
Evaluation of inferred networks

Sushmita Roy
sroy@biostat.wisc.edu

Computational Network Biology
Biostatistics & Medical Informatics 826

https://compnetbiocourse.discovery.wisc.edu

Sep 27th 2018

mailto:sroy@biostat.wisc.edu
https://compnetbiocourse.discovery.wisc.edu


Evaluating the network

• Assessing confidence
• Area under the precision recall curve
• Do modules or target sets of genes participate 

in coherent function?
• Can the network predict expression in a new 

condition?



Assessing confidence in the learned network 

• Typically the number of training samples is not 
sufficient to reliably determine the “right” 
network

• One can however estimate the confidence of 
specific features of the network
– Graph features f(G)

• Examples of f(G)
– An edge between two random variables
– Order relations: Is X, Y’s ancestor?



How to assess confidence in graph features?

• What we want is P(f(G)|D), which is

• But it is not feasible to compute this sum

• Instead we will use a “bootstrap” procedure

�Gf(G)P (G|D)



Bootstrap to assess graph feature confidence

• For i=1 to m
– Construct dataset Di by sampling with 

replacement N samples from dataset D, where N
is the size of the original D

– Learn a graphical model {Gi,Θi}
• For each feature of interest f, calculate 

confidence

Conf(f) =
1
m

mX

i=1

f(Gi)
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Bootstrap/stability selection

6

differences from the mean ranged from 30 (in vineyard strain I14)
to nearly 600 (in clinical isolate YJM789), with a median of 88
expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).

Influence of Copy Number Variation on Gene Expression
Variation
Expression from transposable Ty elements was highly variable

across strains. However, Ty copy number is known to vary widely

Figure 3. Variation in gene expression in S. cerevisiae isolates. The diagrams show the average log2 expression differences measured in the
denoted strains. Each row represents a given gene and each column represents a different strain, color-coded as described in Figure 1. (A) Expression
patterns of 2,680 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to S288c. (B) Expression patterns of 953
genes that varied significantly in at least one strain compared to strain YPS163 (FDR= 0.01, unpaired t-test). For (A) and (B), a red color indicates
higher expression and a green color represents lower expression in the denoted strain compared to S288c, according to the key. (C) Expression
patterns of 1,330 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to the mean expression of all 17 strains.
Here, red and green correspond to higher and lower expression, respectively, compared to the mean expression of that gene in all strains. Genes
were organized independently in each plot by hierarchical clustering.
doi:10.1371/journal.pgen.1000223.g003
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of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
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and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
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Figure 3. Variation in gene expression in S. cerevisiae isolates. The diagrams show the average log2 expression differences measured in the
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patterns of 2,680 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to S288c. (B) Expression patterns of 953
genes that varied significantly in at least one strain compared to strain YPS163 (FDR= 0.01, unpaired t-test). For (A) and (B), a red color indicates
higher expression and a green color represents lower expression in the denoted strain compared to S288c, according to the key. (C) Expression
patterns of 1,330 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to the mean expression of all 17 strains.
Here, red and green correspond to higher and lower expression, respectively, compared to the mean expression of that gene in all strains. Genes
were organized independently in each plot by hierarchical clustering.
doi:10.1371/journal.pgen.1000223.g003

Phenotypic Variation in Yeast

PLoS Genetics | www.plosgenetics.org 5 October 2008 | Volume 4 | Issue 10 | e1000223
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the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression
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interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly
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least 3 of the 17 non-laboratory strains. This group of 219 genes
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(p,10247), revealing that genes involved in these functions had
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expression of amino acid biosynthetic genes in one vineyard strain
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statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).
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Does the bootstrap confidence represent real 
relationships?

