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Plan for this section

Aligning two networks to identify conserved linear paths or
small complexes

— PATHBLAST (Nov 8t)
Global alignment of graphs using spectral methods
— IsoRank (Nov 13th)

Global alignment of graphs using matrix factorization
— FUSE (Nov 15t)



Goals for today

* Introduction to the network alignment problem
* Classes of methods for network alignment
* Pairwise global network alignment

— ldentifying linear paths

— ldentifying complexes



How are these organisms related?
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Organisms can be compared at multiple
levels
 Comparison at the sequence level
— Sequence alignment

— Phylogenetic tree construction
 Comparison at the expression level

 Comparison at the network level



Some terminology

Homology

— Two sequences are said to be homologous if they are derived from a
common ancestral sequence

Orthology

— Two proteins in two organisms are said to be orthologs of each other if
they are related by a common ancestor

Paralogy

— Two proteins that are related by a duplication event within a species
Match, mismatch, gaps

— Terms used in sequence alignment
BLAST

— A software program used to align two molecular sequences that
provides a statistical score (BLAST E-value) used to assess the quality
of the alignment



How do sequences change between
organisms?

e Substitutions
Sequencel THI S SEQUENCE

‘ ‘ mismatch

Sequence2 THATSEQUENCE

 Deletions
Sequencel THISISASEQUENCE

Sequence2 THIS__ _SEQUENCE

* Insertions Sav
Sequencel _ SEQUENCE

gap
Sequence2 THISSEQUENCE



Alignment problem

* Sequence alignment

— Given the genomic sequence of two species, find the differences
and similarities of the sequence

— Aims to find a correspondence between the positions of two
sequences while minimizing the number of substitutions and
gaps

 Network alignment

— Given molecular interaction networks from different organisms
find the differences and similarities between them at the
subnetwork level

— Aims to find a correspondence between the positions of two
networks while minimizing the number of substitutions and
gaps on the network



Sequence Alignment Examples

Sequencel THI S SEQUENCE

TH++SEQUENCE
Sequence2 THATSEQUENCE

Sequencel THI S ---SEQUENCE

TH++ SEQUENCE
Sequence2 THATISASEQUENCE



Why is network alignment important?

* Important from an evolutionary perspective

— Are interactions of proteins with similar sequence
conserved?

— How do networks evolve?

— Is there a minimal set of interactions common to all
species?
* Refine existing interaction networks



Different network alignment problems

Local Network Global network alignment: Align  Network query: Find instances of
alignment: Find locally ) hodes in one network toall @ small subnetwork in a larger

similar subnetworks nodes in the second network network

Nir Atias and Roded Sharan, May 2012, ACM Communications



Different types of network alignhment

problems

Local alignment Align small parts of PathBLAST, LocalAli
the network

Global alignment Align the entire FUSE, IsoRank
network

Pairwise alignment  Align two networks PathBLAST

Multiple network Align more than FUSE, IsoRank,
alignment two networks LocalAli
NetworkQuery Search for a small NetGrep, QNet,
network in a larger QPath
network

Adapted from Nir Atias and Roded Sharan, May 2012, ACM Communications



What makes network alignment difficult?

The set of genes/proteins between species are not the same

The correspondence between genes of one species and the
genes of another species is not one-to-one

— Although many algorithms assume one-to-one mapping
Underlying networks might be noisy and/or incomplete



Goals for today

* Pairwise global network alignment
— ldentifying linear paths
— ldentifying complexes



Pairwise network alignment approach

* Conserved pathways within bacteria and yeast as revealed by global
protein network alignment

e B. P. Kelley, R. Sharan, R. M. Karp, T. Sittler, D. E. Root, B. R.
Stockwell, and T. Ideker, PNAS 2003



Defining a pairwise alighment problem

Given
— Two graphs
* G,=(V,.E})
* G,=(V,E,)
— V,and V, correspond to vertex set
— E; and E, correspond to the interaction set
— A possibly incomplete many-to-many mapping between V, and V,
Do
— ldentify regions that are similar across the networks being compared
Typically done by
— Generating a network alignment graph

— Defining a scoring function that assesses both node and topological
similarity



Network alignment example
Sequence
/ homology

Protein-protein
interaction (PPI) in
species 1

Protein-protein interaction
(PPI) in species 2

//,/”

Path in a PPI Path in a PPI
network in species 1 network in species 2



Gaps and mismatches in network
alignment

e Mismatch

— Occurs when aligned proteins in the network alignment do
not share sequence homology

— This boils down to pair (A,B) in one species connected to
pair (a,b) in another species by a distance of 2.

