Spectral methods for Global Network Alignment

Sushmita Roy

sroy@biostat.wisc.edu

Computational Network Biology

Biostatistics & Medical Informatics 826

https://compnetbiocourse.discovery.wisc.edu

Nov 13th 2018

Global Network Alignment stated formally

- Finding the optimal global alignment between two or more PPI networks, aims to find a correspondence between nodes and edges of the input networks that maximizes the overall "match" between the networks
- Every node in one network must be mapped to another node in the other network or marked as a gap
- That is, we want to find a single best mapping covering all nodes in the graph
- Furthermore, for >2 species, this alignment must be transitive
 - If a_1 is mapped to a_2 in species 2, and a_2 is mapped to a_3 and $a_{3'}$ in species 3, a_1 must be mapped to a_3 and $a_{3'}$.

Motivation of the IsoRank algorithm

- Previous approaches have used a local and pairwise alignment approaches
- Limit the possible node mappings between species and then bring in networks to do the alignment
 - "..Lacks the flexibility of producing node-pairings that diverge from sequence-only predictions."

IsoRank overview

- An algorithm for inferring the <u>global alignment</u> of <u>more than</u> <u>two</u> networks
- Unlike existing algorithms which use sequence similarity first to define the mapping, IsoRank simultaneously uses both the network and the sequence similarity to define node mappings
- Key intuition: a protein in one network is a good match to a protein in another network if it is similar in sequence and its network neighborhood
- Such proteins are said to be "functionally similar" to each other across species
- The IsoRank algorithm uses eigenvalue problem to estimate the functional similarity score

Notation

- G_k=(V_k,E_k) is a graph of |V_k| vertices and |E_k| edges for species k.
- *G_k* corresponds to a protein-protein interaction (PPI) network for a species *k*
- Edges can be weighted : w(e) denotes weight of an edge e
- For a node *i* in V_k , N(i) denotes the neighbors of *i* in G_k
- For two graphs G_1 and G_2 , R is a $|V_1|$ by $|V_2|$ matrix where each entry R_{ij} specifies the functional similarity score of protein node j in G_1 and node j in G_2 .

Two Key steps IsoRank algorithm

- Estimate the functional similarity score *R* that is based on network and sequence similarity for all pairs of networks
- Use *R* to define node mappings and to identify subgraphs that represents the conserved parts of the network

Pairwise Global Network Alignment with IsoRank

- Let us first consider the simple case of aligning two graphs, G_1 and G_2
- IsoRank has two steps
 - Estimate the functional similarity score R_{ij} that is based on network and sequence similarity of proteins i in V_1 and j in V_2
 - Use R to define node mappings and to identify subgraphs that represents the conserved parts of the network
 - This uses a greedy approach that starts with a seed from a bi-partite graph and grows it until no more edges can be added

Defining the functional similarity R_{ij}

- We will first consider the simple case of estimating this from the networks alone
- Assume the networks are unweighted
- *R_{ij}* is computed for every pair of nodes *i* and *j* where *i* is in *V₁* and *j* in *V₂*

$$R_{ij} = \sum_{u \in N(i)} \sum_{v \in N(j)} \frac{1}{|N(u)||N(v)|} R_{uv}$$
 Neighbors of i

• R_{ij} should capture a similarity based on i and j's neighborhoods in G_1 and G_2 respectively

Defining the functional similarity R_{ij} for weighted graphs

- Let w(i,u) denote the weight of edge (i,u) in $G_{I_i} 0 \le w(i,u) \le 1$
- Let w(j,v) denote the weight of edge (j,v) in G_1
- Here R_{ij} is defined as

$$R_{ij} = \sum_{u \in N(i)} \sum_{v \in N(j)} \frac{w(i, u)w(j, v)}{\sum_{p \in N(u)} w(u, p) \sum_{q \in N(v)} w(v, p)} R_{uv}$$

Instead of the size of the neighborhood, we use a weighted sum over all nodes in the neighborhood of u

