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Plan for this section

* Gaussian graphical models (Sep 25t")
* Dependency networks (Sep 25, 27t")

* |Integrating prior information for network
inference (Oct 2n9. 4th)



Goals for today

Graphical Gaussian Models (GGMs)

Different algorithms for learning GGMs
— Graphical Lasso

— Neighborhood selection
Dependency networks
GENIE3

Evaluation of expression-based network
inference methods



Recall the different types of probabilistic
graphs

In each graph type we can assert different
conditional independencies

Correlation networks

Markov networks

— Gaussian Graphical models
Dependency networks
Bayesian networks



Recall the univariate Gaussian distribution

e Gaussian distribution
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A multi-variate Gaussian Distribution

e Extends the univariate distribution to higher
dimensions (p in our case)

Pl B) = = ;z‘%exp (—%(»« )TE (x - m)

 Asin the univariate case, we have two
parameters

— Mean: a p-dimensional vector u

— Co-variance: a p X p dimensional matrix 3.

* Each entry of the matrix specifies the variance of co-variance
between any two dimensions



A two-dimensional Gaussian distribution

* The mean b = [,Uh ,UQ]

Probability density of a Gaussian with

p = 1[0,0]
* The covariance matrix w_ |02 03
Co-variance 0.3 1
0110
> — 11/\12 b
/021,022 | "
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Graphical Gaussian Models (GGMs)

An undirected probabilistic graphical model

Graph structure encode conditional
independencies among variables

The GGM assumes that X is drawn from a p-
variate Gaussian distribution with mean ftand
co-variance 2.

The graph structure specifies the zero pattern in
the X~ 1 = @O

— Zero entries in the inverse imply absence of an edge in
the graph



Absence of edges and the zero-pattern of the
precision matrix
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Matrix trace and determinant properties

* Trace of a pXp square matrix M is the sum of the
diagonal elements D

* Trace of two matrices >
Tr(MN)=Tr(NM)

* For ascalara
Tr(a) =a

 Trace is additive

Tr(A+B)=Tr(A)+Tr(B)

e Determinant of inverse
1

det(A™) = 350




Joint probability of a sample from a GGM

* |tis easier to work with the log

g (x|, %) = o = ;z|;> - (3wt )

logP (x|, 2) = ~ 5log (2mPIE]) ~ (3x— w5 x - ) )

x —glogls] - (56 W= k- )

1

= %log|@] — <§TT((X — )" E T (x — M)))



Joint probability of a sample from a GGM
(contd)

* The previous term can be re-written as

= %log|@\ — (%Tr((x — 1) O(x — M))\

Trace trick:
1 1 Tr(MN)=Tr(NM)

- Llogle) - (§Tr<@<x - =)

— %log\@| — (; (Z Oii(x; — ) + ZQ’LJ i) 'uj)>

W
[

This term is 0, when there is no contribution from the pair x;, x;




Data likelihood from a GGM

* Data likelihood of a dataset D={x,,..,x\} with
N different samples from a GGM is

N

1

=~ D logP(xlu. )
j=1

e After some linear algebra is proportional to

— log |®| — Tr(SO)

e where | N

S = > (ki — )k — )"

1=1
This formulation is nice because now we can think of entries of © as regression weights
that we need to maximize the above objective



Learning a Graphical Gaussian Model

e Learning the structure of a GGM entails
estimating which entries in the inverse of the

covariance matrix are non-zero

* These correspond to the direct dependencies
among two random variables



Learning a GGM

* Graphical Lasso

— Exact approach
— Friedman, Hastie and Tibshirani 2008

* Neighborhood selection
— Approximate approach
— Meinshausen and Buhlmann 2006



Linear regression with p predictors

Suppose we have N samples of input output pairs
{(le yl)a IR (XN7 yN)}
Where X; = (567;1, R ,Zl?z'p) is p-dimensional
That is we have p different features/predictors
A linear regression model V\leith p features is
yi =Bo+ Y 2iiBj + e
r = !

intercept Regression coefficients

Learning the linear regression model requires us to find
the parameters than minimizes prediction error



Linear regression with p predictors

* Learning a regression model requires us find
the regression weights that minimize the
prediction error N

L. 1
minimizeg, 3, oN — By — Z T 53

z—l
Residual sum of squared errors (RSS)

e Tofindthe B =180,01, " ,0p} we
would need to the RSS with respect to each
parameters, set the derivative to 0 and solve

53 _ Zz (Yi — Bo)wij

OLS estimate / ZN ) 72
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Regularized regression

* The least squares solution is often not satisfactory

— Prediction accuracy has high variance: small variations in
the training set can result in very different answers

— Interpretation is not easy: ideally, we would like to have a
good predictive model, and that is interpretable
* The regularized regression framework can be
generally described as follows: Regularization term

