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Global Network Alignment stated formally

• Finding the optimal global alignment between two or more 
PPI networks, aims to find a correspondence between nodes 
and edges of the input networks that maximizes the overall 
‘‘match’’ between the networks

• Every node in one network must be mapped to another node 
in the other network or marked as a gap

• That is, we want to find a single best mapping covering all 
nodes in the graph

• Furthermore, for >2 species, this alignment must be transitive
– If a1 is mapped to a2 in species 2, and a2 is mapped to a3

and a3’ in species 3, a1 must be mapped to a3 and a3’.



Motivation of the IsoRank algorithm

• Previous approaches have used a local and pairwise alignment 
approaches

• Limit the possible node mappings between species and then 
bring in networks to do the alignment
– “..Lacks the flexibility of producing node-pairings that 

diverge from sequence-only predictions.”



IsoRank overview

• An algorithm for inferring the global alignment of more than 
two networks

• Unlike existing algorithms which use sequence similarity first 
to define the mapping, IsoRank simultaneously uses both the 
network and the sequence similarity to define node mappings

• Key intuition: a protein in one network is a good match to a 
protein in another network if it is similar in sequence and its 
network neighborhood

• Such proteins are said to be “functionally similar” to each 
other across species

• The IsoRank algorithm uses eigenvalue problem to estimate 
the functional similarity score



Notation

• Gk=(Vk,Ek) is a graph of |Vk| vertices and |Ek| edges for species 
k. 

• Gk corresponds to a protein-protein interaction (PPI) network 
for a species k

• Edges can be weighted : w(e) denotes weight of an edge e
• For a node i in Vk, N(i) denotes the neighbors of i in Gk

• For two graphs G1 and G2, R is a |V1| by |V2| matrix where 
each entry Rij specifies the functional similarity score of 
protein node j in G1 and node j in G2.



Two Key steps IsoRank algorithm

• Estimate the functional similarity score R that is based on 
network and sequence similarity for all pairs of networks

• Use R to define node mappings and to identify subgraphs that 
represents the conserved parts of the network



Pairwise Global Network Alignment with 
IsoRank

• Let us first consider the simple case of aligning two graphs, G1
and G2

• IsoRank has two steps
– Estimate the functional similarity score Rij that is based on 

network and sequence similarity of proteins i in V1 and j in
V2

– Use R to define node mappings and to identify subgraphs
that represents the conserved parts of the network
• This uses a greedy approach that starts with a seed 

from a bi-partite graph and grows it until no more 
edges can be added



Defining the functional similarity Rij
• We will first consider the simple case of estimating this from 

the networks alone
• Assume the networks are unweighted
• Rij is computed for every pair of nodes i and j where i is in V1

and j in V2

• Rij should capture a similarity based on i and j’s 
neighborhoods in G1 and G2 respectively

Rij =
X

u2N(i)

X

v2N(j)

1

|N(u)||N(v)|Ruv

Neighbors of i



Defining the functional similarity Rij for 
weighted graphs

• Let w(i,u) denote the weight of edge (i,u) in G1, 0≤w(i,u) ≤1
• Let w(j,v) denote the weight of edge (j,v) in G1

• Here Rij is defined as

Rij =
X

u2N(i)

X

v2N(j)

w(i, u)w(j, v)P
p2N(u) w(u, p)

P
q2N(v) w(v, p)

Ruv

Instead of the size of the neighborhood, we use a weighted 
sum over all nodes in the neighborhood of u 



Computing Rijwith two 5 node networks

!N(u)!!N(v)! possible matches between its neighbors. We note that
these equations also capture nonlocal influences on Rij: The score
Rij depends on the score of neighbors of i and j and the latter, in turn,
depend on the neighbors of the neighbors and so on. The extension
to the weighted-graph case is intuitive: The support offered to
neighbors is then in proportion to the edge weights (Eq. 2). Clearly,
Eq. 1 is a special case of Eq. 2 when all of the edge weights are 1.

In Eq. 3, we rewrite Eq. 1 in matrix form. Here, A is a !V1!V2! !
!V1!V2! matrix and A[i, j][u, v] refers to the entry at the row (i, j) and
column (u, v) (the row and column are doubly indexed). Eq. 2 can
be similarly rewritten.

R ! ¥ Rij ! "
u!N"i#

"
v!N"j#

1
!N"u#!!N"v#

Ruv i ! V1, j ! V2, [1]

Rij ! "
u!N"i#

"
v!N"j#

w"i, u#w" j, v#"r!N"u# w"r, u# "q!N"v# w"q, v#
Ruv

i ! V1, j ! V2, [2]

R ! AR, where

A$ i , j%$u , v% ! # 1
!N"u# ! !N"v# !

if " i , u# ! E1, " j , v# ! E2

0 otherwise

.

[3]

The vector R is determined by finding a nontrivial solution to these
equations (a trivial solution is to set all Rij’s to zero). In Fig. 1, we
illustrate, on a pair of small graphs, how the equations capture the
graph topology; their solution also confirms our intuition: node
pairs that match well have higher Rij scores.

