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Evaluating the network

Assessing confidence

Area under the precision recall curve

Do modules or target sets of genes participate
in coherent function?

Can the network predict expression in a new
condition?



Assessing confidence in the learned network

* Typically the number of training samples is not

sufficient to reliably determine the “right”
network

* One can however estimate the confidence of
specific features of the network

— Graph features f(G)
* Examples of f(G)

— An edge between two random variables
— Order relations: Is X, Y’s ancestor?



How to assess confidence in graph features?

* What we want is P(f(G)ID), which is
Yaf(G)P(G|D)

* Butitis not feasible to compute this sum

* |[nstead we will use a “bootstrap” procedure



Bootstrap to assess graph feature confidence

e Fori=/tom

— Construct dataset D; by sampling with
replacement N samples from dataset D, where N
is the size of the original D

— Learn a graphical model {G; ©;}
* For each feature of interest f, calculate
confidence
T

Conf( f Z f(G



Bootstrap/stability selection
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Does the bootstrap confidence represent real
relationships?

 Compare the confidence distribution to that obtained from
randomized data

e Shuffle the columns of each row (gene) separately
* Repeat the bootstrap procedure

Experimental conditions
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Bootstrap-based confidence differs between
real and actual data
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Example of a high confidence sub-network

One learned Bayesian network

Nir Friedman, Science 2004
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Bootstrapped confidence Bayesian network:
highlights a subnetwork associated with yeast
mating pathway. Colors indicate genes with
known functions.



Area under the precision recall curve (AUPR)

 Assume we know what the “right” network is

* One can use Precision-Recall curves to
evaluate the predicted network

* Area under the PR curve (AUPR) curve
guantifies performance

Precision= Recall=

# of correct edges # of correct edges

# of predicted edges # of true edges




Edge based comparison (AUPR)
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Experimental datasets to assess network
structure for gene regulatory networks

Sequence specific motifs

ChIP-chip and ChlIP-seq

Factor knockout followed by whole-

transcriptome profiling
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AUPR based performance comparison
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DREAM: Dialogue for reverse engineeting
assessments and methods

(1) Target network

In silico
195 TFs
1,643 genes

E. coli
296 TFs
4,297 genes

S. cerevisae
183 TFs
5,667 genes

S. aureus
90 TFs

2,677 genes

Community effort to assess regulatory network inference

Simulation

Experiments

knockouts
overexpress
antibiotics
toxins
etc.

(2) Microarray compendia

(3) Inferred networks

805 arrays Anodna);r;lze
487 conds. .
[ |
: Inference methods
805 arrays "
487 conds. .
— .Q.Q “ >
536 arrays . e,
p2 1! CoRg, : 29 methods applied by
: teams (blinded)
160 arrays s+ 6 off-the-shelf methods
53 conds. 35 methods tested

DREAM 5 challenge

Previous challenges: 2006, 2007, 2008, 2009, 2010

Integration‘
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Marbach et al. 2012, Nature Methods
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(4) Community network (5) Performance evaluation

True in silico
network

Validation

>

S. aureus not
for evaluation

Experimentally
determined
interactions
ChIP
motifs
etc.

used




Where do different methods rank?

In silico

E. coli

S. cerevisiae
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Marbach et al., 2012 These approaches were mostly per-gene



Methods t

end to cluster together
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Second principal component

These approaches were mostly per-gene



Comparing per-module (LeMoNe) and per-gene
(CLR) methods
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Some comments about expression-based
network inference methods

 We have seen multiple types of algorithms to learn these networks
— Per-gene methods (learn regulators for individual genes)
* Sparse candidate, GENIE3, ARACNE, CLR

— Per-module methods

* Module networks: learn regulators for sets of genes/modules

* Other implementations of module networks exist

— LIRNET: Learning a Prior on Regulatory Potential from eQTL Data (Su In Lee et al, Plos genetics 2009,
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000358)

— LeMoNe: Learning Module Networks (Michoel et al 2007, http://www.biomedcentral.com/1471-
2105/8/S2/S5)

— Methods that combine per-gene and per-module (MERLIN)

* Methods differ in
— how they quantify dependence between genes
— Higher-order or pairwise
— Focus on structure or structure & parameters
* Expression alone is not enough to infer the structure of the network

* Integrative approaches that combine expression with other types of
data are likely more successful (next lectures)



http://www.biomedcentral.com/1471-2105/8/S2/S5
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