problems. However, 
heuristic, parameterized, and ILP ap-
proaches for solving them have worked 
remarkably well in practice. Here, we 
review these approaches and demon-
strate their good performance in prac-
tice both in terms of solution quality 
and running time.

Heuristic Approaches
As in other applied fields, many prob-
lems in network biology are amenable 
to heuristic approaches that perform 
well in practice. Here, we highlight two 
such methods: a local search heuristic 
for local network alignment and an 
eigenvector-based heuristic for global 
network alignment.

NetworkBLAST32 is an algorithm 
for local network alignment that aims 
to identify significant subnetwork 
matches across two or more networks. 
It searches for conserved paths and 
conserved dense clusters of interac-
tions; we focus on the latter in our de-
scription. To facilitate the detection 
of conserved subnetworks, Network-
BLAST first forms a network alignment 
graph,17,23 in which nodes correspond 
to pairs of sequence-similar proteins, 
one from each species, and edges cor-
respond to conserved interactions (see 
Figure 2). The definition of the latter is 
flexible and allows, for instance, a di-
rect interaction between the proteins of 
one species versus an indirect interac-
tion (via a common network neighbor) 
in the other species. Any subnetwork 
of the alignment graph naturally corre-

Figure 2. The NetworkBLAST local network alignment algorithm. Given two input 
networks, a network alignment graph is constructed. Nodes in this graph correspond 
to pairs of sequence-similar proteins, one from each species, and edges correspond to 
conserved interactions. A search algorithm identifies highly similar subnetworks that 
follow a prespecified interaction pattern. Adapted from Sharan and Ideker.30

Figure 3. Performance comparison of computational approaches. 

(a) An evaluation of the quality 
of NetworkBLAST’s output 
clusters.  NetworkBLAST was 
applied to a yeast network from 
Yu et al.39 For every protein that 
served as a seed for an output 
cluster, the weight of this cluster 
was compared to the optimal 
weight of a cluster containing 
this protein, as computed using 
an ILP approach. The plot shows 
the % of protein seeds (y-axis) 
as a function of the deviation 
of the resulting clusters from 
the optimal attainable weight 
(x-axis). 

(b) A comparison of the 
running times of the dynamic 
programming (DP) and ILP 
approaches employed by 
Torque.7 The % of protein 
complexes (queries, y-axis) 
that were completed in a given 
time (x-axis) is plotted for 
the two algorithms. The shift 
to the left of the ILP curve 
(red) compared with that of 
the dynamic programming 
curve (blue) indicates the ILP 
formulation tends to be faster 
than the dynamic  programming 
implementation.

(a)

(b)



PathBLAST algorithm for network 
alignment

• PathBLAST algorithm aims to find conserved linear pathways
– A pathway is defined as a sequence of protein-protein 

interactions  forming a connected path
• PathBLAST algorithm has two steps:

1. Combine two protein-protein interaction networks to 
create the network alignment graph
• A path through this graph is a conserved pathway

2. Search the network alignment graph for high-scoring 
paths

A B C

A pathway here is a linear path

Proteins



Scoring a path P
• Let S(P) denote the score of a path P
• PathBLAST defines S(P) in a decomposable manner as follows

• p(v) is the probability of true homology between two proteins 
represented by the pair v given the BLAST score associated 
with v

• q(e) is the probability that the interaction e is real
• prandom and qrandom are expected values of p(v) and q(e) over all

vertices and edges in the alignment graph

S!P" ! !
v!P

log10
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" !

e!P

log10
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where p(v) is the probability of true homology within the protein
pair represented by v, given its pairwise protein sequence
similarity expressed as a BLAST E value, and q(e) is the proba-
bility that the protein–protein interactions represented by e are
real, i.e., not false-positive errors. The background probabilities
prandom and qrandom are the expected values of p(v) and q(e) over
all vertices and edges in the global alignment graph. Protein
sequence alignments and associated E values were computed by
using BLAST 2.0 (17) with parameters b # 0, e # 1 $ 106, f #
‘‘C;S’’, and v # 6 $ 105. Unalignable proteins were assigned a
maximum E value of 5.

Optimal Pathway Alignments and Significance. For acyclic graphs,
the highest-scoring path of length L can be found in linear time
by using a procedure based on dynamic programming as de-
scribed in Supporting Materials and Methods. Because the global
alignment graph may contain cycles, we first generate a sufficient
number, 5L!, of acyclic subgraphs by random removal of edges
from the global alignment graph and then aggregate the results
of running dynamic programming on each.

Because conserved regions of the network could be highly
interconnected (e.g., a conserved protein complex), it was
sometimes possible to identify a large number of distinct paths
involving the same small set of proteins. Rather than enumerate
each of these, we used PATHBLAST in consecutive stages. For
each stage k, we recorded the set of 50 highest-scoring pathway
alignments (with average score %Sk&) and then removed their
vertices and edges from the alignment graph before the next
stage. The p value of each stage was assessed by comparing %Sk&
to the distribution of average scores %S1& observed over 100
random global alignment graphs (constructed as per Table 1)
and assigned to every conserved network region resulting from
that stage (Figs. 2 and 3). The p values for pathway queries (Fig.
4) were computed individually, not in stages, by comparing each
pathway-alignment score to the best scores achieved over 100
random alignment graphs involving the query and target (yeast)
network.

Software Availability. PATHBLAST is available at www.pathblast.
org.

Results
Yeast vs. Bacteria: Orthologous Pathways Between the Networks of
Two Species. We first performed a global alignment between the
protein–protein interaction networks of yeast (S. cerevisiae) and
bacteria (H. pylori). To construct the yeast network, we down-
loaded the 14,489 interactions among 4,688 yeast proteins
present in the Database of Interacting Proteins (18) as of
November 2002. These interactions represented a pooled col-
lection of several data sets derived through systematic coimmu-
noprecipitation and two-hybrid studies. The H. pylori network
was also obtained from the Database of Interacting Proteins and
represented a single two-hybrid study identifying 1,465 interac-
tions among 732 proteins (6). Protein sequences for both species
were obtained from the Protein Information Resource (19).

Table 1 compares the bacterial"yeast global alignment graph
to those that resulted if the protein networks were randomized
by permuting the protein names. Both the graph size and the best
pathway-alignment scores were significantly larger for real than
for random data, suggesting that the two species shared con-
served interaction pathways. Surprisingly, conservation of direct
interaction pairs between the yeast and bacterial networks was
rare (only 7 direct edges vs. 2.5 ' 1.9 in random data, probably
due to low coverage or quality of interactions). However, the use

Table 1. Combining protein networks as a global alignment graph

Vertices
(homologs)

Edges

CPU, min

Score

Total Direct Gap Mismatch Best* Best 50†

Yeast vs. H. pylori (Ecutoff # 10( 2) 829 2,036 7 260 1,769 0.38 8.1 7.5
Random: mean ' SD 509.0 ' 128.0 2.5 ' 1.9 68.8 ' 23.8 437.7 ' 110.3 0.4 ' 0.02 6.1 ' 0.8 4.8 ' 0.7

Yeast vs. yeast (Ecutoff # 10( 10) 5,593 1,389 1,389 N"A N"A 7.08 11.9 11.0
Random: mean ' SD 62.3 ' 29.4 62.3 ' 29.4 N"A N"A 6.9 ' 0.2 ( 4.1 ' 9.5 ( 15.3 ' 6.5

Protein interaction networks drawn from either yeast and H. pylori or yeast and yeast were merged as a global alignment graph: The resulting numbers of
vertices and edges are given along with the CPU time required for merging. Also shown is the best pathway alignment score and the average of the best 50 scores
achieved in the graph for paths of four vertices. Alignment graphs were compared to random graphs constructed by permuting the protein names on each
network before merging (mean ' SD for 100 permutations). N"A, not applicable.
*p # 0.006 and 0.05 for yeast vs. H. pylori and yeast vs. yeast, respectively.
†p # 1.7 $ 10( 5 and 2.4 $ 10( 5 for yeast vs. H. pylori and yeast vs. yeast, respectively.