* Gap

— Occurs when a protein interaction in one path skips over a
protein in the other network



Network alignment graph

The network
alignment problem
of finding conserved
paths boils down to
finding a high
scoring path in a
new network called
the “network
alignment” graph.

a

PATH 1

PATH 2

I 1} sequence homology

mmm protein interaction
A Indirect interaction

Each vertex in the
alignment graphis
represented by a pair of
vertices and a
corresponding numeric
score (BLAST E-value) that
specifies the sequence
similarity

Each edge corresponds to
to “interactions” in the
original graph



Sketch of a network alignment approach
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PathBLAST algorithm for network
alignment

 PathBLAST algorithm aims to find conserved linear pathways

— A pathway is defined as a sequence of protein-protein
interactions forming a connected path

e PathBLAST algorithm has two steps:

1. Combine two protein-protein interaction networks to
create the network alignment graph

e A path through this graph is a conserved pathway

2. Search the network alignment graph for high-scoring
paths Proteins

)

A pathway here is a linear path




Scoring a path P

Let S(P) denote the score of a path P
PathBLAST defines S(P) in a decomposable manner as follows

S(P) = E logo & + 2 logio ﬂ,

vEP p random cep C] random

p(v) is the probability of true homology between two proteins
represented by the pair v given the BLAST score associated
with v

q(e) is the probability that the interaction e is real

Drandom @NA G,0n00m Are €xpected values of p(v) and g(e) over all
vertices and edges in the alighment graph



Estimating the node and edge
probabilities

* p(v)is obtained from sequence alignment scores E, of the
two proteins making up v

_ (g1 )= PE H)p(H)
p(v) = p(H | E,) o(E)

 H represents the event of true homology (obtained from a
curated set of homologs)

* ¢(e)is obtained from underlying protein-protein interactions e
represents Number

# yeast
. of studies Pr(i) interactions
g(e) = [ ] Pr(i) 1 0.1 9966
iEe 2 0.3 1597
>3 0.9 1591

e can have 2 (direct), 3 (gap) or 4 (mismatch) interactions



Strategy to find high scoring path

Find the highest scoring pathway alignment of a fixed pre-specified
length L

Based on a dynamic programming algorithm
The highest scoring path of length [ =2..L ending in vertex v will have
a(€)

score.
S(v,l)= argmax S(u,l—1)+10g p(v) +log—"—=

ucparents(v) Prandom random

With base case
S(v,l)=10g Pv)

P random

Thus the score of length [ path is computed from score of path of
length [-1



Estimating the probability of true

homology
109
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== p(E| H)
— p(H| B)
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Results

* Perform alignment of Yeast (S. cerevisiae) vs Bacteria (H.
pylori) protein-protein interaction networks

* Perform alignment of Yeast vs Yeast
— Find paralogous (duplicate) pathways within the same
species
 Query the large interaction network to find instances of a
smaller network



Network dataset description

 Yeast network

— 14,489 interactions and |
4,688 proteins

e Bacteria network 1
— 1,465 interactions -
among 732 proteins .

Helicobacter pvlori Saccharomyces cerevisiae

Bacteria Yeast



A few statistics of the networks to be

aligned
. Edges
Vertices
(homologs) Total Direct Gap Mismatch

Yeast vs. H. pylori (Ecutoff = 1072) 829 2,036 7 260 1,769

Random: mean = SD 509.0 = 128.0 25*+1.9 68.8 = 23.8 437.7 = 110.3
Yeast vs. yeast (Ecutotf = 10710) 5,593 1,389 1,389 N/A N/A

Random: mean =+ SD 62.3 = 29.4 62.3 = 29.4 N/A N/A

/

Very few direct interactions!