Computing R (Solving the Constraints). In general, to solve the above
equations, we observe that these equations describe an eigenvalue
problem (see Eq. 3). The value of R we are interested in is the
principal eigenvector of A. Note that A is a stochastic matrix (i.e.,
each of its columns sums to 1) so that the principal eigenvalue is 1.
In the case of biological networks, A is typically a very large matrix
(& 108 ! 108 for fly-vs.-yeast GNA); however, A and R are both very
sparse, so R can be efficiently computed by iterative techniques. We
use the power method, an iterative technique often used for large
eigenvalue problems. The power method repeatedly updates R as
per the update rule:

R"k " 1# 4 AR"k#/!AR"k#!, [4]

where R(k) is the value of the vector R in the k-th iteration and has
unit norm. In case of a stochastic matrix (like A), the power method
will probably converge to the principal eigenvector.

The incorporation of other information, e.g., BLAST scores, into
this model is straightforward. Let Bij denote the score between i and
j; for instance, Bij can be the Bit-Score of the BLAST alignment
between sequences i and j. Bij need not even be numeric—they can
be binary. Let B be the vector of Bij. We first normalize B: E ' B/!B!
so that all sequence similarity scores sum to 1. The eigenvalue
equation is then modified to a convex combination of network and
sequence similarity scores:

R ! #AR " "1 $ ##E, 0 % # % 1, or

R ! "#A " "1 $ ##E1T#R .
[5]

Eq. 5 also describes an eigenvalue problem and is solved by similar
techniques as Eq. 3 (here, we use !R!1 ' 1). In this computation, #
controls the weight of the network data (relative to sequence data),
e.g., # ' 0 implies no network data will be used, whereas # ' 1
indicates only network data will be used. Tuning # allows us to
analyze the relative importance of PPI data in finding the optimal
alignment. The parameter # also controls the speed of convergence
of this stage, with the algorithm converging in O(log(1/1-#))
iterations.

Multiple GNA. When the input consists of more than two networks,
we repeat the above process for every pair of input networks, i.e.,
we compute the functional similarity scores R for every pair of input
networks.

Extracting Node Mappings from R. At this stage in the algorithm, we
have a score Rij for every pair of nodes not from the same network;
typically, for more than 99% of node-pairs, this score is zero. This
score indicates how good a match i and j are for each other when
considering both network and sequence data. To extract a node
mapping from these scores, we need to identify pairs of nodes that
have high Rij scores, at the same time ensuring that the mapping
obeys transitive closure; i.e., if it contains the pairs (a, b) and (b, c),
then it also contains (a, c). The node mappings can be done in two
ways.
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Fig. 1. Intuition behind the algorithm: Here we show, for a pair of small, isomorphic graphs how the vector of pairwise scores R is computed. For each possible
pairing (i,j) between nodes of the two graphs, we compute the score R ij. The scores are constrained to depend on the scores from the neighborhood as described
by Eq. 1. Only a partial set of constraints is shown here. The scores R ij are computed by starting with random values for R ij and by using the recursive methods
described below to find values that satisfy these constraints; here we show the vector R reshaped as a table for ease of viewing (empty cells indicate a value of
zero). The second stage of our algorithm uses R to extract likely matches. One strategy could be: choose the highest-scoring pair, output it, remove the
corresponding row and column from the table, and repeat. This strategy will return the correct mapping {(a, a(), (b , b (), (c, c(), (d , d (), (e, e()}. The {d , e}3 {d ,
e} mapping is ambiguous; using sequence information, such ambiguities can be resolved.
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Computing Rijwith two 5 node networks

!N(u)!!N(v)! possible matches between its neighbors. We note that
these equations also capture nonlocal influences on Rij: The score
Rij depends on the score of neighbors of i and j and the latter, in turn,
depend on the neighbors of the neighbors and so on. The extension
to the weighted-graph case is intuitive: The support offered to
neighbors is then in proportion to the edge weights (Eq. 2). Clearly,
Eq. 1 is a special case of Eq. 2 when all of the edge weights are 1.
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The vector R is determined by finding a nontrivial solution to these
equations (a trivial solution is to set all Rij’s to zero). In Fig. 1, we
illustrate, on a pair of small graphs, how the equations capture the
graph topology; their solution also confirms our intuition: node
pairs that match well have higher Rij scores.

Computing R (Solving the Constraints). In general, to solve the above
equations, we observe that these equations describe an eigenvalue
problem (see Eq. 3). The value of R we are interested in is the
principal eigenvector of A. Note that A is a stochastic matrix (i.e.,
each of its columns sums to 1) so that the principal eigenvalue is 1.
In the case of biological networks, A is typically a very large matrix
(& 108 ! 108 for fly-vs.-yeast GNA); however, A and R are both very
sparse, so R can be efficiently computed by iterative techniques. We
use the power method, an iterative technique often used for large
eigenvalue problems. The power method repeatedly updates R as
per the update rule:

R"k " 1# 4 AR"k#/!AR"k#!, [4]

where R(k) is the value of the vector R in the k-th iteration and has
unit norm. In case of a stochastic matrix (like A), the power method
will probably converge to the principal eigenvector.