Fig. 1. Example pathway alignment and merged representation. (a) Vertical
solid lines indicate direct protein–protein interactions within a single path-
way, and horizontal dotted lines link proteins with significant sequence
similarity (BLAST E value # Ecutoff). An interaction in one pathway may skip over
a protein in the other (protein C), introducing a ‘‘gap.’’ Proteins at a particular
position that are dissimilar in sequence (E value ) Ecutoff, proteins E and g)
introduce a ‘‘mismatch.’’ The same protein pair may not occur more than once
per pathway, and neither gaps nor mismatches may occur consecutively. (b)
Pathways are combined as a global alignment graph in which each node
represents a homologous protein pair and links represent protein interaction
relationships of three types: direct interaction, gap (one interaction is indi-
rect), and mismatch (both interactions are indirect).
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CE
LL

BI
O

LO
G

Y



Estimating the node and edge 
probabilities

• p(v) is obtained from sequence alignment scores Ev of the 
two proteins making up v

• H represents the event of true homology (obtained from a 
curated set of homologs)

• q(e) is obtained from underlying protein-protein interactions e
represents

Supporting Materials and Methods: The PATHBLAST Algorithm

PATHBLAST Overview. PATHBLAST implements a scoring function and search algorithm
to find high-probability pathway alignments between two protein interaction networks N1
and N2. We define a pathway alignment to consist of two paths, one from each network,
in which proteins in the first path <A, B, C, D,Ö> pair with putative homologs occurring
in the same order in the second path <a, b, c, d,Ö> (Fig. 1a; see main text). A particular
homologous protein pair may not occur more than once per pathway alignment. The
pathway alignment may include nonhomologous proteins by introducing ìgapsî and
ìmismatches.î A gap occurs when a protein interaction in one path skips over a protein in
the other, whereas a mismatch occurs when two proteins at the same position in the
alignment do not share sequence homology. Neither gaps nor mismatches may occur
consecutively.

For scoring and search, it is convenient to combine the two protein interaction
networks into a global alignment graph G (Fig. 1b; see main text). Each vertex in G
represents a protein pair A/a between N1 and N2. Vertices A/a and B/b are connected by
an undirected edge (of type direct, gap, or mismatch) if:

• Proteinñprotein interactions (A,B) and (a,b) are present in N1 and N2 [direct];
• (A,B) is present in N1, and the distance between a,b in N2 is 2 [gap in N1];
• (a,b) is present in N2, and the distance between A,B in N1 is 2 [gap in N2];
• A,B and a,b are connected at distance 2 in both N1 and N2 [mismatch]

A pathway alignment corresponds to a simple path P through G.

Scoring Function. We formulate a log probability score S(P) that decomposes over the
vertices v and edges e of path P,
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where p(v) is the probability of true homology within the protein pair represented by v,
q(e) is the probability that the proteinñprotein interactions represented by e are real, i.e.,
not false-positive errors. The background probabilities prandom and qrandom are the expected
values of p(v) and q(e) over all vertices and edges in G.

The value of p(v) is computed using Bayesí rule, given the pairwise protein sequence
similarity for the proteins in v expressed as a BLAST E value Ev,
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where H represents the event of true homology between the proteins represented by v.
The probability distribution for p(Ev) is taken as the frequency of each E value over all v
in G (i.e., over all protein pairs; see Fig. 5). The probability distribution for p(Ev|H) is
based on E values within the subset of vertices for which both proteins are in the same

cluster of orthologous groups (COG) (1), a commonly accepted classification of true
protein orthology.Ü The constant prior probability p(H) is computed as the overall
frequency of vertices with proteins that are in the same COG. Probability distributions are
smoothed by using a monotone regression function (we used the pool-adjacent-violators
algorithm as described in ref. 2) and indexed with the appropriate value of Ev.

The probability q(e) of each edge is computed from the underlying probabilities of the
proteinñprotein interactions it represents. By construction of the global alignment graph,
if e is direct it represents two interactions (one from each network), whereas if e is a gap
or mismatch it represents three or four interactions, respectively. Using recently
published guidelines on the accuracy of protein interaction data (3), we roughly estimate
the probability of each interaction i by the number of independent experimental studies
reporting it and then compute q(e) as the product of these probabilities. Introducing gaps
and mismatches penalizes q(e) because more interaction probabilities must be included in
the product:

Number
of studies Pr(i)

# yeast
interactions

1 0.1 9966
2 0.3 1597

)Pr()( ieq
ei
Π
∈

=

≥ 3 0.9 1591

(3)

More complex interaction scoring functions are also possible such as a function that
accounts not only for the number of experimental replicates but also for the type of
experiment, e.g. whether the interaction was generated by using a two-hybrid or
coimmunoprecipitation assay. However, rigorous evaluations of interaction data quality
are still ongoing, and error models for proteinñprotein interaction data have yet to be
developed. In this study we opted for a probability function based on relatively
straightforward assumptions, although we note that q(e) can become arbitrarily complex
as information improves.

Alignment Procedure. We wish to identify the highest-scoring pathway alignment P* of
fixed length L (L vertices and L ñ 1 edges). If G is directed and acyclic, this can be
accomplished in linear time (in the number of edges) by using dynamic programming, in
which the highest-scoring path of length l = 2ÖL ending in vertex v will have score
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and the base case is
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Because G is not generally acyclic, we first construct a sufficient number (5L!) of
directed acyclic subgraphs and then use the dynamic programming method to compute
the highest-scoring paths for each. To construct a particular acyclic subgraph G', we
induce a random ordering on the vertices of G and remove all edges with sources that are
lower in rank than their targets. On average, the highest-scoring path in G will be

e can have 2 (direct), 3 (gap) or 4 (mismatch) interactions



Strategy to find high scoring path
• Find the highest scoring pathway alignment of a fixed pre-specified 

length L
• Based on a dynamic programming algorithm
• The highest scoring path of length l =2..L ending in vertex v will have 

score:

• With base case

• Thus the score of length l path is computed from score of path of 
length l-1 

cluster of orthologous groups (COG) (1), a commonly accepted classification of true
protein orthology.Ü The constant prior probability p(H) is computed as the overall
frequency of vertices with proteins that are in the same COG. Probability distributions are
smoothed by using a monotone regression function (we used the pool-adjacent-violators
algorithm as described in ref. 2) and indexed with the appropriate value of Ev.

The probability q(e) of each edge is computed from the underlying probabilities of the
proteinñprotein interactions it represents. By construction of the global alignment graph,
if e is direct it represents two interactions (one from each network), whereas if e is a gap
or mismatch it represents three or four interactions, respectively. Using recently
published guidelines on the accuracy of protein interaction data (3), we roughly estimate
the probability of each interaction i by the number of independent experimental studies
reporting it and then compute q(e) as the product of these probabilities. Introducing gaps
and mismatches penalizes q(e) because more interaction probabilities must be included in
the product:
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More complex interaction scoring functions are also possible such as a function that
accounts not only for the number of experimental replicates but also for the type of
experiment, e.g. whether the interaction was generated by using a two-hybrid or
coimmunoprecipitation assay. However, rigorous evaluations of interaction data quality
are still ongoing, and error models for proteinñprotein interaction data have yet to be
developed. In this study we opted for a probability function based on relatively
straightforward assumptions, although we note that q(e) can become arbitrarily complex
as information improves.

Alignment Procedure. We wish to identify the highest-scoring pathway alignment P* of
fixed length L (L vertices and L ñ 1 edges). If G is directed and acyclic, this can be
accomplished in linear time (in the number of edges) by using dynamic programming, in
which the highest-scoring path of length l = 2ÖL ending in vertex v will have score
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Because G is not generally acyclic, we first construct a sufficient number (5L!) of
directed acyclic subgraphs and then use the dynamic programming method to compute
the highest-scoring paths for each. To construct a particular acyclic subgraph G', we
induce a random ordering on the vertices of G and remove all edges with sources that are
lower in rank than their targets. On average, the highest-scoring path in G will be

cluster of orthologous groups (COG) (1), a commonly accepted classification of true
protein orthology.Ü The constant prior probability p(H) is computed as the overall
frequency of vertices with proteins that are in the same COG. Probability distributions are
smoothed by using a monotone regression function (we used the pool-adjacent-violators
algorithm as described in ref. 2) and indexed with the appropriate value of Ev.