Randomization: Permute the protein names



Aligning yeast to bacteria

b Protein synthesis and cell rescue

1

2
3
4 G
5
6
7

HP0247
(deal)
HP1316
(rpl2)

HP0O247
(deald)

HP0303
{obg)

p=1.4x10"
Dbp2
Rpl2a
Maks Has1
Gen20
HPO136
(bep) Tsa2 Tsal
%ﬂf Ssql Ssel
Nogl

d Cytoplasmic and nuclear membrane transport p=1.7x10"

HP1355

Indirect (gap/mismatch)

Direct interactions

~

€ Protein degradation / DNA replication p=0.03

()
HPl114
{uvrB)
HP0919
(pyrAb)
HPO476
(gltX)
HPOT17
(dnaX) HP1026
HP1069
(fisIT)
HP1379
(lon)
HP1374
(clpX)
HP106Y
(fisH)
HPO401

{aroA)

Brr2
Dbp#
Cpa2
Ygl245w

Rfc2 Rfc3 Ric4 Ric5

Rpt3

Rptd

Rpté

Rptl Rpt2 Y1034¢
Arol

(nadC) L
HP(289 Nupl
HPO922  HPO610 Nup42  (Nupl00 /
HP0O289 Nupl00 Nupl4s
HPO&09 Nupl
f RNA polymerase and associated p=1.4x1 0
transcripfional machinery
HP1422
ey Tis1
HP0919
{pyrAb) By (e
HP1274
(ofiA) Cu9
HP1198
(rpoB) Retl Rpal90 Rpo3l  Rpo2l Rpb2 Rpal35
HP1048 .
(infB) Gedll Yif2 Sup33
HPO965 Smed
HPO264
(clpB)y Hspl04

Highlights of results:
1. 150 high scoring paths

of length 4 were
identified

A total of 4.1% H. pylori
and 1.2% S. cerevisiae
proteins were in the
high scoring alignments
Paths were enriched for
diverse biological
processes (protein
synthesis, cell rescue,
degradation)



Aligning yeast to yeast
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Network query: Aligh a query pathway to
a larger network

Query pathway Hit pathways
MAPKKK @ Y Y B0) (Fuss) (snfl) (Tpk2) Rim15 (Snfl) (Hogl
MAPKK @ Mkkl  MKk2 Pbs2 Rekl Tpkl Rekl
MAPK @ Pkcl  Smkl  Slt2  Pho85 Hogl Tpk3 Fus3
auerv p < 0.01 p=0.03

Highest scoring pathways in red

Results for the MAPK pathway as a query pathway.



Network query: Aligh a query pathway to
a larger network

A Filamentation response
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PathBLAST server

Conserved pathways
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Kelly et al., 2004 http://www.pathblast.org



Take away points for PathBLAST

* A pairwise network alignment program that can identify
conserved linear paths

* Applied to ask two main questions:
— How similar are Yeast and Bacteria PPl networks?

* Application to Yeast and Bacteria networks enabled
using information from a well-studied organism to
study a poorly studied organism

e Pathway alignments often links two pathways that were
not known to associate before

* Proteins with high sequence similarity did not
necessarily pair with each in the same pathway

— Are there redundant pathways in yeast PPl networks?



Pairwise network alignment approach

* |dentification of Protein Complexes by Comparative Analysis of Yeast and
Bacterial Protein Interaction Data

* R.Sharan, T. Ideker, B. Kelley, R. Shamir, and R. M. Karp, Journal of
computational biology 2004



Identification of Protein Complexes
between two species

e PathBLAST focused on finding chain like subnetworks
e Sharan et al, 2004 aimed to find protein complexes
— more densely connected

* Key properties of this approach:
— A more formal probabilistic model for finding dense subgraphs
— Create an orthology graph (similar to the network alignment graph)
* nodes correspond to pairs of putative orthologous proteins
* a protein may appear in multiple nodes with different orthologs



Probabilistic model to find dense
complexes in one species

Let U denote a set of vertices corresponding to proteins
* Score its tendency to be a complex based on a likelihood score

Pr(Oy|M.)
Pr(Oy|M;,)

L(U) = log

Oy : Observed interactions among U
M :The protein complex model specifying the interaction probabilities for a complex

