Gaussian Graphical models and Dependency networks

Sushmita Roy

sroy@biostat.wisc.edu

Computational Network Biology

Biostatistics & Medical Informatics 826

https://compnetbiocourse.discovery.wisc.edu

Sep 25th 2018

Plan for this section

- Overview of network inference (Sep 18th)
- Directed probabilistic graphical models
 Bayesian networks (Sep 18th, Sep 20th)
- Gaussian graphical models (Sep 25th)
- Dependency networks (Sep 25, 27th)
- Integrating prior information for network inference (Oct 2nd, 4th)

Goals for today

- Graphical Gaussian Models (GGMs)
- Different algorithms for learning GGMs
 - Graphical Lasso
 - Neighborhood selection
- Dependency networks
- GENIE3
- Evaluation of expression-based network inference methods

Recall the different types of probabilistic graphs

- In each graph type we can assert different conditional independencies
- Correlation networks
- Markov networks
 - Gaussian Graphical models
- Dependency networks
- Bayesian networks

Recall the univariate Gaussian distribution

Gaussian distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

The Gaussian distribution is defined by two parameters:

Mean: μ

Standard deviation: σ

A multi-variate Gaussian Distribution

 Extends the univariate distribution to higher dimensions (p in our case)

$$P(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{p}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

- As in the univariate case, we have two parameters
 - Mean: a p-dimensional vector μ
 - Co-variance: a p X p dimensional matrix Σ
 - Each entry of the matrix specifies the variance of co-variance between any two dimensions

A two-dimensional Gaussian distribution

• The mean $oldsymbol{\mu} = [\mu_1, \mu_2]$

Probability density of a Gaussian with

$$oldsymbol{\Sigma} = \left[egin{array}{c} \sigma_{11} / \sigma_{12} \ \sigma_{21} , \sigma_{22} \end{array}
ight]$$
 Variance

$$oldsymbol{\mu} = [0, 0]$$
 $oldsymbol{\Sigma} = \begin{bmatrix} 0.25 & 0.3 \\ 0.3 & 1 \end{bmatrix}$

Graphical Gaussian Models (GGMs)

- An undirected probabilistic graphical model
- Graph structure encode conditional independencies among variables
- The GGM assumes that X is drawn from a p-variate Gaussian distribution with mean μ and co-variance Σ
- The graph structure specifies the zero pattern in the $\mathbf{\Sigma}^{-1} = \boldsymbol{\Theta}$
 - Zero entries in the inverse imply absence of an edge in the graph

Absence of edges and the zero-pattern of the precision matrix

For example:

$$X_1 \perp X_4 | X_2, X_5$$

 $X_1 \perp X_3 | X_2, X_5$

Matrix trace and determinant properties

• Trace of a pXp square matrix M is the sum of the diagonal elements

$$Trace of two matrices = \sum_{i} M_{ii}$$

$$Tr(MN) = Tr(NM)$$

• For a scalar *a*

$$Tr(a) = a$$

Trace is additive

$$Tr(A+B) = Tr(A) + Tr(B)$$

Determinant of inverse

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

Joint probability of a sample from a GGM

It is easier to work with the log

$$\log P(\mathbf{x}|\mu, \mathbf{\Sigma}) = \log \left(\frac{1}{(2\pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}}\right) - \left(\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

$$\log P(\mathbf{x}|\mu, \mathbf{\Sigma}) = -\frac{1}{2}\log\left((2\pi)^p|\Sigma|\right) - \left(\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

$$\propto -\frac{1}{2}\log|\Sigma| - \left(\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

$$= \frac{1}{2}\log|\Theta| - \left(\frac{1}{2}Tr((\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu))\right)$$

Joint probability of a sample from a GGM (contd)

The previous term can be re-written as

$$= \frac{1}{2} \log |\Theta| - \left(\frac{1}{2} Tr((\mathbf{x} - \mu)^T \Theta(\mathbf{x} - \mu))\right)$$

$$= \frac{1}{2} \log |\Theta| - \left(\frac{1}{2} Tr(\Theta(\mathbf{x} - \mu)(\mathbf{x} - \mu)^T)\right)$$
Trace trick:
$$\frac{1}{2} \log |\Theta| - \left(\frac{1}{2} Tr(\Theta(\mathbf{x} - \mu)(\mathbf{x} - \mu)^T)\right)$$

$$= \frac{1}{2}\log|\Theta| - \left(\frac{1}{2}\left(\sum_{i=1}^{p} \theta_{ii}(x_i - \mu_i)^2\right) + \sum_{i \neq j} \theta_{ij}(x_i - \mu_i)(x_j - \mu_j)\right)$$

This term is 0, when there is no contribution from the pair x_i , x_j

Data likelihood from a GGM

• Data likelihood of a dataset $D=\{x_1,...,x_N\}$ with N different samples from a GGM is

$$= \frac{1}{N} \sum_{j=1}^{N} \log P(\mathbf{x}_{j} | \mu, \mathbf{\Sigma})$$

• After some linear algebra is proportional to $= \log |\mathbf{\Theta}| - Tr(\mathbf{S}\mathbf{\Theta})$