The probability q(e) of each edge is computed from the underlying probabilities of the
proteinñprotein interactions it represents. By construction of the global alignment graph,
if e is direct it represents two interactions (one from each network), whereas if e is a gap
or mismatch it represents three or four interactions, respectively. Using recently
published guidelines on the accuracy of protein interaction data (3), we roughly estimate
the probability of each interaction i by the number of independent experimental studies
reporting it and then compute q(e) as the product of these probabilities. Introducing gaps
and mismatches penalizes q(e) because more interaction probabilities must be included in
the product:
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More complex interaction scoring functions are also possible such as a function that
accounts not only for the number of experimental replicates but also for the type of
experiment, e.g. whether the interaction was generated by using a two-hybrid or
coimmunoprecipitation assay. However, rigorous evaluations of interaction data quality
are still ongoing, and error models for proteinñprotein interaction data have yet to be
developed. In this study we opted for a probability function based on relatively
straightforward assumptions, although we note that q(e) can become arbitrarily complex
as information improves.

Alignment Procedure. We wish to identify the highest-scoring pathway alignment P* of
fixed length L (L vertices and L ñ 1 edges). If G is directed and acyclic, this can be
accomplished in linear time (in the number of edges) by using dynamic programming, in
which the highest-scoring path of length l = 2ÖL ending in vertex v will have score
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Because G is not generally acyclic, we first construct a sufficient number (5L!) of
directed acyclic subgraphs and then use the dynamic programming method to compute
the highest-scoring paths for each. To construct a particular acyclic subgraph G', we
induce a random ordering on the vertices of G and remove all edges with sources that are
lower in rank than their targets. On average, the highest-scoring path in G will be



Estimating the probability of true 
homology



Results

• Perform alignment of Yeast (S. cerevisiae) vs Bacteria (H. 
pylori) protein-protein interaction networks

• Perform alignment of Yeast vs Yeast
– Find paralogous (duplicate) pathways within the same 

species
• Query the large interaction network to find instances of a 

smaller network



Network dataset description

• Yeast network
– 14,489 interactions and 

4,688 proteins
• Bacteria network
– 1,465 interactions 

among 732 proteins

of pathway gaps and mismatches allowed us to detect larger
regions of the network that were generally conserved even when
direct interactions were not.

We analyzed the global alignment graph to select the 150
highest-scoring pathway alignments of length four (four proteins
per path), corresponding to a level of significance of p ! 0.05 vs.
random networks. By combining all overlapping pathway align-
ments, we found that each of the 150 fell into one of five
connected network regions shown in Fig. 2 b–f. For instance, Fig.
2b involved the union of six paths: two were yeast Dbp2-Rpl2A-
Mak5-Gcn20 (vs. H. pylori deaD-rpl2-deaD-yheS) and Rpl2A-
Has1-Tsa1-Sse1 (vs. rpl2-deaD-bcp-dnaK). A total of 4.1% and
1.2% of proteins in the H. pylori and S. cerevisiae protein
networks were included in a high-scoring pathway alignment.

As validation that pathway alignments corresponded to spe-

cific conserved cellular functions, we found that network regions
were significantly enriched for particular protein functional
categories from the Munich Information Center for Protein
Sequences (http:!!mips.gsf.de) S. cerevisiae and the Institute for
Genomic Research (www.tigr.org) H. pylori databases at a level
of p ! 0.005 using the hypergeometric test. Functions associated
with each region included protein synthesis and cell rescue (Fig.
2b), protein fate and targeting (Fig. 2c), cell envelope and
nuclear transport (Fig. 2d), proteolytic degradation (Fig. 2e), and
rRNA transcription (Fig. 2f ); further details are provided in Fig.
8, which is published as supporting information on the PNAS
web site.

Yeast vs. Yeast: Paralogous Pathways Within the Network of a Single
Species. In addition to identifying homologous features between
the protein networks of yeast and bacteria, we also searched

Fig. 2. Top-scoring pathway alignments between bacteria and yeast. (a) The protein–protein interaction networks of H. pylori (orange network) and S.
cerevisiae (green network) were globally aligned to reveal conserved network regions (b–f ). Proteins with above-threshold sequence similarity are placed on
the same row of the pathway alignment (e.g., deaD and Dbp2 in row 1 of b). Direct protein interactions appear as solid links, and gaps or mismatches are dotted.
Proteins recurring within a region due to multiple sequence homologies (e.g., deaD in b) are lighter in color. P values were computed by using random graphs
as described in Methods.

11396 " www.pnas.org!cgi!doi!10.1073!pnas.1534710100 Kelley et al.
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A few statistics of the networks to be 
aligned
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where p(v) is the probability of true homology within the protein
pair represented by v, given its pairwise protein sequence
similarity expressed as a BLAST E value, and q(e) is the proba-
bility that the protein–protein interactions represented by e are
real, i.e., not false-positive errors. The background probabilities
prandom and qrandom are the expected values of p(v) and q(e) over
all vertices and edges in the global alignment graph. Protein
sequence alignments and associated E values were computed by
using BLAST 2.0 (17) with parameters b # 0, e # 1 $ 106, f #
‘‘C;S’’, and v # 6 $ 105. Unalignable proteins were assigned a
maximum E value of 5.

Optimal Pathway Alignments and Significance. For acyclic graphs,
the highest-scoring path of length L can be found in linear time
by using a procedure based on dynamic programming as de-
scribed in Supporting Materials and Methods. Because the global
alignment graph may contain cycles, we first generate a sufficient
number, 5L!, of acyclic subgraphs by random removal of edges
from the global alignment graph and then aggregate the results
of running dynamic programming on each.

Because conserved regions of the network could be highly
interconnected (e.g., a conserved protein complex), it was
sometimes possible to identify a large number of distinct paths
involving the same small set of proteins. Rather than enumerate
each of these, we used PATHBLAST in consecutive stages. For
each stage k, we recorded the set of 50 highest-scoring pathway
alignments (with average score %Sk&) and then removed their
vertices and edges from the alignment graph before the next
stage. The p value of each stage was assessed by comparing %Sk&
to the distribution of average scores %S1& observed over 100
random global alignment graphs (constructed as per Table 1)
and assigned to every conserved network region resulting from
that stage (Figs. 2 and 3). The p values for pathway queries (Fig.
4) were computed individually, not in stages, by comparing each
pathway-alignment score to the best scores achieved over 100
random alignment graphs involving the query and target (yeast)
network.

Software Availability. PATHBLAST is available at www.pathblast.
org.

Results
Yeast vs. Bacteria: Orthologous Pathways Between the Networks of
Two Species. We first performed a global alignment between the
protein–protein interaction networks of yeast (S. cerevisiae) and
bacteria (H. pylori). To construct the yeast network, we down-
loaded the 14,489 interactions among 4,688 yeast proteins
present in the Database of Interacting Proteins (18) as of
November 2002. These interactions represented a pooled col-
lection of several data sets derived through systematic coimmu-
noprecipitation and two-hybrid studies. The H. pylori network
was also obtained from the Database of Interacting Proteins and
represented a single two-hybrid study identifying 1,465 interac-
tions among 732 proteins (6). Protein sequences for both species
were obtained from the Protein Information Resource (19).