The incorporation of other information, e.g., BLAST scores, into
this model is straightforward. Let Bij denote the score between i and
j; for instance, Bij can be the Bit-Score of the BLAST alignment
between sequences i and j. Bij need not even be numeric—they can
be binary. Let B be the vector of Bij. We first normalize B: E ' B/!B!
so that all sequence similarity scores sum to 1. The eigenvalue
equation is then modified to a convex combination of network and
sequence similarity scores:

R ! #AR " "1 $ ##E, 0 % # % 1, or

R ! "#A " "1 $ ##E1T#R .
[5]

Eq. 5 also describes an eigenvalue problem and is solved by similar
techniques as Eq. 3 (here, we use !R!1 ' 1). In this computation, #
controls the weight of the network data (relative to sequence data),
e.g., # ' 0 implies no network data will be used, whereas # ' 1
indicates only network data will be used. Tuning # allows us to
analyze the relative importance of PPI data in finding the optimal
alignment. The parameter # also controls the speed of convergence
of this stage, with the algorithm converging in O(log(1/1-#))
iterations.

Multiple GNA. When the input consists of more than two networks,
we repeat the above process for every pair of input networks, i.e.,
we compute the functional similarity scores R for every pair of input
networks.

Extracting Node Mappings from R. At this stage in the algorithm, we
have a score Rij for every pair of nodes not from the same network;
typically, for more than 99% of node-pairs, this score is zero. This
score indicates how good a match i and j are for each other when
considering both network and sequence data. To extract a node
mapping from these scores, we need to identify pairs of nodes that
have high Rij scores, at the same time ensuring that the mapping
obeys transitive closure; i.e., if it contains the pairs (a, b) and (b, c),
then it also contains (a, c). The node mappings can be done in two
ways.
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Fig. 1. Intuition behind the algorithm: Here we show, for a pair of small, isomorphic graphs how the vector of pairwise scores R is computed. For each possible
pairing (i,j) between nodes of the two graphs, we compute the score R ij. The scores are constrained to depend on the scores from the neighborhood as described
by Eq. 1. Only a partial set of constraints is shown here. The scores R ij are computed by starting with random values for R ij and by using the recursive methods
described below to find values that satisfy these constraints; here we show the vector R reshaped as a table for ease of viewing (empty cells indicate a value of
zero). The second stage of our algorithm uses R to extract likely matches. One strategy could be: choose the highest-scoring pair, output it, remove the
corresponding row and column from the table, and repeat. This strategy will return the correct mapping {(a, a(), (b , b (), (c, c(), (d , d (), (e, e()}. The {d , e}3 {d ,
e} mapping is ambiguous; using sequence information, such ambiguities can be resolved.
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Similarly for the other node pairs

!N(u)!!N(v)! possible matches between its neighbors. We note that
these equations also capture nonlocal influences on Rij: The score
Rij depends on the score of neighbors of i and j and the latter, in turn,
depend on the neighbors of the neighbors and so on. The extension
to the weighted-graph case is intuitive: The support offered to
neighbors is then in proportion to the edge weights (Eq. 2). Clearly,
Eq. 1 is a special case of Eq. 2 when all of the edge weights are 1.

In Eq. 3, we rewrite Eq. 1 in matrix form. Here, A is a !V1!V2! !
!V1!V2! matrix and A[i, j][u, v] refers to the entry at the row (i, j) and
column (u, v) (the row and column are doubly indexed). Eq. 2 can
be similarly rewritten.

R ! ¥ Rij ! "
u!N"i#

"
v!N"j#

1
!N"u#!!N"v#

Ruv i ! V1, j ! V2, [1]

Rij ! "
u!N"i#

"
v!N"j#

w"i, u#w" j, v#"r!N"u# w"r, u# "q!N"v# w"q, v#
Ruv

i ! V1, j ! V2, [2]

R ! AR, where

A$ i , j%$u , v% ! # 1
!N"u# ! !N"v# !

if " i , u# ! E1, " j , v# ! E2

0 otherwise

.

[3]

The vector R is determined by finding a nontrivial solution to these
equations (a trivial solution is to set all Rij’s to zero). In Fig. 1, we
illustrate, on a pair of small graphs, how the equations capture the
graph topology; their solution also confirms our intuition: node
pairs that match well have higher Rij scores.

Computing R (Solving the Constraints). In general, to solve the above
equations, we observe that these equations describe an eigenvalue
problem (see Eq. 3). The value of R we are interested in is the
principal eigenvector of A. Note that A is a stochastic matrix (i.e.,
each of its columns sums to 1) so that the principal eigenvalue is 1.
In the case of biological networks, A is typically a very large matrix
(& 108 ! 108 for fly-vs.-yeast GNA); however, A and R are both very
sparse, so R can be efficiently computed by iterative techniques. We
use the power method, an iterative technique often used for large
eigenvalue problems. The power method repeatedly updates R as
per the update rule:

R"k " 1# 4 AR"k#/!AR"k#!, [4]

where R(k) is the value of the vector R in the k-th iteration and has
unit norm. In case of a stochastic matrix (like A), the power method
will probably converge to the principal eigenvector.

