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Global Network Alignment stated formally

* Finding the optimal global alignment between two or more
PPl networks, aims to find a correspondence between nodes
and edges of the input networks that maximizes the overall
“match” between the networks

* Every node in one network must be mapped to another node
in the other network or marked as a gap

* Thatis, we want to find a single best mapping covering all
nodes in the graph

* Furthermore, for >2 species, this alignment must be transitive

— If a; is mapped to a, in species 2, and a, is mapped to a;
and ay in species 3, a; must be mapped to a; and as.



Motivation of the IsoRank algorithm

Previous approaches have used a local and pairwise alignment
approaches

Limit the possible node mappings between species and then
bring in networks to do the alignment

— “..Lacks the flexibility of producing node-pairings that
diverge from sequence-only predictions.”



IsoRank overview

An algorithm for inferring the global alignment of more than
two networks

Unlike existing algorithms which use sequence similarity first
to define the mapping, IsoRank simultaneously uses both the
network and the sequence similarity to define node mappings

Key intuition: a protein in one network is a good match to a
protein in another network if it is similar in sequence and its
network neighborhood

Such proteins are said to be “functionally similar” to each
other across species

The IsoRank algorithm uses eigenvalue problem to estimate
the functional similarity score



Notation

G.=(V,,E,) is a graph of |V,| vertices and |E,| edges for species
k.

G, corresponds to a protein-protein interaction (PPl) network
for a species k

Edges can be weighted : w(e) denotes weight of an edge e
Fora nodeiin V,, N(i) denotes the neighbors of i in G,

For two graphs G, and G,, Ris alV,l by | V,| matrix where
each entry R;; specifies the functional similarity score of
protein node jin G; and node j in G,.



Two Key steps IsoRank algorithm

Estimate the functional similarity score R that is based on
network and sequence similarity for all pairs of networks

Use R to define node mappings and to identify subgraphs that
represents the conserved parts of the network



Pairwise Global Network Alighment with
IsoRank

* Let us first consider the simple case of aligning two graphs, G;
and G,

* |soRank has two steps

— Estimate the functional similarity score R;; that is based on
network and sequence similarity of proteinsiin V, andj in
V;

— Use R to define node mappings and to identify subgraphs
that represents the conserved parts of the network

* This uses a greedy approach that starts with a seed
from a bi-partite graph and grows it until no more
edges can be added



Defining the functional similarity R;

We will first consider the simple case of estimating this from
the networks alone

Assume the networks are unweighted
R;; is computed for every pair of nodes i and j where iisin V;,

and]m V,
R’U/U
e Z HN (v)
u€N (1 )vGN(g)
Neighbors of i

R;; should capture a similarity based on i and s
neighborhoods in G; and G, respectively



Defining the functional similarity R for
weighted graphs
* Let w(i,u) denote the weight of edge (i,u) in G; Osw(i,u) <I

* Letw(j,v) denote the weight of edge (j,v) in G,
* Here R is defined as

Ry= Y ZZ w(i, w)w(j, v) R.

ueEN (1) vEN(J) PEN (u) w( ) ZqEN(fv) w(’U,p)

Instead of the size of the neighborhood, we use a weighted
sum over all nodes in the neighborhood of u



Computing R with two 5 node networks

N(a)={b}
N(a’)={b’}




Computing R with two 5 node networks

N(b)={a,c} G, Oa
N(b’)={a’,c’}
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Similarly for the other node pairs

Gl GZ Only a partial set of scores are shown
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Rewriting R in matrix form

Let A be a matrix with [V,I*IV,| rows and |V,I*|V,| columns

Each row of A[i,j] corresponds to a pair of nodes (i,j) where i
is from V; and j is from V,

Each column of A corresponds to a pair of nodes (u,v) where u
is from V; and vis from V,

o . L if(i,u) € By, (j,v) € By
Ali, §][u, v] = { [N ()N ()]

0 otherwise
In matrix form we have

R=AR

Thus R is the eigen vector of A, with eigen value 1



R is the eigen vector of a specific matrix

| 1 vy .
)9 U v)|”? lf(7’7u) S Elv (]7U) € Fo
LAl )u, 0] = 4 TN@ING)]

0 otherwise

O c A
aa’ ab’” ac ba’ bb” bcd ca cb’ cc
aa’ Ry | o Jo Jo Jo Jozs|o Jo Jo Jo
ab’ | Ry ab’ |0 0 0 05 |0 05 |0 0 0
¢ | Rac ac |0 0 0 0 0.25 |0 0 0 0
ba | Rba ba |0 05 |0 0 0 0 0 05 |0
bb | Rob bb' |1 0 1 0 0 0 1 0 1
bc | Rue bc |0 05 |0 0 0 0 0 05 |0
ca’ | R ca’ |0 0 0 0 0.25 |0 0 0 0
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R is the eigen vector of A

a’ 1 1
R r = Raa/ _I_ Rac’
; b " IN(a)|[N(a")) IN(a)|[N(c)]
1 1
’ + Rca’ + RCC/
@ IN(c)|[N(a"), IN(c)[[N(c)]

Rbb’ — Raa’ + Rac’ + Rca’ + Rcc’



aa
ab’

ac
b a’

R, from the matrix form

Let’s check if we get the same answers

Rnew

Raa’

Rab’