Table 1 compares the bacterial"yeast global alignment graph
to those that resulted if the protein networks were randomized
by permuting the protein names. Both the graph size and the best
pathway-alignment scores were significantly larger for real than
for random data, suggesting that the two species shared con-
served interaction pathways. Surprisingly, conservation of direct
interaction pairs between the yeast and bacterial networks was
rare (only 7 direct edges vs. 2.5 ' 1.9 in random data, probably
due to low coverage or quality of interactions). However, the use

Table 1. Combining protein networks as a global alignment graph

Vertices
(homologs)

Edges

CPU, min

Score

Total Direct Gap Mismatch Best* Best 50†

Yeast vs. H. pylori (Ecutoff # 10( 2) 829 2,036 7 260 1,769 0.38 8.1 7.5
Random: mean ' SD 509.0 ' 128.0 2.5 ' 1.9 68.8 ' 23.8 437.7 ' 110.3 0.4 ' 0.02 6.1 ' 0.8 4.8 ' 0.7

Yeast vs. yeast (Ecutoff # 10( 10) 5,593 1,389 1,389 N"A N"A 7.08 11.9 11.0
Random: mean ' SD 62.3 ' 29.4 62.3 ' 29.4 N"A N"A 6.9 ' 0.2 ( 4.1 ' 9.5 ( 15.3 ' 6.5

Protein interaction networks drawn from either yeast and H. pylori or yeast and yeast were merged as a global alignment graph: The resulting numbers of
vertices and edges are given along with the CPU time required for merging. Also shown is the best pathway alignment score and the average of the best 50 scores
achieved in the graph for paths of four vertices. Alignment graphs were compared to random graphs constructed by permuting the protein names on each
network before merging (mean ' SD for 100 permutations). N"A, not applicable.
*p # 0.006 and 0.05 for yeast vs. H. pylori and yeast vs. yeast, respectively.
†p # 1.7 $ 10( 5 and 2.4 $ 10( 5 for yeast vs. H. pylori and yeast vs. yeast, respectively.

Fig. 1. Example pathway alignment and merged representation. (a) Vertical
solid lines indicate direct protein–protein interactions within a single path-
way, and horizontal dotted lines link proteins with significant sequence
similarity (BLAST E value # Ecutoff). An interaction in one pathway may skip over
a protein in the other (protein C), introducing a ‘‘gap.’’ Proteins at a particular
position that are dissimilar in sequence (E value ) Ecutoff, proteins E and g)
introduce a ‘‘mismatch.’’ The same protein pair may not occur more than once
per pathway, and neither gaps nor mismatches may occur consecutively. (b)
Pathways are combined as a global alignment graph in which each node
represents a homologous protein pair and links represent protein interaction
relationships of three types: direct interaction, gap (one interaction is indi-
rect), and mismatch (both interactions are indirect).
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Aligning yeast to bacteria

of pathway gaps and mismatches allowed us to detect larger
regions of the network that were generally conserved even when
direct interactions were not.

We analyzed the global alignment graph to select the 150
highest-scoring pathway alignments of length four (four proteins
per path), corresponding to a level of significance of p ! 0.05 vs.
random networks. By combining all overlapping pathway align-
ments, we found that each of the 150 fell into one of five
connected network regions shown in Fig. 2 b–f. For instance, Fig.
2b involved the union of six paths: two were yeast Dbp2-Rpl2A-
Mak5-Gcn20 (vs. H. pylori deaD-rpl2-deaD-yheS) and Rpl2A-
Has1-Tsa1-Sse1 (vs. rpl2-deaD-bcp-dnaK). A total of 4.1% and
1.2% of proteins in the H. pylori and S. cerevisiae protein
networks were included in a high-scoring pathway alignment.

As validation that pathway alignments corresponded to spe-

cific conserved cellular functions, we found that network regions
were significantly enriched for particular protein functional
categories from the Munich Information Center for Protein
Sequences (http:!!mips.gsf.de) S. cerevisiae and the Institute for
Genomic Research (www.tigr.org) H. pylori databases at a level
of p ! 0.005 using the hypergeometric test. Functions associated
with each region included protein synthesis and cell rescue (Fig.
2b), protein fate and targeting (Fig. 2c), cell envelope and
nuclear transport (Fig. 2d), proteolytic degradation (Fig. 2e), and
rRNA transcription (Fig. 2f ); further details are provided in Fig.
8, which is published as supporting information on the PNAS
web site.

Yeast vs. Yeast: Paralogous Pathways Within the Network of a Single
Species. In addition to identifying homologous features between
the protein networks of yeast and bacteria, we also searched
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of pathway gaps and mismatches allowed us to detect larger
regions of the network that were generally conserved even when
direct interactions were not.

We analyzed the global alignment graph to select the 150
highest-scoring pathway alignments of length four (four proteins
per path), corresponding to a level of significance of p ! 0.05 vs.
random networks. By combining all overlapping pathway align-
ments, we found that each of the 150 fell into one of five
connected network regions shown in Fig. 2 b–f. For instance, Fig.
2b involved the union of six paths: two were yeast Dbp2-Rpl2A-
Mak5-Gcn20 (vs. H. pylori deaD-rpl2-deaD-yheS) and Rpl2A-
Has1-Tsa1-Sse1 (vs. rpl2-deaD-bcp-dnaK). A total of 4.1% and
1.2% of proteins in the H. pylori and S. cerevisiae protein
networks were included in a high-scoring pathway alignment.

As validation that pathway alignments corresponded to spe-

cific conserved cellular functions, we found that network regions
were significantly enriched for particular protein functional
categories from the Munich Information Center for Protein
Sequences (http:!!mips.gsf.de) S. cerevisiae and the Institute for
Genomic Research (www.tigr.org) H. pylori databases at a level
of p ! 0.005 using the hypergeometric test. Functions associated
with each region included protein synthesis and cell rescue (Fig.
2b), protein fate and targeting (Fig. 2c), cell envelope and
nuclear transport (Fig. 2d), proteolytic degradation (Fig. 2e), and
rRNA transcription (Fig. 2f ); further details are provided in Fig.
8, which is published as supporting information on the PNAS
web site.
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the same row of the pathway alignment (e.g., deaD and Dbp2 in row 1 of b). Direct protein interactions appear as solid links, and gaps or mismatches are dotted.
Proteins recurring within a region due to multiple sequence homologies (e.g., deaD in b) are lighter in color. P values were computed by using random graphs
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Highlights of results:
1. 150 high scoring paths 

of length 4 were 
identified

2. A total of 4.1% H. pylori
and 1.2% S. cerevisiae
proteins were in the 
high scoring alignments

3. Paths were enriched for 
diverse biological 
processes (protein 
synthesis, cell rescue, 
degradation)



Aligning yeast to yeast

within each network individually to identify its potentially
paralogous pathways; that is, pathways with proteins and inter-
actions that have been duplicated one or more times in the
course of evolution. Such an approach is akin to performing an
‘‘all vs. all’’ BLAST of sequences encoded by a single genome to
elucidate gene families. To explore this procedure in the context
of yeast, we constructed a global alignment graph by merging the
yeast protein interaction network with an identical copy of itself.
Because the resulting graph was potentially much larger than for
bacteria!yeast (see Table 1), we could afford to be more
restrictive: Vertices were defined as protein pairs with BLAST E
values ! 10!10, with only direct edges permitted (no gaps or
mismatches). To ensure that pathway alignments occurred be-
tween two distinct network regions and to avoid aligning a path
with its exact copy, proteins were not allowed to pair with
themselves or their network neighbors.

We analyzed the yeast!yeast alignment graph to obtain the 300
highest-scoring pathway alignments of length four, correspond-
ing to a level of significance of p ! 0.0001. These are shown in
Fig. 3 a–o, with overlapping pathways grouped into connected
network regions as shown in Fig. 2. Several regions involve
alignments between protein complexes known to be distinct (i.e.,
noninteracting) but homologous in function, confirming that the
approach is capable of identifying paralogous network struc-
tures. For example, Fig. 3a shows four subunits of the RNA
polymerase II complex (green path) aligned against those of the

RNA polymerase I and III complexes (blue path), with poly-
merase I and III linked via the shared Rpc40 subunit. Fig. 3k
shows an alignment among three AAA heteromeric complexes
with separate subcellular localizations: subunits of the cytosolic
26S proteasome (Rpt3-6), the mitochondrial AAA protease
complex (Afg3 and Yta12), and the Pex1!6 complex, thought to
function in protein disassembly before peroxisomal import (20).
Likewise, although the aligned complexes shown in Fig. 3m both
have DNA-binding activity, they act in two distinct processes:
Msh2!3!6 is involved in mismatch repair during meiosis and
vegetative growth, whereas Msh4!5 facilitates crossing over
during homologous recombination and is specific to meiosis (21).