The incorporation of other information, e.g., BLAST scores, into
this model is straightforward. Let Bij denote the score between i and
j; for instance, Bij can be the Bit-Score of the BLAST alignment
between sequences i and j. Bij need not even be numeric—they can
be binary. Let B be the vector of Bij. We first normalize B: E ' B/!B!
so that all sequence similarity scores sum to 1. The eigenvalue
equation is then modified to a convex combination of network and
sequence similarity scores:

R ! #AR " "1 $ ##E, 0 % # % 1, or

R ! "#A " "1 $ ##E1T#R .
[5]

Eq. 5 also describes an eigenvalue problem and is solved by similar
techniques as Eq. 3 (here, we use !R!1 ' 1). In this computation, #
controls the weight of the network data (relative to sequence data),
e.g., # ' 0 implies no network data will be used, whereas # ' 1
indicates only network data will be used. Tuning # allows us to
analyze the relative importance of PPI data in finding the optimal
alignment. The parameter # also controls the speed of convergence
of this stage, with the algorithm converging in O(log(1/1-#))
iterations.

Multiple GNA. When the input consists of more than two networks,
we repeat the above process for every pair of input networks, i.e.,
we compute the functional similarity scores R for every pair of input
networks.

Extracting Node Mappings from R. At this stage in the algorithm, we
have a score Rij for every pair of nodes not from the same network;
typically, for more than 99% of node-pairs, this score is zero. This
score indicates how good a match i and j are for each other when
considering both network and sequence data. To extract a node
mapping from these scores, we need to identify pairs of nodes that
have high Rij scores, at the same time ensuring that the mapping
obeys transitive closure; i.e., if it contains the pairs (a, b) and (b, c),
then it also contains (a, c). The node mappings can be done in two
ways.
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Fig. 1. Intuition behind the algorithm: Here we show, for a pair of small, isomorphic graphs how the vector of pairwise scores R is computed. For each possible
pairing (i,j) between nodes of the two graphs, we compute the score R ij. The scores are constrained to depend on the scores from the neighborhood as described
by Eq. 1. Only a partial set of constraints is shown here. The scores R ij are computed by starting with random values for R ij and by using the recursive methods
described below to find values that satisfy these constraints; here we show the vector R reshaped as a table for ease of viewing (empty cells indicate a value of
zero). The second stage of our algorithm uses R to extract likely matches. One strategy could be: choose the highest-scoring pair, output it, remove the
corresponding row and column from the table, and repeat. This strategy will return the correct mapping {(a, a(), (b , b (), (c, c(), (d , d (), (e, e()}. The {d , e}3 {d ,
e} mapping is ambiguous; using sequence information, such ambiguities can be resolved.
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to the weighted-graph case is intuitive: The support offered to
neighbors is then in proportion to the edge weights (Eq. 2). Clearly,
Eq. 1 is a special case of Eq. 2 when all of the edge weights are 1.

In Eq. 3, we rewrite Eq. 1 in matrix form. Here, A is a !V1!V2! !
!V1!V2! matrix and A[i, j][u, v] refers to the entry at the row (i, j) and
column (u, v) (the row and column are doubly indexed). Eq. 2 can
be similarly rewritten.

R ! ¥ Rij ! "
u!N"i#

"
v!N"j#

1
!N"u#!!N"v#

Ruv i ! V1, j ! V2, [1]

Rij ! "
u!N"i#

"
v!N"j#

w"i, u#w" j, v#"r!N"u# w"r, u# "q!N"v# w"q, v#
Ruv

i ! V1, j ! V2, [2]

R ! AR, where

A$ i , j%$u , v% ! # 1
!N"u# ! !N"v# !

if " i , u# ! E1, " j , v# ! E2

0 otherwise

.

[3]

The vector R is determined by finding a nontrivial solution to these
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use the power method, an iterative technique often used for large
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R"k " 1# 4 AR"k#/!AR"k#!, [4]

where R(k) is the value of the vector R in the k-th iteration and has
unit norm. In case of a stochastic matrix (like A), the power method
will probably converge to the principal eigenvector.

The incorporation of other information, e.g., BLAST scores, into
this model is straightforward. Let Bij denote the score between i and
j; for instance, Bij can be the Bit-Score of the BLAST alignment
between sequences i and j. Bij need not even be numeric—they can
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techniques as Eq. 3 (here, we use !R!1 ' 1). In this computation, #
controls the weight of the network data (relative to sequence data),
e.g., # ' 0 implies no network data will be used, whereas # ' 1
indicates only network data will be used. Tuning # allows us to
analyze the relative importance of PPI data in finding the optimal
alignment. The parameter # also controls the speed of convergence
of this stage, with the algorithm converging in O(log(1/1-#))
iterations.

Multiple GNA. When the input consists of more than two networks,
we repeat the above process for every pair of input networks, i.e.,
we compute the functional similarity scores R for every pair of input
networks.