• where $\mathbf{S} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \mu) (\mathbf{x}_i - \mu)^\mathsf{T}$

This formulation is nice because now we can think of entries of Θ as regression weights that we need to maximize the above objective

Learning a Graphical Gaussian Model

- Learning the structure of a GGM entails estimating which entries in the inverse of the covariance matrix are non-zero
- These correspond to the direct dependencies among two random variables

Learning a GGM

- Graphical Lasso
 - Exact approach
 - Friedman, Hastie and Tibshirani 2008
- Neighborhood selection
 - Approximate approach
 - Meinshausen and Buhlmann 2006

Linear regression with p predictors

- Suppose we have N samples of input output pairs $\{(\mathbf{x}_1,y_1),\cdots,(\mathbf{x}_N,y_N)\}$
- Where $\mathbf{x}_i = (x_{i1}, \cdots, x_{ip})$ is p-dimensional
- That is we have p different features/predictors
- A linear regression model with p features is

$$y_i = \beta_0 + \sum_{j=1}^{r} x_{ij} \beta_j + \epsilon_i$$
 intercept Regression coefficients

 Learning the linear regression model requires us to find the parameters than minimizes prediction error

Linear regression with p predictors

 Learning a regression model requires us find the regression weights that minimize the prediction error

prediction error
$$\min \text{minimize}_{\beta_0,\beta_j} \left[\frac{1}{2N} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \right]$$

Residual sum of squared errors (RSS)

• To find the $\beta = \{\beta_0, \beta_1, \cdots, \beta_p\}$ we would need to the RSS with respect to each parameters, set the derivative to 0 and solve

parameters, set the derivative to 0 and solve
$$\widehat{\beta}_j = \frac{\sum_{i=1}^N (y_i - \beta_0) x_{ij}}{\sum_{i=1}^N x_{ij}^2}$$

Regularized regression

- The least squares solution is often not satisfactory
 - Prediction accuracy has high variance: small variations in the training set can result in very different answers
 - Interpretation is not easy: ideally, we would like to have a good predictive model, and that is interpretable
- The regularized regression framework can be generally described as follows:

 Regularization term

$$\operatorname{minimize}_{\beta_0,\beta_i} \left[\frac{1}{2N} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \right] + \lambda f(\beta)$$

Depending upon f we may have different types of regularized regression frameworks

Regularized regression

- $f(\beta)$ takes the form of some norm of β
- L1 norm used in LASSO regression

$$\sum_{j=1} |\beta_j|$$

• L2 norm used in Ridge regression

$$\sum_{j=1}^{p} \beta_j^2$$

Ridge regression

- The simplest type of regularized regression is called ridge regression
- This has the effect of smoothing out the regression weights

minimize_{$$\beta_0,\beta_j$$} $\left[\frac{1}{2N} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \right] + \lambda \sum_{j=1}^{p} \beta_j^2$

 It is often convenient to center the output (mean=0) and standardize the predictors (mean=0, variance =1)

minimize_{$$\beta_j$$} $\left| \frac{1}{2N} \sum_{i=1}^{N} (y_i - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \right| + \lambda \sum_{j=1}^{p} \beta_j^2$

LASSO regression

- The ridge regression handles the case of variance, and suitable when there are correlated predictors
- But does not give an interpretable model
- The LASSO regression model was developed to learn a sparse model

minimize_{$$\beta_0,\beta_j$$} $\left[\frac{1}{2N} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \right] + \lambda \sum_{j=1}^{p} |\beta_j|$

Or after standardization:

minimize_{$$\beta_j$$} $\left| \frac{1}{2N} \sum_{i=1}^{N} (y_i - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \right| + \lambda \sum_{j=1}^{p} |\beta_j|$

Cyclic coordinate descent to learn LASSO regression weights

- To estimate the regression weights in LASSO, we cycle through each regression weight, setting it to its optimal value while keeping the others constant
- That is we re-write the objective as

$$\left[\frac{1}{2N}\sum_{i=1}^{N}(y_i - \sum_{k \neq j}x_{ik}\beta_k - x_{ij}\beta_j)^2\right] + \lambda \sum_{k \neq j}|\beta_k| + \lambda|\beta_j|$$

• We derive with respect to β_j at a time, and set it to its optimal value.

Learning the regression weights in LASSO

- Due to the absolute value in the objective function, the derivative is not defined at 0
- That is derivative of |b| at b=0 is not defined
- To address this, we need to consider the possible scenarios of the regression weight

Learning the regression weights in Lasso

 To handle the discontinuity in the L1 norm, we consider the possible scenarios of sign of

$$\beta_{j} = \begin{cases} \frac{1}{N} \sum_{i=1}^{N} \mathbf{r}_{i} x_{ij} - \lambda, & \text{if } \beta_{j} > 0\\ \frac{1}{N} \sum_{i=1}^{N} \mathbf{r}_{i} x_{ij} + \lambda, & \text{if } \beta_{j} < 0\\ 0, & \text{otherwise} \end{cases}$$

- Here $\mathbf{r}_i = y_i \sum_{k \neq j} x_{ik} \beta_k$
- Notice that the regularization term controls the extent to which β_i is pushed to 0.