Rac ’

b b’
b c
ca

cb’

ccC

aa
ab’
ac
b a’
b b’
b c
ca

cb’

ccC

aa’ ab’ ac ba  bb bcd ca cb c(c ROld
0 0 0 0 0.25 |0 0 0 0 R,
0 0 0 0.5 0 0.5 0 0 0 R,y
0 0 0 0 0.25 |0 0 0 0 R,
0 0.5 0 0 0 0 0 0.5 0 Ry,
1 0 1 0 0 0 1 0 1 Ry
0 0.5 0 0 0 0 0 0.5 0 Ry
0 0 0 0 0.25 |0 0 0 0 R,
0 0 0 0.5 0 0.5 0 0 0 R,
0 0 0 0 0.25 |0 0 0 0 R,
new = RO 4+ RO + RO + RO




Estimating R

This is an eigen value problem
A is a stochastic matrix (columns of A sum to 1)
R can be found using the power method

The power method repeatedly updates R at iteration k+/ as
follows

R(k +1) = AR(E)/|AR(K)]



Adding sequence similarity to R

We can integrate other types of information in the same
framework

Let Bbea |V;|*|V,| matrix where each entry B;; is the
sequence similarity of i and j

Let E be the normalized version of B, E=B/BB|
R can be redefined as

R=aAR+ (1 —a)E

This too can be solved with an eigen value problem

R — OCAR —|— (]. — OK)E].TR 1T is a vector of all ones
R=(aA+(1—-a)E1")R



Multiple GNA

e Extension to more than two networks is straightforward
* For every pair of graphs G,,, G,, estimate R™"



Two Key steps IsoRank algorithm

* Use R to define node mappings and to identify subgraphs that
represents the aligned parts of the network



Extracting the aligned parts

* Once R is estimated for all pairs of networks, we need to
extract out node pairs with the highest values

— 99% of the entries of R will be zero
 Two ways to do this
— One to One mapping
* For each node, map it to at most one other node
 Computationally efficient but ignores gene duplications
— Many to Many mapping



Many to many mapping

The goal here is to extract groups with multiple genes from
the same species

Each group represents an functional similarity between genes
of one species to genes of another species

Each set has the following property

— Each gene in the set has high pairwise R scores with most
other genes in the set

— there are no genes outside each set with this property
— there are a limited number of genes from each species
|dentified via greedy algorithm



Greedy algorithm for finding aligned parts

* Construct a k-partite graph.
— Each part k£ has nodes from each species
— Allow nodes to interact between different parts

e Extract a high confidence edge expand to connected
neighbors

C}

Species 1 \

NN

Species 2

3-partite

Species 3



Greedy algorithm to find many-many
node mappings

* Input k-partite graph H, b;, b,, r
* Repeat until no more edges are in H

— Select an edge with the highest score (i,j), where i is G; and jisin G,to
initialize a match-set

— Grow (i,j) to create the primary match-set. This is the max k-partite
matching

— Primary match set is a set of nodes with at most 1 node from a species
using b; to control the similarity

* For all other graphs G;.. G;, add a node [ if two conditions hold

(i) R;; and Rj, are the highest scores between / and any node in G,
and G,, respectlvely and,

(ii) the scores R;; =b,R;;

and R; >b,R;;

lj' l_]’

* Add upto (r-1) nodes v based on b,, such that there exists u, w in the primary
setand R,,=b,R,,,,

e Remove this set from H



Results

Global alignment of multiple protein-protein interaction
networks

— Yeast, human, fly, mouse, worm
Assess functional coherence of predicted functional orthologs



Alignment results of five PPl networks

* Common subgraph has 1,663 edges supported by at least 2
networks and 157 edges by at least 3

* Very few edges from all species

— It is possible that the networks are too noisy and
incomplete

e But this is much better than a pure sequence only mapping

— 509 edges would be identified in two or more species with
40 in three species



IsoRank framework is robust to noisy data
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Experiments done on a PPl network of 200 nodes. Randomized graphs
obtained by swapping pairs of edges



Yeast-fly GNA exhibit subgraphs of
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IsoRank predictions of functional
orthology

* The output of IsoRank can be used to define “functional
orthologs”(FO)

* Of the 86,932 proteins from the five species, 59,539 (68.5%)
of the proteins were matched to at least one protein in
another species (i.e., had at least one FO).

* In contrast, sequence orthology maps only 38.5% of the
proteins.



How good are functional orthologs?

e Use functional coherence measure

— Obtain sets of orthologous proteins (each set is made up of
proteins from different species) and select sets with the
majority(80%) of the proteins with a GO annotation

— For each such set P,
* Collect all GO terms associated with the proteins in P.

 Compute a similarity between each pair of GO terms based
on the similarity of the gene content of each term (this is the
Jaccard coefficient of the annotated proteins)

* Take a median of all pairs of similarity

— Functional coherence for the input ortholog list is the mean of
the coherence per set



Functional orthologs from IsoRank are
comparable to sequence based orthology
* Functional coherence for IsoRank: 0.22

* Functional coherence for Homologene: 0.223
* Functional coherence for InParanoid: 0.206



Summary

* IsoRank is a global alignment algorithm

* How does it differ from PATHBLAST?
— ldentifies different types of subnetworks
— Uses a global alignment
— Applicable to multiple networks

* How is it similar Sharan 20047

— Search and score of subnetworks is done similarly