• Compare the confidence distribution to that obtained from 
randomized data

• Shuffle the columns of each row (gene) separately
• Repeat the bootstrap procedure

1,2g ng ,2

1,mg nmg ,

1,1g ng ,1

randomize each
row independently

genes

Experimental conditions

Slide credit Prof. Mark Craven



Bootstrap-based confidence differs between 
real and actual data
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FIG. 3. Plots of abundance of features with different con�dence levels for the cell cycle data set (solid line), and the randomized data set (dotted line).
The x-axis denotes the con�dence threshold, and the y-axis denotes the number of features with con�dence equal or higher than the corresponding
x-value. The graphs on the left column show Markov features, and the ones on the right column show Order features. The top row describes features
found using the multinomial model, and the bottom row describes features found by the linear-Gaussian model. Inset in each graph is a plot of the tail
of the distribution.
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Example of a high confidence sub-networkthemselves transcriptionally regulated. These
regulation mechanisms often involve feed-
forward loops and feedback mechanisms
(18, 31) that change the mRNA expression

level of regulators when their protein activ-
ity changes. As a consequence, we can
detect coordinated changes in the expres-
sion levels of regulators and their targets.

This hypothesis is supported by an analysis
of the discovered regulatory relations against
a database of protein-DNA and protein-
protein interactions (26).

Fig. 3. Different regulatory network architectures. (A) An uncon-
strained acyclic network where each gene can have a different regu-
lator set. This is a fragment of a network learned in the experiments
of Pe’er et al. (24 ). (B) A summary of direct neighbor relations among
the genes shown in (A) based on bootstrap estimates. Degrees of
confidence are denoted by edge thickness. We automatically identify
a subnetwork of genes, with high-confidence relations among them,
that are involved in the yeast-mating pathways. The colors highlight
genes with known function in mating, including signal transduction
(yellow), transcription factors (blue), and downstream effectors
(green). (C) A fragment of a two-level network described by Pe’er et
al. (25). The top level contains a small number of regulators; the

bottom level contains all other genes (targets). Each gene has differ-
ent regulators from among the regulator genes. (D) Visualization of
significant Gene Ontology (42) annotations of the targets of different
regulators. Each significant annotation for the targets of a regulator
(or pairs of regulators) is shown with the hypergeometric p-value. (E)
A fragment of the module network described by Segal et al. (26). Each
module contains several genes that share the same set of regulators and
share the same conditional regulation program given these regulators. (F)
Visualization of the expression levels of the 55 genes in Module 1 (b) and
their regulators (a). Significant Gene Ontology annotations (c) and cis-
regulatory motifs in promoter regions of genes in the module (d) are shown.
[See figure 3 of (26); reproduced with permission]

M A T H E M A T I C S I N B I O L O G Y

6 FEBRUARY 2004 VOL 303 SCIENCE www.sciencemag.org804
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One learned Bayesian network Bootstrapped confidence Bayesian network: 
highlights a subnetwork associated with yeast 
mating pathway. Colors indicate genes with 
known functions.

Nir Friedman, Science 2004



Area under the precision recall curve (AUPR)

• Assume we know what the “right” network is
• One can use Precision-Recall curves to 

evaluate the predicted network
• Area under the PR curve (AUPR) curve 

quantifies performance

Precision= 
# of correct edges
# of predicted edges

Recall= 
# of correct edges
# of true edges



Edge based comparison (AUPR)

True positiveTrue networkInferred networkBoth networksSlide credit: Alireza Fotuhi Siahpirani



Experimental datasets to assess network 
structure for gene regulatory networks

• Sequence specific motifs

• ChIP-chip and ChIP-seq

• Factor knockout followed by whole-
transcriptome profiling



AUPR based performance comparison

GENIE3 got the best performance on the DREAM4 In Silico
Multifactorial challenge and is competitive with existing algorithms
to decipher the genetic regulatory network of Escherichia coli
assuming that transcription factors are known. When no prior
knowledge is available about transcription factors, our results on
the E. coli network were however not better than random guessing.
The reason of this discrepancy with respect to the results on the
DREAM4 challenge deserves to be further analysed.
Our algorithm can be improved along several directions. As