Learning a GGM

- Graphical Lasso
 - Exact approach
 - Friedman, Hastie and Tibshirani 2008
- Neighborhood selection
 - Approximate approach
 - Meinshausen and Buhlmann 2006

Graphical LASSO

Recall the Gaussian likelihood

$$= \log |\mathbf{\Theta}| - Tr(\mathbf{S}\mathbf{\Theta})$$

- Deriving with respect to Θ we get a form that allows for a LASSO-like algorithm
- The algorithm itself uses LASSO to solve a regression problem per variable.

Graphical LASSO

Recall the Gaussian likelihood

$$= \log |\mathbf{\Theta}| - Tr(\mathbf{S}\mathbf{\Theta}) = \log \det(\mathbf{\Theta}) - Tr(\mathbf{S}\mathbf{\Theta})$$

Learning the GGM requires us to solve the following optimization problem

$$\widehat{\Theta} = \arg\max_{\Theta} \log \det(\mathbf{\Theta}) - Tr(\mathbf{\Theta}\mathbf{S})$$

 But this in general is not going to work because of small sample size

$$\widehat{\Theta} = \underset{\Theta}{\operatorname{arg \, max}} \log \, \det(\mathbf{\Theta}) - Tr(\mathbf{\Theta}\mathbf{S}) - \lambda ||\mathbf{\Theta}||_1$$

This is the idea behind the Graphical LASSO algorithm

Graphical LASSO algorithm

• Deriving with respect to Θ we get

$$\mathbf{\Theta}^{-1} - \mathbf{S} - \lambda \Psi$$

 The algorithm itself uses a blockwise coordinate descent algorithm, each time considering one row and column

$$oldsymbol{\Theta} = egin{bmatrix} oldsymbol{\Theta}_{11} & heta_{12} \ heta_{12} & heta_{22} \end{bmatrix} \, \mathbf{S} = egin{bmatrix} \mathbf{S}_{11} & s_{12} \ s_{12} & s_{22} \end{bmatrix}$$

Keep this fixed

Graphical LASSO contd

Using partitioned inverse

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} (\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1} & -(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1}\mathbf{B}\mathbf{D}^{-1} \\ -\mathbf{D}^{-1}\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1} & \mathbf{D}^{-1} + \mathbf{D}^{-1}\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1}\mathbf{B}\mathbf{D}^{-1} \end{bmatrix}.$$

$$\begin{bmatrix} \mathbf{\Theta}_{11} & \theta_{12} \\ \theta_{12} & \theta_{22} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{W}_{11} & -\mathbf{W}_{11}\theta_{12}/\theta_{22} \\ w_{12} & w_{22} \end{bmatrix}$$

Plugging this in

$$\mathbf{\Theta}^{-1} - \mathbf{S} - \lambda \Psi$$

For each row/column we get

$$\mathbf{W}_{11}\beta - s_{12} + \lambda \psi_{12} = 0,$$

where $\beta = -\theta_{12}/\theta_{22}$

Graphical LASSO contd

 This specific function looks similar to the derivative of a LASSO objective

LASSO objective
$$\frac{1}{2N}(y-\mathbf{Z}\beta)^{\mathsf{T}}(y-\mathbf{Z}\beta)+\lambda||\beta||_1$$
Derivative $\frac{1}{N}\mathbf{Z}^{\mathsf{T}}\mathbf{Z}\beta-\frac{1}{N}\mathbf{Z}^{\mathsf{T}}y+\lambda\mathrm{sign}(\beta)=0$

$$\mathbf{W}_{11}\beta-s_{12}+\lambda\psi_{12}=0,$$

$$\mathrm{where}\ \beta=-\theta_{12}/\theta_{22}$$

Graphical LASSO

- Let W be the current estimate of the inverse
- Repeat for each j^{th} row and column
 - Partition W into the two parts,
 - w_{12} : associated the j^{th} row and column, and
 - W_{11} : for the rest
 - Solve the LASSO regression problem for the j^{th} to estimate β
 - Update $w_{12} = W_{11}\beta$

Neighborhood selection

- Proposed by Meinshausen and Buhlmann 2006
- Markov blanket: The immediate neighborhood of a random variable
- Key idea: Find the Markov blanket or immediate neighbor set of each random variable

Neighborhood selection

• Here also we solve a set of regression problems for each random variable $X_{\scriptscriptstyle S}$

$$\frac{1}{2N} \sum_{i=1}^{N} (x_{is} - \sum_{j \neq s} x_{ij} \beta_{sj})^2 + \lambda ||\beta_s||_1$$

- The Markov blanket/neighborhood are those variables that have a non-zero coefficient
- Combine the neighborhood estimates using an AND or OR rule to create an undirected graph

Comparison between the two algorithms

- Neighborhood selection is fast compared to Graphical LASSO
- Neighborhood selection requires a "correction" to learn a valid structure, but this is not needed in Graphical LASSO