. /
minimizeg, g, N Z — o — Z zi;3;)% | + Af(B)
1=1

Dependmg upon f we may have different
types of regularized regression frameworks



Regularized regression

» f(8) takes the form of some norm of (3
* L1 norm used in LASSO regression

> 1851
j=1

* L2 norm used in Ridge regression

> B
j=1



Ridge regression

* The simplest type of regularized regression is called

ridge regression

* This has the effect of smoothing out the regression

weights

minimizeg, g,

and standardize t

minimize B;

1 &
N Z — o — Zl’z‘jﬁj)Q

* |tis often convenlent to center the output (mean 0)
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o Dl Yo

p
FA2LA

he predictors (mean=0, variance =1)

p
+ AZ@?
j=1



LASSO regression

* The ridge regression handles the case of variance,
and suitable when there are correlated predictors

* But does not give an interpretable model

* The LASSO regression model was developed to
learn a sparse model

p
minimizeg, g, N (yi — Bo — injﬁj)2 + AZ 155

2

p p
minimizeg, N (y; — Z xijﬁj)2 + A Z 1351




Cyclic coordinate descent to learn LASSO
regression weights

* To estimate the regression weights in LASSO, we
cycle through each regression weight, setting it to
its optimal value while keeping the others

constant

* That is we re-write the objective as

1 N

IN ' (?Jz — Zﬂ%kﬁk — iUz'jﬁj)Q

1=1 k#£j

to its optimal value.

+ A 1Bkl + AlB;]
=

We derive with respect to 53- at a time, and set it



Learning the regression weights in LASSO

* Due to the absolute value in the objective
function, the derivative is not defined at 0

* That is derivative of |b| at b = 0 is not defined

 To address this, we need to consider the
possible scenarios of the regression weight



Learning the regression weights in Lasso

* To handle the discontinuity in the L1 norm, we consider
the possible scenarios of sign of

% Zfll r;Ti; — A, i §; >0
6]‘ — % Zi\;l r;Ti; + A, if 53' <0
0, otherwise

* Here r; — y; — Z%k@k
-

* Notice that the regularization term controls the extent to
which Bj is pushed to O.



Learning a GGM

* Graphical Lasso

— Exact approach
— Friedman, Hastie and Tibshirani 2008



Graphical LASSO

 Recall the Gaussian likelihood
— log |®| — Tr(SO®)

* Deriving with respect to ® we get a form that
allows for a LASSO-like algorithm

* The algorithm itself uses LASSO to solve a
regression problem per variable.



Graphical LASSO

 Recall the Gaussian likelihood
= log |®| —Tr(SO®) =log det(®) — Tr(SO)

* Learning the GGM requires us to solve the following
optimization problem

AN

© = arg max log det(®) — Tr(©®S)

* But this in general is not going to work because of small
sample size

© = arg max log det(®) — Tr(©S) — A[|®||;
* Thisis the idea behind the Graphical LASSO algorithm

Friedman, Hastie, Tibshirani 2008



Graphical LASSO algorithm

* Deriving with respect to ® we get

O 1 _-S_)\U

* The algorithm itself uses a blockwise

coordinate descent algorithm, each time
considering one row and column

Keep this fixed

v

922

S =




Graphical LASSO contd

* Using partitioned inverse

A B (A-BD'C)! (A-BD'C)'BD!

{c D] a {—D'C(A—BD‘C)' D' +D'C(A—BD‘C)‘BD‘}
- - _1 — -
O11 012 | | Wii1 —Wi1019/02
I 012 022 ] - W12 W22 ]

* Plugging this in
® ' -S-)\V

* For each row/column we get
W16 — s12 + A2 = 0,

where 6 — —(912/(922



Graphical LASSO contd

* This specific function looks similar to the

derivative of a LASSO objective
1
—_(y—ZB) T (y — ZB) + A
o W —ZB) (y = Z8) + |5l
1 1
Derivative —ZTZ/B — _ZTy ASlgn(/B) —_ O

N / ]7
Wi18 — s12 + A1 = 0,
where B — —(912/(922

LASSO objective




Graphical LASSO

e Let W be the current estimate of the inverse
* Repeat for each j” row and column

— Partition W into the two parts,
* W,,: associated the j” row and column, and
* Wy, : for the rest
— Solve the LASSO regression problem for the j”to
estimate 3

— Update wy, = W1,



Neighborhood selection

* Proposed by Meinshausen
and Buhlmann 2006

e Markov blanket: The
immediate neighborhood
of a random variable

e Key idea: Find the Markov
blanket or immediate
neighbor set of each
random variable

Markov blanket of X;




Neighborhood selection

 Here also we solve a set of regression problems
for each random variable X

N
1
(Tis — > wijBsj)? + AllBslln
2N £

* The Markov blanket/neighborhood are those
variables that have a non-zero coefficient

* Combine the neighborhood estimates using an
AND or OR rule to create an undirected graph



Comparison between the two algorithms

* Neighborhood selection is fast compared to
Graphical LASSO

* Neighborhood selection requires a
“correction” to learn a valid structure, but this
is not needed in Graphical LASSO