tree-based ensemble methods, we used the Random Forests and
the Extra-Trees algorithms, that both gave comparable results.
However, the performances of these methods depend to some
extent on their main parameter, the number K of randomly
selected attributes at each node of one tree. On the DREAM4
Multifactorial datasets, improved predictions were obtained by
increasing K to its maximum value (K~p{1 ), while on the E. coli
dataset, the best ranking of interactions was obtained by using
K~

ffiffiffiffiffiffiffiffi
nTF

p
. It would thus be of interest to find a way to

automatically tune this parameter. A first solution could be to
select the value of the parameter that leads to the best performance
for the prediction of the expression values, i.e. that minimizes
mean square error in (2) estimated by cross-validation. Unfortu-
nately, this solution did not work on the E. coli dataset, where using
K~nTF led to lower mean square error but a less good precision-
recall curve.
There is also a potential room for improvement on the way

variable importance scores are normalized. One apparent
drawback of the measure we proposed is that it does not take
into account the quality of the trees in generalization. Indeed since
our trees are fully grown, importance weights satisfy equation (4)
which, given our normalization, attributes equal weights to all tree

models irrespective of their quality when used to predict the
expression values of the target gene. We tried to correct for this
bias by normalizing the variable importance scores by the effective
variance reduction brought by the model as estimated by cross-
validation but it actually deteriorated the performances. The
question of the optimal normalization remains thus open at this
stage.
In this paper, we focused on providing a ranking of the

regulatory interactions. In some practical applications however,
one would like to determine a threshold on this ranking to obtain a
practical predicted network. To address this question, we have
tried to exploit cross-validation estimates of the mean-square error
as a criterion to determine such a threshold but we have not been
successfull so far. As future work, we therefore would like to extend
the technique developed in [46] to better assess the significance of
the predicted regulatory links and thus help determining a
threshold.
Our experiments on the DREAM4 dataset show that GENIE3

is able to predict the direction of the edges to some extent, even
though it only exploits steady-state measurements. This is an
interesting result as this is commonly admitted to be a difficult
problem. Bayesian networks also potentially allow to predict edge
directionality. A comparison with this family of methods would be
an interesting future work direction. Note that with respect to our
approach, Bayesian networks do not allow for the presence of
cycles in the predicted network, which could be a limiting factor
for networks such as those in DREAM4 that contain cycles by
construction.
Several procedures using regression trees have already been

proposed to solve the regulatory network inference problem. Most
of these procedures exploits other kinds of data in addition to
expression data, e.g. counts of regulatory motifs that serve as
binding sites for transcription factors [47,48], or ChIP-based
binding data [49]. The closest work to ours is the procedure
developed by Segal et al. [50], that recovers module networks from
expression data, so that the genes in each module share the same
regulators in the network and the same conditional probability
distribution, represented by a (single) regression tree.
Finally, although we exploited tree-based ensemble methods,

our framework is general and other feature selection techniques
could have been used as well. Actually, several existing methods

Figure 4. Precision-Recall curves for the E. coli network. Only known transcription factors were used as input genes. A. Comparison between
the four different settings of the tree procedure. B. Comparison to other approaches.
doi:10.1371/journal.pone.0012776.g004

Table 7. Overall scores for the directed networks of DREAM4.