M, : The null model specifying the interaction probabilities if edges were randomly
distributed



The protein complex model M,

Pr(Oy|M,) = 1_[ Pr(Oyy| M) Assume independence of edges
(u,v)eUxU

[  (Pr(OwlTuv. Me)Pr(Ty|Me) + Pr(Ouy|Fuv, M) Pr(Fiy| Me))
(u,v)elU xU

Sum over true edge status (hidden), 7,,, and F,,

— ]‘[ (BPr(Ouy|Tywy) + (1 — B)Pr(Ouy| Fin))

(u,v)ely '\

Obtained from Deng et al (2013) that provides a

Set empirically (a prior . : .
P v (a prior) reliability measure for observed interactions



The null model M,

* The null model assumes that edges in a graph G are drawn
randomly

PriouiMy) = ||  PuvPr(OwlTu) + (1 = pu) Pr(Ouy| Fun)) -
(u,v)eU xU

* To estimate the p,,, the authors generated random graphs by
doing a series of edge crosses
— Pick two edges (a,b) and (c,d) and replace with (a,c) and
(b,d)

— Dy is the proportion of random graphs in which (u,v) was
present



Extension to two species

Let U’ be the set of vertices in species 1 and V? be the set of
vertices in species 2
Let @ denote the mapping from U! and V2

Score of a conserved complex is True homology

1 2 1 /2 d Pr(h”'l"?'E”'l”Jz')
So(UL, VHY=LWU', Vv 1 ’ At
6 ( ) = L( )+ Y ) log o N\

| — 2 1
i=1 viedu;)

Similarity score of
Prior probability of ~ Pairs of proteins

where homology

Pr(Oyi|M}) | Pr(0y2|M?)

Pr(OpiIMD) "% Pr(0y2|1M2)

LU, V%) =log



Searching for complexes

Define a complete edge and node weighted orthology graph
(extends the network alignment graph of Kelly et al)

— Weight of a node is proportional to the probability of the
constituent nodes to be homologous

— Weight of an edge is derived from the M- and M, models
— Consider all pairs of edges between two interacting proteins

An induced subgraph of an orthology graph corresponds to a subset
of proteins from each species

— NP hard in general

Heuristic search

— Find heavy seeds

— Refine seeds exhaustively
— Expand seed by local search



Heuristic search of heavy subgraphs

A strong edge on the orthology graph is defined as an edge
that has a positive score

A seed is defined around each vertex v using all its neighbors
u

If seed has >10 nodes, remove nodes with minimal scores
until seed has 10 nodes

Consider all subsets of size 3 or more of the seed that contain
.

Expand seed with local search to increase the score of the
subgraph or until a max size was reached (20)

— Add a new node
— Remove a node



Conserved complexes in yeast and

bacteria
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FIG. 2. Conserved protein complexes for proteolysis (panel a), protein synthesis (panels b and d), and nuclear
transport (panel c). Conserved complexes are connected subgraphs within the bacteria-yeast orthology graph, whose
nodes represent orthologous protein pairs and edges represent conserved protein interactions of three types: direct
interactions in both species (solid edges); direct in bacteria but distance 2 in the yeast interaction graph (dark dashed
edges); and distance 2 in the bacterial interaction graph but direct in yeast (light dashed edges). In the algorithm, both
nodes and edges are assigned weights according to the probabilistic model. The number of each complex indicates the
corresponding complex ID listed in Table 1.



Comparison to existing approaches

TABLE 2. PERFORMANCE COMPARISON OF THREE ALGORITHMS
FOR COMPLEX DETECTION

Algorithm Jaccard Sensitivity Specificity
This study 0.32 0.33 0.7
Kelley et al. (2003) 0.22 0.44 0.4
Yeast only 0.33 0.67 0.48

Sharan et al have higher specificity compared to existing approaches



Concluding remarks

* PathBLAST and its extension to complexes can be useful for

— Transferring information from a well-annotated organism
(S. cerevisiae) to shed insight into a poorly annotated
organism (H. pylori)
— Infer function of poorly annotated proteins
— Accurately identify protein complexes
* Some questions remain
— How to deal with multiple networks?

— Are there better algorithms to search the orthology
graph/network alignment graph
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