Interrogating the Protein Network with Pathway Queries. Finally,
although an entire network-vs.-network comparison was invalu-
able for cataloging all the homologous pathways between and
within organisms, we also queried a single protein network with
specific pathways of interest. Use of PATHBLAST in this mode is
similar to using BLAST to interrogate a sequence database with
a short nucleotide or amino acid sequence query. As a test of this
approach, we queried the S. cerevisiae protein network with a
classic MAPK pathway associated with the filamentation re-
sponse, consisting of a MAPK (Ste11), a MAPK kinase (Ste7),
and a MAPK kinase kinase (Kss1). MAPK pathways transmit
incoming signals to the nucleus through activation cascades in
which each kinase phosphorylates the next one downstream.

Fig. 3. Paralogous pathways within yeast. To find pathways conserved within yeast, the protein interaction network from S. cerevisiae (green pathways) was
compared against a copy of itself (blue pathways). High-scoring pathway alignments are displayed as described for Fig. 2, with cellular functions indicated.
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Network query: Align a query pathway to 
a larger network

PATHBLAST identified two other well known MAPK pathways as
the highest-scoring hits (the low- and high-osmolarity response
pathways Bck1-Mkk1-Slt2 and Ssk2-Pbs2-Hog1), indicating that
the algorithm was sufficiently sensitive and specific to identify
known paralogous pathways.

We repeated this strategy to search for new components of the
cellular ubiquitin and ubiquitin-like conjugation machinery.
Ubiquitin targets proteins for degradation by the proteasome
and modifies different sets of proteins through distinct pathways,
some of which are unknown (22). Two well characterized
ubiquitin conjugation systems were used as queries: the Skp1-
Cdc53!cullin-F-box (SCF) complex (Fig. 4b) and the anaphase-
promoting complex (APC; Fig. 4c); a third query was based on
SUMO, a ubiquitin-like protein that is ligated to protein sub-
strates but does not induce protein degradation (23) (Fig. 4d).
Several of these queries aligned with components of a paralo-
gous Rub1-conjugating complex (24) (Rub1-Ubc12-Ula1-Uba3;
Fig. 4 b and d) and suggested new F-box and cullin-like proteins
(Ycr072c and Ylr106c) for the Rub1 ligation system. Also
identified were a putative ubiquitin-conjugation pathway involv-
ing Rpl40a, a fusion protein with ubiquitin at its N terminus (25),
and several additional pathways involved in lower-scoring align-
ments. Thus, short pathway-based queries using PATHBLAST are
capable of identifying both known and potentially novel paralo-
gous pathways within an organism.

Discussion
We highlight several broad insights made possible by the path-
way-alignment approach; further analyses of each network re-
gion are provided in Fig. 8. Most straightforwardly, we used
pathways from a well studied network (S. cerevisiae) to shed light
on their aligned counterparts from a less well characterized one
(H. pylori). For instance, although the function of HP1026 is
unknown, its interaction with DNA polymerase (dnaX) and its
position in the pathway alignment opposite yeast replication
factor C (Rfc2!3!4) suggest that HP1026 is involved in DNA
replication in close association with polymerase (Fig. 2e; see also
Fig. 7d). In another example (Fig. 2d), the hypothetical protein
HP0609 is adjacent to HP0610 and HP0289, which localize to the
bacterial outer membrane (26), and opposite yeast Nup1, which
localizes to the nuclear pore. This suggests that HP0609 is also
membrane-specific and that the bacterial pathway shares ho-
mology with the yeast nuclear pore complex.

H. pylori proteins can also shed light on yeast protein function.
YLL034C encodes a yeast protein of the AAA family (ATPases
associated with various cellular activities) with an undetermined
role in ribosome biogenesis (27). A pathway alignment in Fig. 2e
provides evidence that this protein functions in proteolysis
(perhaps to promote ribosome assembly) via its direct interac-
tion with a proteasome 26S subunit (Rpt6), its alignment oppo-
site HP1069 (identified as a protease by Clusters of Orthologous
Groups analysis) (28), and its position parallel to Rpt1 and Rpt2,
two other proteasome subunits.

A second major insight of our analysis was that pathway
alignments often linked two or more pathways or cellular
processes not previously known to associate. For example, the
network region in Fig. 2e contains yeast proteins associated with
either DNA polymerase (Rfc2!3!4!5) or the 19S proteasome
regulatory cap (Rpt1!2!3!4!6) and provides evidence from
both bacteria and yeast that these complexes associate in vivo.
Consistent with this view, recent evidence suggests that the 19S
complex, in addition to its established role in protein degrada-
tion, is involved in nucleotide excision repair (29) and can be
recruited to promoters during transcription elongation (30).

Other network regions representing multiple functions appear
in Fig. 2f, linking RNA polymerase (rpoB vs. six yeast genes) with
proteins involved in translation (infB, Gcd11, Yif2, Sup35, ileS,
and Ils1); Fig. 2e, linking RNA helicases involved in nucleic acid
processing (uvrB and Dbp8) with arginine biosynthetic enzymes
(pyrAb and Cpa2); and Fig. 2b, linking RNA helicases involved
in translation and ribosomal RNA assembly (Dbp2, Has1, Nog1,
Rpl2a, Mak5, and Gcn20) and antioxidative mechanisms (Ssq1,
Tsa1, Tsa2, and Sse1). The reasons for many of these associations
are unclear, but conservation of interactions across the networks
of both species suggests that the associations are functionally
significant. Because members of the RNA helicase family are
numerous, often poorly characterized, and participate in diverse
and sometimes multiple functions (31), pathway alignment may
be particularly useful for placing individual RNA helicases into
specific functional contexts and for suggesting cases in which they
facilitate crosstalk among different cellular processes.

Interestingly, a single bacterial RNA helicase (deaD) in Fig. 2b
occupies the same pathway position, and perhaps functional role,
as three different helicases in yeast (Dbp2, Mak5, and Has1).
This observation underscores a third broad insight: Single
pathways in bacteria frequently correspond to multiple pathways
in yeast, consistent with the current model that yeast have

Fig. 4. Querying the yeast network with specific pathways. Pathway queries are shown for the kinase cascade involved in filamentation (a) and three
ubiquitin-like conjugating systems: the SCF complex (b), the APC (c), and the SUMO complex (d ). The display follows the conventions of Figs. 2 and 3, with the
highest-scoring alignments indicated in red. Queries of this type may be submitted online at www.pathblast.org.
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Network query: Align a query pathway to 
a larger network

PATHBLAST identified two other well known MAPK pathways as
the highest-scoring hits (the low- and high-osmolarity response
pathways Bck1-Mkk1-Slt2 and Ssk2-Pbs2-Hog1), indicating that
the algorithm was sufficiently sensitive and specific to identify
known paralogous pathways.
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Ubiquitin targets proteins for degradation by the proteasome
and modifies different sets of proteins through distinct pathways,
some of which are unknown (22). Two well characterized
ubiquitin conjugation systems were used as queries: the Skp1-
Cdc53!cullin-F-box (SCF) complex (Fig. 4b) and the anaphase-
promoting complex (APC; Fig. 4c); a third query was based on
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ing Rpl40a, a fusion protein with ubiquitin at its N terminus (25),
and several additional pathways involved in lower-scoring align-
ments. Thus, short pathway-based queries using PATHBLAST are
capable of identifying both known and potentially novel paralo-
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Discussion
We highlight several broad insights made possible by the path-
way-alignment approach; further analyses of each network re-
gion are provided in Fig. 8. Most straightforwardly, we used
pathways from a well studied network (S. cerevisiae) to shed light
on their aligned counterparts from a less well characterized one
(H. pylori). For instance, although the function of HP1026 is
unknown, its interaction with DNA polymerase (dnaX) and its
position in the pathway alignment opposite yeast replication
factor C (Rfc2!3!4) suggest that HP1026 is involved in DNA
replication in close association with polymerase (Fig. 2e; see also
Fig. 7d). In another example (Fig. 2d), the hypothetical protein
HP0609 is adjacent to HP0610 and HP0289, which localize to the
bacterial outer membrane (26), and opposite yeast Nup1, which
localizes to the nuclear pore. This suggests that HP0609 is also
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mology with the yeast nuclear pore complex.