Extracting Node Mappings from R. At this stage in the algorithm, we
have a score Rij for every pair of nodes not from the same network;
typically, for more than 99% of node-pairs, this score is zero. This
score indicates how good a match i and j are for each other when
considering both network and sequence data. To extract a node
mapping from these scores, we need to identify pairs of nodes that
have high Rij scores, at the same time ensuring that the mapping
obeys transitive closure; i.e., if it contains the pairs (a, b) and (b, c),
then it also contains (a, c). The node mappings can be done in two
ways.
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Fig. 1. Intuition behind the algorithm: Here we show, for a pair of small, isomorphic graphs how the vector of pairwise scores R is computed. For each possible
pairing (i,j) between nodes of the two graphs, we compute the score R ij. The scores are constrained to depend on the scores from the neighborhood as described
by Eq. 1. Only a partial set of constraints is shown here. The scores R ij are computed by starting with random values for R ij and by using the recursive methods
described below to find values that satisfy these constraints; here we show the vector R reshaped as a table for ease of viewing (empty cells indicate a value of
zero). The second stage of our algorithm uses R to extract likely matches. One strategy could be: choose the highest-scoring pair, output it, remove the
corresponding row and column from the table, and repeat. This strategy will return the correct mapping {(a, a(), (b , b (), (c, c(), (d , d (), (e, e()}. The {d , e}3 {d ,
e} mapping is ambiguous; using sequence information, such ambiguities can be resolved.
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!N(u)!!N(v)! possible matches between its neighbors. We note that
these equations also capture nonlocal influences on Rij: The score
Rij depends on the score of neighbors of i and j and the latter, in turn,
depend on the neighbors of the neighbors and so on. The extension
to the weighted-graph case is intuitive: The support offered to
neighbors is then in proportion to the edge weights (Eq. 2). Clearly,
Eq. 1 is a special case of Eq. 2 when all of the edge weights are 1.

In Eq. 3, we rewrite Eq. 1 in matrix form. Here, A is a !V1!V2! !
!V1!V2! matrix and A[i, j][u, v] refers to the entry at the row (i, j) and
column (u, v) (the row and column are doubly indexed). Eq. 2 can
be similarly rewritten.

R ! ¥ Rij ! "
u!N"i#

"
v!N"j#

1
!N"u#!!N"v#

Ruv i ! V1, j ! V2, [1]

Rij ! "
u!N"i#

"
v!N"j#

w"i, u#w" j, v#"r!N"u# w"r, u# "q!N"v# w"q, v#
Ruv

i ! V1, j ! V2, [2]

R ! AR, where

A$ i , j%$u , v% ! # 1
!N"u# ! !N"v# !

if " i , u# ! E1, " j , v# ! E2

0 otherwise

.

[3]

The vector R is determined by finding a nontrivial solution to these
equations (a trivial solution is to set all Rij’s to zero). In Fig. 1, we
illustrate, on a pair of small graphs, how the equations capture the
graph topology; their solution also confirms our intuition: node
pairs that match well have higher Rij scores.

Computing R (Solving the Constraints). In general, to solve the above
equations, we observe that these equations describe an eigenvalue
problem (see Eq. 3). The value of R we are interested in is the
principal eigenvector of A. Note that A is a stochastic matrix (i.e.,
each of its columns sums to 1) so that the principal eigenvalue is 1.
In the case of biological networks, A is typically a very large matrix
(& 108 ! 108 for fly-vs.-yeast GNA); however, A and R are both very
sparse, so R can be efficiently computed by iterative techniques. We
use the power method, an iterative technique often used for large
eigenvalue problems. The power method repeatedly updates R as
per the update rule:

R"k " 1# 4 AR"k#/!AR"k#!, [4]

where R(k) is the value of the vector R in the k-th iteration and has
unit norm. In case of a stochastic matrix (like A), the power method
will probably converge to the principal eigenvector.

The incorporation of other information, e.g., BLAST scores, into
this model is straightforward. Let Bij denote the score between i and
j; for instance, Bij can be the Bit-Score of the BLAST alignment
between sequences i and j. Bij need not even be numeric—they can
be binary. Let B be the vector of Bij. We first normalize B: E ' B/!B!
so that all sequence similarity scores sum to 1. The eigenvalue
equation is then modified to a convex combination of network and
sequence similarity scores:

R ! #AR " "1 $ ##E, 0 % # % 1, or

R ! "#A " "1 $ ##E1T#R .
[5]

Eq. 5 also describes an eigenvalue problem and is solved by similar
techniques as Eq. 3 (here, we use !R!1 ' 1). In this computation, #
controls the weight of the network data (relative to sequence data),
e.g., # ' 0 implies no network data will be used, whereas # ' 1
indicates only network data will be used. Tuning # allows us to
analyze the relative importance of PPI data in finding the optimal
alignment. The parameter # also controls the speed of convergence
of this stage, with the algorithm converging in O(log(1/1-#))
iterations.

Multiple GNA. When the input consists of more than two networks,
we repeat the above process for every pair of input networks, i.e.,
we compute the functional similarity scores R for every pair of input
networks.