Computing R_{ij} with two 5 node networks

$$R_{aa'} = \frac{1}{|N(b)||N(b')|} R_{bb'}$$

$$R_{aa'} = \frac{1}{4}R_{bb'}$$

Computing R_{ij} with two 5 node networks

Similarly for the other node pairs

Only a partial set of scores are shown b' C' d' a' e' 0.0937 0.0312 а b 0.1250 0.0625 0.062 0.0937 С 0.2812 d 0.0625 0.0312 0.031 е 0.0625 0.0312 0.031

Rewriting R in matrix form

- Let A be a matrix with $|V_1|^*|V_2|$ rows and $|V_1|^*|V_2|$ columns
- Each row of *A*[*i*,*j*] corresponds to a pair of nodes (*i*,*j*) where *i* is from *V*₁ and *j* is from *V*₂
- Each column of A corresponds to a pair of nodes (*u*,*v*) where *u* is from *V*₁ and *v* is from *V*₂

$$A[i,j][u,v] = \begin{cases} \frac{1}{|N(u)||N(v)|}, & \text{if}(i,u) \in E_1, (j,v) \in E_2\\ 0 & \text{otherwise} \end{cases}$$

• In matrix form we have

$$R = AR$$

• Thus *R* is the eigen vector of *A*, with eigen value 1

R is the eigen vector of a specific matrix

	a b	a'	A[i,	j][u, c]	$v] = \langle$	$\int \frac{1}{ N(u) }$	$\frac{1}{ V N(v) }$	$\overline{\mathbf{y}}, $ if((i, u)	$\in E_1,$	(j, v)	$e \in E_2$
Ĭ	c (C'	$\begin{bmatrix} 0 & \text{otherwise} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & &$									
			_	a a'	a b'	a c'	b a'	b b'	b c'	c a'	c b'	c c'
	a a'	$R_{aa'}$	a a'	0	0	0	0	0.25	0	0	0	0
R	a b'	$R_{ab'}$	a b'	0	0	0	0.5	0	0.5	0	0	0
	a c'	$R_{ac'}$	a c'	0	0	0	0	0.25	0	0	0	0
	b a'	$R_{ba'}$	b a'	0	0.5	0	0	0	0	0	0.5	0
	b b'	$R_{bb'}$	b b'	1	0	1	0	0	0	1	0	1
	b c'	$R_{bc'}$	b c'	0	0.5	0	0	0	0	0	0.5	0
	c a'	$R_{ca'}$	c a'	0	0	0	0	0.25	0	0	0	0
	c b'	R _{cb} ′	c b'	0	0	0	0.5	0	0.5	0	0	0
	c c'	$R_{cc'}$	c c'	0	0	0	0	0.25	0	0	0	0

R is the eigen vector of **A**

$$R_{bb'} = R_{aa'} + R_{ac'} + R_{ca'} + R_{cc'}$$

$R_{bb'}$ from the matrix form

• Let's check if we get the same answers

 $R_{bb'}^{new} = R_{aa'}^{old} + R_{ac'}^{old} + R_{ca'}^{old} + R_{cc'}^{old}$

Estimating R

- This is an eigen value problem
- *A* is a stochastic matrix (columns of *A* sum to 1)
- *R* can be found using the *power method*
- The power method repeatedly updates *R* at iteration *k*+1 as follows

$$R(k+1) = AR(k)/|AR(k)|$$

Adding sequence similarity to R

- We can integrate other types of information in the same framework
- Let *B* be a $|V_1| * |V_2|$ matrix where each entry B_{ij} is the sequence similarity of *i* and *j*
- Let *E* be the normalized version of *B*, *E*=*B*/B*B*|
- *R* can be redefined as

$$R = \alpha AR + (1 - \alpha)E$$

• This too can be solved with an eigen value problem

$$R = \alpha A R + (1 - \alpha) E \mathbf{1}^T R \qquad \mathbf{1}^{\mathrm{T}}$$

 $\mathbf{1}^{\mathrm{T}}$ is a vector of all ones

$$R = (\alpha A + (1 - \alpha)E\mathbf{1}^T)R$$

Multiple GNA

- Extension to more than two networks is straightforward
- For every pair of graphs G_m , G_n , estimate R^{mn}