H. pylori proteins can also shed light on yeast protein function.
YLL034C encodes a yeast protein of the AAA family (ATPases
associated with various cellular activities) with an undetermined
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(perhaps to promote ribosome assembly) via its direct interac-
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network region in Fig. 2e contains yeast proteins associated with
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regulatory cap (Rpt1!2!3!4!6) and provides evidence from
both bacteria and yeast that these complexes associate in vivo.
Consistent with this view, recent evidence suggests that the 19S
complex, in addition to its established role in protein degrada-
tion, is involved in nucleotide excision repair (29) and can be
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Other network regions representing multiple functions appear
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are unclear, but conservation of interactions across the networks
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significant. Because members of the RNA helicase family are
numerous, often poorly characterized, and participate in diverse
and sometimes multiple functions (31), pathway alignment may
be particularly useful for placing individual RNA helicases into
specific functional contexts and for suggesting cases in which they
facilitate crosstalk among different cellular processes.
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as three different helicases in yeast (Dbp2, Mak5, and Has1).
This observation underscores a third broad insight: Single
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PathBLAST server

alignment. A gap occurs when interacting proteins in one path
are aligned against orthologous proteins in the other path that
do not interact directly but are connected at distance two (i.e.
both interact via a common protein). PathBLAST implements
an efficient search through all possible alignments between
two networks to identify the highest scoring pathway align-
ments overall.

Since reporting on basic algorithmic methods for identify-
ing conserved protein interaction paths (18) or complexes (20),
our focus has been on making these methods accessible to the
biological community at large. Here, we report development
of a server-side PathBLAST query tool available at http://
www.pathblast.org/. This tool enables short user-defined
pathway queries (paths < 5 proteins) against the current data-
base of observed protein interactions from bacteria, yeast, fly
or worm. High-scoring pathway matches are extracted from
the interaction database and ranked by score. This search is
general, such that the query may consist of proteins and protein
interactions from any arbitrary pathway and species provided
that the protein sequences are available.

NETWORK QUERIES AND THE PathBLAST
SERVER

The core PathBLAST algorithm, as previously reported (18),
operates on two protein networks to identify their significant
pathway alignments. The available website implementation
focuses on the special but practical case in which the first
network is a single protein interaction path of interest (Figure 1,
top left) and the second network is a complete set of protein–
protein interactions that has been experimentally observed for
an organism of choice (Figure 1, bottom left). Referring to the
first network as the query and to the second network as the
target, PathBLAST outputs all paths in the target that form
high-scoring alignments with the query.

Input of query and target

Query submission is modeled strongly after the interface
developed by the NCBI for submitting sequence queries via

BLAST (http://www.ncbi.nlm.nih.gov/BLAST/). This inter-
face is a well-accepted and intuitive means of extracting infor-
mation from large bioinformatics databases. The PathBLAST
front page prompts users to specify both the pathway query
and the target network (Figure 2). The query pathway is spe-
cified by entering a sequence of two to five proteins (left
column of fields labeled A, B, C in Figure 2). Proteins are
identified either by protein ID or by direct input of an amino
acid sequence in FASTA format. Recognized protein IDs are
the common names for proteins from yeast, bacteria (Helico-
bacter pylori), fruit fly or nematode worm (species for which
the target protein networks are available—see below).
Systematic open reading frame (ORF) designations are also
recognized for these species. Alternatively, protein IDs may be
specified as DIP reference numbers used by the Database of
Interacting Proteins (21). Direct entry of FASTA sequences is
useful for more general pathway queries based on the proteins
of species not included in the above list. Several sample path-
ways are available as a tutorial and for test of the query system.

The target network is specified from a pull-down menu
system in the lower left-hand corner of the PathBLAST
front page. Target protein–protein interaction networks are
drawn from the DIP database (21) and currently include
Saccharomyces cerevisiae (6,7,9,10),H.pylori (5), Drosophila
melanogaster (12) and Caenorhabditis elegans (11). Partial
protein–protein interaction networks are also available for
Homo sapiens and Mus musculus.

Putative homologous proteins between the query and
the target are defined by specifying a BLAST expected
value (E-value) threshold. This threshold reduces the potential
search space by disregarding all pairs of homologs with a
higher-than-specified E-value. This does not however,
mean, that a protein will necessarily align against the homolog
with the best absolute BLAST E-value overall (the alignment
being constrained by the protein interactions that are present in
the network). To calibrate E-values of protein sequence
homology across different species, a single composite protein
sequence database is used for all query pathways, independent
of the target species.

Figure 1. Identifying conserved protein interaction pathways with PathBLAST. PathBLAST operates in two modes, depending on whether the query is a single
pathway or a whole network. In the first mode, single user-defined pathways are queried against a reference network of observed protein interactions from bacteria,
yeast, fly or worm. In the second mode, two large protein networks are aligned against each other to enumerate all of the pathways that are conserved between them.
High-scoring pathwaymatches (A–D) are ranked by score and indicate pathways that are potentially conserved over evolution. The current focus of the PathBLAST
website is on the first (more common) mode of query.
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Take away points for PathBLAST

• A pairwise network alignment program that can identify 
conserved linear paths

• Applied to ask two main questions:
– How similar are Yeast and Bacteria PPI networks?
• Application to Yeast and Bacteria networks enabled 

using information from a well-studied organism to 
study a poorly studied organism
• Pathway alignments often links two pathways that were 

not known to associate before
• Proteins with high sequence similarity did not 

necessarily pair with each in the same pathway
– Are there redundant pathways in yeast PPI networks?



Pairwise network alignment approach
• Conserved pathways within bacteria and yeast as revealed by global 

protein network alignment 
• B. P. Kelley, R. Sharan, R. M. Karp, T. Sittler, D. E. Root, B. R. 

Stockwell, and T. Ideker, PNAS 2003
• Identification of Protein Complexes by Comparative Analysis of Yeast and 

Bacterial Protein Interaction Data 
• R. Sharan, T. Ideker, B. Kelley, R. Shamir, and R. M. Karp, Journal of 

computational biology 2004



Identification of Protein Complexes 
between two species

• PathBLAST focused on finding chain like subnetworks
• Sharan et al, 2004 aimed to find protein complexes

– more densely connected

• Key properties of this approach:
– A more formal probabilistic model for finding dense subgraphs
– Create an orthology graph (similar to the network alignment graph)

• nodes correspond to pairs of putative orthologous proteins 
• a protein may appear in multiple nodes with different orthologs

IDENTIFICATION OF PROTEIN COMPLEXES 837

protein complexes. The application to real data and comparison to extant approaches are presented in
Section 4.
A preliminary version of this paper has appeared in the Proceedings of the Eighth Annual International

Conference on Research in Computational Molecular Biology (Sharan et al., 2004).

2. A PROBABILISTIC MODEL FOR PROTEIN COMPLEXES

In this section, we present a probabilistic model for protein interaction data within a single species and
then extend it to two species. Given a dataset of protein interactions for some organism, we translate it into
an interaction graph G, whose vertices are the organism’s interacting proteins, and whose edges represent
pairwise interactions between distinct proteins. Using this formulation, a protein complex corresponds to
a subgraph of G that is typically dense (see, e.g., Fig. 1). Hence, surprisingly dense subgraphs in G may
be suggested as putative protein complexes.
In the case of perfect data, each edge in the interaction graph represents a known interaction, each

nonedge represents a known noninteracting pair, and we are seeking a surprisingly dense subgraph of G.
To this end we formulate a log likelihood ratio model that is additive over the edges and nonedges
of G, such that highly scoring subgraphs would correspond to likely protein complexes. This approach
requires specifying a null model and a protein-complex model for vertex pairs. Similarly to the probabilistic
approach taken by Tanay et al. (2002, 2004), we define the two models as follows: The protein-complex
model, Mc, assumes that every two proteins in a complex interact with some high probability β. In terms
of the graph, the assumption is that two vertices that belong to the same complex are connected by an
edge with probability β, independently of all other information. While our model assumes that a clique
is the ideal structure of a protein complex, other reasonable models could be formulated, such as a “hub”
model, in which all vertices are connected to a center vertex of high degree.
In contrast, the null model, Mn, assumes that each edge is present with the probability that one would

expect if the edges of G were randomly distributed but respected the degrees of the vertices. More precisely,
we let FG be the family of all graphs having the same vertex set as G and the same degree sequence,
and we define the probability of observing the edge (u, v) to be the fraction of graphs in FG that include
this edge. Note that in this way, edges incident on vertices with higher degrees have higher probability.
We estimate these probabilities using a Monte Carlo approach, as described in Section 4. We assume that
all pairwise relations are independent.
A complicating factor in constructing the interaction graph is that we do not know the real protein

interactions, but rather have partial, noisy observations of them. Formally, let us denote by Tuv the event
that two proteins u, v interact, and by Fuv the event that they do not interact. Denote by Ouv the (possibly
empty) set of available observations on the proteins u and v, that is, the set of experiments in which u

and v were tested for interaction and the outcome of these tests. Using prior biological information (see
Section 4.1), one can estimate for each protein pair the probability Pr(Ouv|Tuv) of the observations on
this pair, given that it interacts, and the probability Pr(Ouv|Fuv) of those observations, given that this
pair does not interact. Also, one can estimate the prior probability Pr(Tuv) that two random proteins
interact.