Extracting Node Mappings from R. At this stage in the algorithm, we
have a score Rij for every pair of nodes not from the same network;
typically, for more than 99% of node-pairs, this score is zero. This
score indicates how good a match i and j are for each other when
considering both network and sequence data. To extract a node
mapping from these scores, we need to identify pairs of nodes that
have high Rij scores, at the same time ensuring that the mapping
obeys transitive closure; i.e., if it contains the pairs (a, b) and (b, c),
then it also contains (a, c). The node mappings can be done in two
ways.
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Fig. 1. Intuition behind the algorithm: Here we show, for a pair of small, isomorphic graphs how the vector of pairwise scores R is computed. For each possible
pairing (i,j) between nodes of the two graphs, we compute the score R ij. The scores are constrained to depend on the scores from the neighborhood as described
by Eq. 1. Only a partial set of constraints is shown here. The scores R ij are computed by starting with random values for R ij and by using the recursive methods
described below to find values that satisfy these constraints; here we show the vector R reshaped as a table for ease of viewing (empty cells indicate a value of
zero). The second stage of our algorithm uses R to extract likely matches. One strategy could be: choose the highest-scoring pair, output it, remove the
corresponding row and column from the table, and repeat. This strategy will return the correct mapping {(a, a(), (b , b (), (c, c(), (d , d (), (e, e()}. The {d , e}3 {d ,
e} mapping is ambiguous; using sequence information, such ambiguities can be resolved.
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Only a partial set of scores are shownG1 G2



Rewriting R in matrix form

• Let A be a matrix with |V1|*|V2| rows and |V1|*|V2| columns
• Each row of A[i,j] corresponds to a pair of nodes (i,j) where i

is from V1 and j is from V2
• Each column of A corresponds to a pair of nodes (u,v) where u

is from V1 and v is from  V2

• In matrix form we have

• Thus R is the eigen vector of A, with eigen value 1
R = AR

A[i, j][u, v] =

(
1

|N(u)||N(v)| , if(i, u) 2 E1, (j, v) 2 E2

0 otherwise



R is the eigen vector of a specific matrix

a a’

a b’

a c’
b a’
b b’

0 0 0 0 0.25 0 0 0 0
0 0 0 0.5 0 0.5 0 0 0
0 0 0 0 0.25 0 0 0 0
0 0.5 0 0 0 0 0 0.5 0
1 0 1 0 0 0 1 0 1
0 0.5 0 0 0 0 0 0.5 0
0 0 0 0 0.25 0 0 0 0
0 0 0 0.5 0 0.5 0 0 0
0 0 0 0 0.25 0 0 0 0

c a’
c b’

c c’

b c’

a a’ a b’ a c’ b a’ b b’ b c’ c a’ c b’ c c’

a

b

c

a’

b’

C’ A

Raa’

Rab’

Rac’

Rba’

Rbb’

Rbc’

Rca’

Rcb’

Rcc’

a a’

a b’

a c’
b a’
b b’

c a’
c b’

c c’

b c’

R

A[i, j][u, v] =

(
1

|N(u)||N(v)| , if(i, u) 2 E1, (j, v) 2 E2

0 otherwise



R is the eigen vector of A
a

b

c

a’

b’

c’

Rbb0 =
1

|N(a)||N(a0)|Raa0 +
1

|N(a)||N(c0)|Rac0

+
1

|N(c)||N(a0)|Rca0 +
1

|N(c)||N(c0)|Rcc0

Rbb0 = Raa0 +Rac0 +Rca0 +Rcc0



Rbb’ from the matrix form

• Let’s check if we get the same answers

a a’

a b’

a c’
b a’
b b’

0 0 0 0 0.25 0 0 0 0
0 0 0 0.5 0 0.5 0 0 0
0 0 0 0 0.25 0 0 0 0
0 0.5 0 0 0 0 0 0.5 0
1 0 1 0 0 0 1 0 1
0 0.5 0 0 0 0 0 0.5 0
0 0 0 0 0.25 0 0 0 0
0 0 0 0.5 0 0.5 0 0 0
0 0 0 0 0.25 0 0 0 0

c a’
c b’

c c’

b c’

a a’ a b’ a c’ b a’ b b’ b c’ c a’ c b’ c c’
Raa’
Rab’
Rac’
Rba’
Rbb’
Rbc’
Rca’
Rcb’
Rcc’

Raa’
Rab’
Rac’
Rba’
Rbb’
Rbc’
Rca’
Rcb’
Rcc’

a a’

a b’

a c’
b a’
b b’

c a’
c b’

c c’

b c’

Rnew
bb0 = Rold

aa0 +Rold
ac0 +Rold

ca0 +Rold
cc0

Rnew Rold



Estimating R

• This is an eigen value problem
• A is a stochastic matrix (columns of A sum to 1)
• R can be found using the power method
• The power method repeatedly updates R at iteration k+1 as 

follows

R(k + 1) = AR(k)/|AR(k)|



Adding sequence similarity to R

• We can integrate other types of information in the same 
framework

• Let B be a |V1|*|V2| matrix where each entry Bij is the 
sequence similarity of i and j