Two Key steps IsoRank algorithm

- Estimate the functional similarity score *R* that is based on network and sequence similarity for all pairs of networks
- Use *R* to define node mappings and to identify subgraphs that represents the aligned parts of the network

Extracting the aligned parts

- Once *R* is estimated for all pairs of networks, we need to extract out node pairs with the highest values
 - 99% of the entries of *R* will be zero
- Two ways to do this
 - One to One mapping
 - For each node, map it to at most one other node
 - Computationally efficient but ignores gene duplications
 - Many to Many mapping

Many to many mapping

- The goal here is to extract groups with multiple genes from the same species
- Each group represents an functional similarity between genes of one species to genes of another species
- Each set has the following property
 - Each gene in the set has high pairwise R scores with most other genes in the set
 - there are no genes outside each set with this property
 - there are a limited number of genes from each species
- Identified via greedy algorithm

Greedy algorithm for finding aligned parts

- Construct a *k*-partite graph.
 - Each part k has nodes from each species
 - Allow nodes to interact between different parts
- Extract a high confidence edge expand to connected neighbors

Greedy algorithm to find many-many node mappings

- Input k-partite graph H, b_1 , b_2 , r
- Repeat until no more edges are in H
 - Select an edge with the highest score (i,j), where i is G_1 and j is in G_2 to initialize a match-set
 - Grow (*i*,*j*) to create the primary match-set. This is the max k-partite matching
 - Primary match set is a set of nodes with at most 1 node from a species using b_1 to control the similarity
 - For all other graphs G₃.. G_k, add a node l if two conditions hold

 (i) R_{il} and R_{jl} are the highest scores between l and any node in G₁ and G₂, respectively and,

(*ii*) the scores $R_{il} \ge b_1 R_{ij}$, and $R_{jl} \ge b_1 R_{ij}$,

- Add upto (r-1) nodes v based on b_2 , such that there exists u, w in the primary set and $R_{vw} \ge b_2 R_{uw}$
- Remove this set from *H*

Results

- Global alignment of multiple protein-protein interaction
 networks
 - Yeast, human, fly, mouse, worm
- Assess functional coherence of predicted functional orthologs

Alignment results of five PPI networks

- Common subgraph has 1,663 edges supported by at least 2 networks and 157 edges by at least 3
- Very few edges from all species
 - It is possible that the networks are too noisy and incomplete
- But this is much better than a pure sequence only mapping
 - 509 edges would be identified in two or more species with 40 in three species

IsoRank framework is robust to noisy data

Experiments done on a PPI network of 200 nodes. Randomized graphs obtained by swapping pairs of edges

Yeast-fly GNA exhibit subgraphs of different topologies

IsoRank predictions of functional orthology

- The output of IsoRank can be used to define "functional orthologs" (FO)
- Of the 86,932 proteins from the five species, 59,539 (68.5%) of the proteins were matched to at least one protein in another species (i.e., had at least one FO).
- In contrast, sequence orthology maps only 38.5% of the proteins.

How good are functional orthologs?

- Use functional coherence measure
 - Obtain sets of orthologous proteins (each set is made up of proteins from different species) and select sets with the majority(80%) of the proteins with a GO annotation
 - For each such set P,
 - Collect all GO terms associated with the proteins in P.
 - Compute a similarity between each pair of GO terms based on the similarity of the gene content of each term (this is the Jaccard coefficient of the annotated proteins)
 - Take a median of all pairs of similarity
 - Functional coherence for the input ortholog list is the mean of the coherence per set

Functional orthologs from IsoRank are comparable to sequence based orthology

- Functional coherence for IsoRank: 0.22
- Functional coherence for Homologene: 0.223
- Functional coherence for InParanoid: 0.206

Summary

- IsoRank is a global alignment algorithm
- How does it differ from PATHBLAST?
 - Identifies different types of subnetworks
 - Uses a global alignment
 - Applicable to multiple networks
- How is it similar Sharan 2004?
 - Search and score of subnetworks is done similarly