FIG. 1. A protein complex in the yeast interaction graph. Shown is the Skp1-Cdc53/cullin-F-box (SCF) complex,
which is involved in ubiquitin ligation. Each edge denotes a direct interaction between the corresponding proteins. As
shown, this complex induces a clique in the yeast interaction graph.



Probabilistic model to find dense 
complexes in one species

• Let U denote a set of vertices corresponding to proteins
• Score its tendency to be a complex based on a likelihood score
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Given a subset U of the vertices, we wish to compute the likelihood of U under a protein-complex
model and under a null model. Denote by OU the collection of all observations on vertex pairs in U . Then

Pr(OU |Mc) =
∏

(u,v)∈U×U

P r(Ouv|Mc) (1)

=
∏

(u,v)∈U×U

(P r(Ouv|Tuv, Mc)P r(Tuv|Mc) + Pr(Ouv|Fuv, Mc)P r(Fuv|Mc)) (2)

=
∏

(u,v)∈U×U

(βPr(Ouv|Tuv) + (1− β)P r(Ouv|Fuv)) (3)

Equation (1) follows from the assumption that all pairwise interactions are independent. Equation (2) is
obtained using the law of complete probability. Equation (3) follows by noting that given the hidden event
of whether u and v interact, Ouv is independent of any model.
It remains to compute Pr(OU |Mn). Since our previous null model depended on having the degree

sequence of the interaction graph, we cannot use it as is. To overcome this difficulty, we approximate the
degree sequence of the hidden interaction graph: Let d1, . . . , dn denote the expected degrees of the vertices
in G, rounded to the closest integer. In order to compute d1, . . . , dn, we apply Bayes’ rule to derive the
expectation of Tuv for any pair u, v given our observations on this vertex pair:

Pr(Tuv|Ouv) = Pr(Ouv|Tuv)P r(Tuv)

P r(Ouv|Tuv)P r(Tuv) + Pr(Ouv|Fuv)(1− Pr(Tuv))
.

Hence, di = [∑j P r(Tij |Oij )], where [·] indicates rounding.
Our refined null model assumes that G is drawn uniformly at random from the collection of all graphs

whose degree sequence is d1, . . . , dn. This induces a probability puv for every vertex pair (u, v). We can
now calculate the probability of OU according to the null model:

Pr(OU |Mn) =
∏

(u,v)∈U×U

(puvP r(Ouv|Tuv) + (1− puv)P r(Ouv|Fuv)) .

Finally, the log likelihood ratio that we assign to a subset of vertices U is

L(U) = log
Pr(OU |Mc)

P r(OU |Mn)
(4)

=
∑

(u,v)∈U×U

log
βPr(Ouv|Tuv) + (1− β)P r(Ouv|Fuv)

puvP r(Ouv|Tuv) + (1− puv)P r(Ouv|Fuv)
(5)

=
∑

(u,v)∈U×U

log
βPr(Tuv|Ouv)(1− Pr(Tuv)) + (1− β)(1− Pr(Tuv|Ouv))P r(Tuv)

puvP r(Tuv|Ouv)(1− Pr(Tuv)) + (1− puv)(1− Pr(Tuv|Ouv))P r(Tuv)
(6)

where Equation (6) follows by applying Bayes’ rule and cancelling common terms in the numerator and
denominator.

2.1. Two-species conservation model

Consider now the case of data on two species 1 and 2, denoted throughout by an appropriate superscript.
Here we wish to score a conserved complex that is defined by two subsets of proteins, one from each species,
and a many-to-many correspondence associating proteins in one species with their putative orthologous

OU : Observed interactions among U
MC :The protein complex model specifying the interaction probabilities for a complex 
Mn : The null model specifying the interaction probabilities if edges were randomly 
distributed
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Assume independence of edges

Sum over true edge status (hidden), Tuv and Fuv

Set empirically (a prior) Obtained from Deng et al (2013) that provides a 
reliability measure for observed interactions 



The null model Mn

• The null model assumes that edges in a graph G are drawn 
randomly

• To estimate the puv, the authors generated random graphs by 
doing a series of edge crosses 
– Pick two edges (a,b) and (c,d) and replace with (a,c) and 

(b,d)
– !"# is the proportion of random graphs in which (u,v) was 

present
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Extension to two species

• Let U1 be the set of vertices in species 1 and V2 be the set of 
vertices in species 2

• Let Θ denote the mapping from U1 and V2

• Score of a conserved complex is 
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proteins in the other species. Consider two subsets U1 = {u11, . . . , u1k1} and V 2 = {v21, . . . , v2k2} and some
many-to-many mapping θ : U1 → V 2 between them. Assuming that the interaction graphs of the two
species are independent of each other, the log likelihood ratio score for these two sets is simply

L(U1, V 2) = log
Pr(OU1 |M1

c )

P r(OU1 |M1
n)

+ log
Pr(OV 2 |M2

c )

P r(OV 2 |M2
n)

.

However, this score does not take into account the degree of sequence conservation among the pairs of
proteins associated by θ . In order to include such information, we have to define a conserved complex
model and a null model for pairs of proteins from two species. Our conserved complex model assumes
that pairs of proteins associated by θ are orthologous. The null model assumes that such pairs consist of
two independently chosen proteins. Let Euv denote the BLAST E-value assigned to the similarity between
proteins u and v, and let huv, h̄uv denote the events that u and v are orthologous, or nonorthologous,
respectively. The likelihood ratio corresponding to a pair of proteins (u, v) is therefore

Pr(Euv|Mc)

P r(Euv|Mn)
= Pr(Euv|huv)

P r(Euv|huv)P r(huv) + Pr(Euv|h̄uv)P r(h̄uv)
.

Using Bayes’ rule, we can derive a simpler expression, Pr(huv |Euv)
P r(h) , where Pr(h) is the prior probability

that two proteins are orthologous.
Thus, the complete score of U1 and V 2 under the mapping θ is

Sθ (U
1, V 2) = L(U1, V 2) +

k1∑

i=1

∑

v2j ∈θ(u1i )

log
Pr(hu1i v

2
j
|Eu1i v

2
j
)

P r(h)
.

3. SEARCHING FOR CONSERVED COMPLEXES

Using the above model for comparative interaction data, the problem of identifying conserved protein
complexes reduces to the problem of identifying a subset of proteins in each species, and a correspondence
between them, such that the score of these subsets exceeds a threshold. In this section, we present our
search strategy.

3.1. The orthology graph

To allow efficient search for conserved protein complexes, we define a complete edge- and node-weighted
orthology graph (extending Kelley et al. [2003]). We focus on yeast and bacteria. Denote by superscripts
p and y the model parameters corresponding to bacteria and yeast, respectively. For two yeast proteins y1
and y2, define

w
y
(y1,y2)

= log
βyP r(Oy1y2 |Ty1y2) + (1 − βy)P r(Oy1y2 |Fy1y2)

p
y
y1y2Pr(Oy1y2 |Ty1y2) + (1 − p

y
y1y2)P r(Oy1y2 |Fy1y2)

.