• Let E be the normalized version of B, E=B/BB|
• R can be redefined as

• This too can be solved with an eigen value problem
R = ↵AR+ (1� ↵)E

R = ↵AR+ (1� ↵)E1TR

R = (↵A+ (1� ↵)E1T )R

1T is a vector of all ones 



Multiple GNA

• Extension to more than two networks is straightforward
• For every pair of graphs Gm, Gn, estimate Rmn



Two Key steps IsoRank algorithm

• Estimate the functional similarity score R that is based on 
network and sequence similarity for all pairs of networks

• Use R to define node mappings and to identify subgraphs that 
represents the aligned parts of the network



Extracting the aligned parts

• Once R is estimated for all pairs of networks, we need to 
extract out node pairs with the highest values
– 99% of the entries of R will be zero

• Two ways to do this
– One to One mapping
• For each node, map it to at most one other node
• Computationally efficient but ignores gene duplications

– Many to Many mapping



Many to many mapping

• The goal here is to extract groups with multiple genes from 
the same species

• Each group represents an functional similarity between genes 
of one species to genes of another species

• Each set has the following property
– Each gene in the set has high pairwise R scores with most 

other genes in the set
– there are no genes outside each set with this property 
– there are a limited number of genes from each species 

• Identified via greedy algorithm



Greedy algorithm for finding aligned parts
• Construct a k-partite graph. 
– Each part k has nodes from each species
– Allow nodes to interact between different parts

• Extract a high confidence edge expand to connected 
neighbors

3-partite

Species 1

Species 2

Species 3



Greedy algorithm to find many-many 
node mappings

• Input k-partite graph H, b1, b2, r
• Repeat until no more edges are in H

– Select an edge with the highest score (i,j), where i is G1 and j is in G2 to 
initialize a match-set

– Grow (i,j) to create the primary match-set. This is the max k-partite 
matching

– Primary match set is a set of nodes with at most 1 node from a species 
using b1 to control the similarity
• For all other graphs G3.. Gk, add a node l if two conditions hold

(i) Ril and Rjl are the highest scores between l and any node in G1
and G2, respectively and, 

(ii) the scores Ril ≥b1Rij, and Rjl ≥b1Rij, 

• Add upto (r-1) nodes v based on b2, such that there exists u, w in the primary 
set and Rvw≥b2Ruw

• Remove this set from H



Results

• Global alignment of multiple protein-protein interaction 
networks
– Yeast, human, fly, mouse, worm

• Assess functional coherence of predicted functional orthologs



Alignment results of five PPI networks

• Common subgraph has 1,663 edges supported by at least 2 
networks and 157 edges by at least 3

• Very few edges from all species
– It is possible that the networks are too noisy and 

incomplete
• But this is much better than a pure sequence only mapping
– 509 edges would be identified in two or more species with 

40 in three species



IsoRank framework is robust to noisy data

Experiments done on a PPI network of 200 nodes. Randomized graphs 
obtained by swapping pairs of edges

Fig. S2. Effect of error on algorithm’s performance: the solid (red) curve slightly overestimates the algorithm’s performance, while the dashed (blue) curve
grossly underestimates it.
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Yeast-fly GNA exhibit subgraphs of 
different topologies

automated approach where they compare many ortholog lists to
identify the list(s) with the best overall agreement with the remain-
ing ones. However, this approach only measures mutual agreement
between the orthology lists, not if they each make predictions which
are biologically plausible.

Our direct, automated measure of ortholog quality is based on
using functional information. The intuition here is simple: Given an
ortholog list, we select those sets of orthologous proteins for which
functional information is available for many members of the set; this
is measured by the presence/absence of GO annotation. A combi-
nation of GO annotation and PPI data has been explored before,
for example, in predicting functions of unannotated proteins (21).
Usually, the number of such selected sets is large enough to
generate robust statistics (see SI Text). For each selected set, we
collect all of the Gene Ontology (GO) terms corresponding to
proteins in it. We excluded GO terms describing cellular compart-
ment or location; we believe that GO terms describing molecular
function or biological process are appropriate for capturing the
protein’s functional role. We evaluated whether these GO terms
describe similar functions, computing a coherence score for the set.
Higher scores imply higher coherence, indicating that the genes in
the set all perform similar functions. Finally, an aggregate score
(across all sets) is computed (see SI Text for details).

The functional coherence of our predicted functional orthologs
is comparable with that of Homologene and Inparanoid predic-
tions. The functional coherence scores are: 0.220 (our predictions),
0.223 (Homologene), and 0.206 (mean score across Inparanoid’s
pairwise ortholog sets). Homologene’s slightly better score may
partly be due to its use of data from many species (!5). At the same
time, our predicted FOs do not deviate drastically from sequence-
only predictions: 66% of protein-pairs grouped together by Inpara-
noid are also grouped together by our approach.