Similarly, for two bacterial proteins p1 and p2, define

w
p
(p1,p2)

= log
βpP r(Op1p2 |Tp1p2) + (1 − βp)P r(Op1p2 |Fp1p2)

p
p
p1p2Pr(Op1p2 |Tp1p2) + (1 − p

p
p1p2)P r(Op1p2 |Fp1p2)

.

Every pair (y1, p1) of yeast and bacterial proteins is assigned a node whose weight reflects the similarity
of the proteins; that is,

w(y1,p1) = log
Pr(hy1p1 |Ey1p1)

P r(h)
.
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True homology

Similarity score of 
pairs of proteinsPrior probability of 

homology



Searching for complexes
• Define a complete edge and node weighted orthology graph 

(extends the network alignment graph of Kelly et al)
– Weight of a node is proportional to the probability of the 

constituent nodes to be homologous
– Weight of an edge is derived from the MC and Mn models
– Consider all pairs of edges between two interacting proteins

• An induced subgraph of an orthology graph corresponds to a subset 
of proteins from each species
– NP hard in general

• Heuristic search
– Find heavy seeds
– Refine seeds exhaustively
– Expand seed by local search



Heuristic search of heavy subgraphs

• A strong edge on the orthology graph is defined as an edge 
that has a positive score

• A seed is defined around each vertex v using all its neighbors 
u

• If seed has >10 nodes, remove nodes with minimal scores 
until seed has 10 nodes

• Consider all subsets of size 3 or more of the seed that contain 
v

• Expand seed with local search to increase the score of the 
subgraph or until a max size was reached (20)
– Add a new node
– Remove a node



Conserved complexes in yeast and 
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FIG. 2. Conserved protein complexes for proteolysis (panel a), protein synthesis (panels b and d), and nuclear
transport (panel c). Conserved complexes are connected subgraphs within the bacteria-yeast orthology graph, whose
nodes represent orthologous protein pairs and edges represent conserved protein interactions of three types: direct
interactions in both species (solid edges); direct in bacteria but distance 2 in the yeast interaction graph (dark dashed
edges); and distance 2 in the bacterial interaction graph but direct in yeast (light dashed edges). In the algorithm, both
nodes and edges are assigned weights according to the probabilistic model. The number of each complex indicates the
corresponding complex ID listed in Table 1.

yeast and bacterial proteins involved in proteolysis suggests that they also play an important role in this
process. Furthermore, it appears that the yeast proteins Hsm3 and Rfa1 (with known functional roles in
DNA-damage repair) may also be associated with the yeast proteasome. Complexes 19 and 31 (Fig. 2(b,d))
suggest that their component proteins, some of which are uncharacterized, are involved in protein synthesis.
As another example of protein functional prediction, Fig. 2(b) shows a conserved complex which contains

yeast proteins that function in the nuclear pore (NUP) complex. The NUP complex is integral to the eu-
karyotic nuclear membrane and serves to selectively recognize and shuttle molecular cargos (e.g., proteins)
between the nucleus and cytoplasm. Unlike the yeast proteins, the corresponding bacterial proteins are less
well characterized, although three have been associated with the cell envelope due to their predicted trans-
membrane domains. Our results therefore indicate that the bacterial proteins may function as a coherent
cellular membrane transport system in bacteria, similar to the nuclear pore in eukaryotes. Although further
experimentation will be necessary to explore this hypothesis, it is possible that these proteins comprise the
ancestral prokaryotic machinery from which the NUP transport system has evolved.

4.3. Comparisons to extant approaches

We further assessed our approach by comparing its performance to that of two other methods for
identifying complexes in the data. The first method is a noncomparative variant of our algorithm that uses
the protein–protein interactions in yeast only. That is, this variant searches for heavy subgraphs in the yeast
interaction graph, where the edges of the graph are weighted according to the log-likelihood ratio model.
Using this variant to search for protein complexes in yeast is aimed at seeing what is gained (and lost) by
adding the constraint of cross-species conservation. The second method is a variant of the algorithm that
relies on our previous probabilistic model for protein interactions (Kelley et al., 2003). That latter model
is much less involved than the current one: The weight of each vertex in the orthology graph is set to
the logarithm of the probability that the member proteins are orthologous. The weight of an edge is set
to the logarithm of the probability that it represents a true interaction.
We used three measures to compute the quality of the results. All three quantify the similarity between a

given solution and a reference, putatively true, solution. In our case, we used the known complex categories
in yeast as the reference solution, since no knowledge on conserved complexes is available. The Jaccard
measure, which is often used in clustering (cf. Kaufman and Rousseeuw [1990]), uses the notion of mates.
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Table 2. Performance Comparison of Three Algorithms
for Complex Detection

Algorithm Jaccard Sensitivity Specificity

This study 0.32 0.33 0.7
Kelley et al. (2003) 0.22 0.44 0.4
Yeast only 0.33 0.67 0.48

Two proteins are called mates in a solution if they appear together in at least one complex in that solution.
Given two solutions, let n11 be the number of pairs that are mates in both, and let n10 (n10) be the number
of pairs that are mates in the first (second) only. The Jaccard score is n11/(n11 + n10 + n01). Hence, it
measures the correspondence between protein pairs that belong to a common complex according to one
or both solutions. Two identical solutions would get a score of 1, and the higher the score the better the
correspondence. The sensitivity measure quantifies the extent to which a solution captures complexes from
the different yeast categories. It is formally defined as the number of categories for which there was a
complex with at least half its annotated elements being members of that category, divided by the number
of categories with at least three annotated proteins. The specificity measure quantifies the accuracy of the
solution. Formally, it is the fraction of predicted complexes whose purity exceeded 0.5.
A comparison of the performance the three approaches is presented in Table 2. The Jaccard score

is significantly better in our current approach than in Kelley et al. (2003). The sensitivity is lower, as
we capture fewer categories, but the specificity is much higher, so our predicted complexes are much
more accurate. Interestingly, when applying our algorithm using data on yeast only, we get even higher
sensitivity, although again at the cost of specificity. The Jaccard score of this run is comparable to that of
the comparative algorithm. This shows that our new probabilistic model can be effectively used, even for
detecting complexes using interaction data from a single species. Note that we evaluated the results using
data on yeast complexes only, not all of which are expected to be conserved. Still, the use of the bacterial
data significantly improved the specificity of the results.

CONCLUSIONS

We have presented a novel probabilistic model for the detection of conserved complexes among two
species and an algorithm to search for significant complexes. We applied our approach to study the conser-
vation between yeast and bacterial protein interaction networks. We identified highly specific complexes
that were validated using known complexes in yeast and functional annotation in bacteria. Although the
present work has already revealed several conserved biological structures that may have functional sig-
nificance, many refinements and extensions to our method should be explored. Our model can be readily
extended to allow interactions between two domains of the same protein (manifested as self-loops in
the interaction graph). Models in which the primitive elements are domains within proteins, rather than
entire proteins, may be of value. We have used a dense subgraph model that tends to find clique-like
patterns of interaction; variations of the model oriented towards other kinds of interaction patterns are
also of interest. Protocols such as the two-hybrid system detect directed interactions between proteins,
suggesting the use of a directed or mixed interaction graph instead of the current undirected model.
In order to find complexes conserved in k species, where k > 2, our models should be extended to
k-species orthology graphs, in which each node specifies a protein from each of k species; the scoring
of such nodes is an open question. Negative data, indicating the absence of protein–protein interactions,
should be used to supplement the positive data presently used. Co-expression of genes, as measured in
microarray experiments, can also provide indirect evidence for the interaction between the corresponding
proteins. Finally, the current protein–protein interaction data are sparse and unreliable; as the abundance
and quality of the data improve, the predictive power of our methods and their future refinements will be
greatly enhanced.

Sharan et al have higher specificity compared to existing approaches



Concluding remarks

• PathBLAST and its extension to complexes can be useful for
– Transferring information from a well-annotated organism 

(S. cerevisiae) to shed insight into a poorly annotated 
organism (H. pylori)

– Infer function of poorly annotated proteins
– Accurately identify protein complexes

• Some questions remain
– How to deal with multiple networks?
– Are there better algorithms to search the orthology

graph/network alignment graph
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