Case-study: Functional Orthologs between Yeast and Fly. In relative
terms, the S. cerevisiae and D. melanogaster networks are two of the
largest PPI networks currently available. A pairwise comparison of
these networks is interesting because the impact of including PPI
data may be more apparent here (recall that in the 5-species GNA
described earlier, some of the species had relatively small PPI
datasets). In performing this alignment, we focused on extracting
one-to-one mappings between yeast and fly proteins; i.e., for each
protein we searched for the one protein in the other species most
similar to it.

Although, this approach does not adequately address the issues
of gene duplication, the discovery of the single, closest functional
ortholog between the species is of practical value (e.g., when
replicating experiments done in yeast, in fly, and vice versa).

To find this mapping, we computed functional similarity scores
R and then used a bipartite matching algorithm to find the
one-to-one mapping (see SI Text for more details). The common
subgraph corresponding to the global alignment between the yeast
and fly PPI networks has 1,420 edges (where ! " 0.6; the criterion

for choosing ! is described in SI Text). Although, this still represents
a small fraction of the individual network sizes, it is relatively large
when compared with the size of 5-species GNA.

When we interpret the mapping between the two species as
functional orthologs, the IsoRank results compare favorably with
Bandyopadhyay et al.’s results. The latter method was the first to
systematically compute functional orthologs using PPI data; it uses
sequence matches and then local network alignment scores to give
probabilistic scores to node pairs. Our method has the advantage
that it guarantees the predicted sets of FOs will be mutually
consistent and achieves higher genome coverage—PathBlast’s
yeast-vs.-fly local alignments cover only 20.56% of the genes
covered by our global alignment. In many cases the FO predictions
between the two methods are partially or fully consistent (see Table
S2), i.e., FOs predicted by our method are also the likely FOs
predicted by their method. In a few other cases, predictions of the
two methods differ. At least in some such cases, our method’s
predictions are better supported by evidence. For example, our
method predicts Bic (in fly) as the FO of Egd (in yeast). The method
of Bandyopadhyay et al. (9) is ambiguous here, because Bcd, its
predicted FO of Egd, is also predicted as a FO of Btt1. Furthermore,
there is experimental evidence that both Egd and Bic are compo-
nents of the Nascent Polypeptide-Associated Complex (NAC) in
their respective species, lending support to our prediction; in
contrast, Bcd does not seem to be involved in NAC.

Discussion
Over the last few years, the corpus of PPI data has increased at an
exponential size and the rapid pace of data accumulation continues.
Taking advantage of these large PPI datasets will pose significant
computational challenges. We believe that two particularly impor-
tant classes of problems are likely to be: (1) understanding the
structure of these networks, i.e., what general graph-theoretic
characteristics do these graphs share and what are the biological
implications of the commonalities; and (2) combining this data with
other biological datasets to gain insights not accessible from indi-
vidual datasets. Here, we have attempted to address certain aspects
of both these problems.

The IsoRank algorithm presented in this article performs a
simultaneous global alignment of multiple PPI networks. The
global alignment allows the comparison of overall structure of
various networks, allowing us to make inferences about what is
conserved and what is not. The algorithm also provides for explicit
modeling of sequence and network scores, by means of a single
‘‘weight’’ parameter. Such combination of networks and sequence
data should improve our understanding of the functional corre-
spondence between genes/proteins across species. Another benefit
is that IsoRank is, by design, tolerant to errors in the input (e.g.,
missing or spurious edges) and takes advantage of edge confidence
scores and other biological signals (e.g., functional information),
when available (see SI Text for more details).

A B C D

Fig. 2. Selected subgraphs of the yeast-fly GNA: The node labels indicate the corresponding yeast/fly proteins (the two separated by a ‘/’). The subgraphs span
a variety of topologies and are often enriched in specific functions. For example, in D, the nodes for which at least one of the corresponding proteins is known
to be involved in ubiquitin ligase activity are shaded.
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IsoRank predictions of functional 
orthology

• The output of IsoRank can be used to define “functional 
orthologs”(FO)

• Of the 86,932 proteins from the five species, 59,539 (68.5%) 
of the proteins were matched to at least one protein in 
another species (i.e., had at least one FO). 

• In contrast, sequence orthology maps only 38.5% of the
proteins.



How good are functional orthologs?

• Use functional coherence measure
– Obtain sets of orthologous proteins (each set is made up of 

proteins from different species) and select sets with the 
majority(80%)  of the proteins with a GO annotation 

– For each such set P, 
• Collect all GO terms associated with the proteins in P.
• Compute a similarity between each pair of GO terms based 

on the similarity of the gene content of each term (this is the 
Jaccard coefficient of the annotated proteins)

• Take a median of all pairs of similarity
– Functional coherence for the input ortholog list is the mean of 

the coherence per set



Functional orthologs from IsoRank are 
comparable to sequence based orthology
• Functional coherence for IsoRank: 0.22
• Functional coherence for Homologene: 0.223
• Functional coherence for InParanoid: 0.206



Summary

• IsoRank is a global alignment algorithm
• How does it differ from PATHBLAST?
– Identifies different types of subnetworks
– Uses a global alignment
– Applicable to multiple networks

• How is it similar Sharan 2004?
– Search and score of subnetworks is done similarly 