GENIE3-RF-all CLR ARACNE MRNET GGM

Overall score 40.471 31.57 28.488 30.435 23.705

Links (i,j) and (j,i) were both assigned the same weights by CLR, ARACNE,
MRNET, and GGM, while GENIE3 was used unmodified.
doi:10.1371/journal.pone.0012776.t007

Inferring GRNs with Trees

PLoS ONE | www.plosone.org 8 September 2010 | Volume 5 | Issue 9 | e12776



DREAM: Dialogue for reverse engineeting
assessments and methods

Community effort to assess regulatory network inference
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Where do different methods rank?
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Methods tend to cluster together
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ANALYSIS

methods explicitly used this informa-
tion. Consequently, these methods recov-
ered target genes of deleted transcription  
factors more reliably than the inference 
methods that did not leverage this infor-
mation (Fig. 2c). Explicit use of such 
knockouts also helped methods to draw 
the direction of edges between tran-
scription factors more reliably. These 
observations suggest that measurements 
of transcription-factor knockouts can 
be informative for network reconstruc-
tion. In particular, this is the case for the  
E. coli data set, which contained the larg-
est number of such experiments (Online 
Methods). To further explore the informa-
tion content of different experiments, we employed a machine 
learning framework22 to systematically analyze the information 
gain from microarrays grouped according to the type of experi-
mental perturbation (knockouts, drug perturbations, environ-
mental perturbations and time series; Supplementary Note 5). 
We found that experimental conditions independent of transcrip-
tion factor knockout and overexpression also provide informa-
tion, though at a reduced level.

Community networks outperform individual inference methods
Network inference methods have complementary advantages and 
limitations under different contexts, which suggests that combining  
the results of multiple inference methods could be a good strategy 
for improving predictions. We therefore integrated the predic-
tions of all participating teams to construct community networks 
by rescoring interactions according to their average rank across 
all methods (Supplementary Note 6). The integrated community 
network ranks first for in silico, third for E. coli and sixth for  
S. cerevisiae out of the 35 applied inference methods, which shows 
that the community network is consistently as good or better than 
the top individual methods (Fig. 2a). Thus it has by far the best 
performance reflected in the overall score. We stress that, even 
though top-performing methods for a given network are com-
petitive with the integrated community method, the performance  
of individual methods does not generalize across networks.  

Given the biological variation among organisms and the experi-
mental variation among gene-expression data sets, it is difficult 
to determine beforehand which methods will perform optimally 
for reconstructing an unknown regulatory network. In con-
trast, the community approach performs robustly across diverse  
data sets.

We next analyzed how the number of integrated methods 
affects the performance of community predictions by examin-
ing randomly sampled combinations of individual methods. 
On average, community methods perform better than indi-
vidual inference methods even when integrating small sets of 
individual predictions: for example, just five teams (Fig. 3a).  
Performance increases further with the number of integrated 
methods. For instance, given 20 inference methods, their inte-
gration ranks first or second in 98% of the cases (Fig. 3b). We 
also found that the performance of the community network can 
be improved by increasing the diversity of the underlying infer-
ence methods. Consensus predictions from teams using similar 
methodologies were outperformed by consensus predictions from 
diverse methodologies (Fig. 3c).

A key feature in taking a community network approach is robust-
ness to the inclusion of a limited subset (up to ~20%) of poorly per-
forming inference methods (Fig. 3d). Poor predictors essentially 
contributed noise, but this did not affect the performance of the 
community approach as a whole. This finding is crucial because 
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Figure 2 | Evaluation of network inference 
methods. Inference methods are indexed 
according to Table 1. (a) The plots depict the 
performance for the individual networks (area 
under precision-recall curve, AUPR) and the 
overall score summarizing the performance across 
networks (Online Methods). R, random predictions; 
C, integrated community predictions. (b) Methods 
are grouped according to the similarity of their 
predictions via principal-component analysis. 
The second versus third principal components 
are shown; the first principal component 
accounts mainly for the overall performance 
(Supplementary Note 4). (c) The heat map 
depicts method-specific biases in predicting 
network motifs. Rows represent individual 
methods and columns represent different types of 
regulatory motifs. Red and blue show interactions 
that are easier and harder to detect, respectively.

These approaches were mostly per-gene
Marbach et al., 2012



Comparing per-module (LeMoNe) and per-gene 
(CLR) methods
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Motif
TF-binding site or specific 
sequence tag that is recognized 
by a TF and is located in the 
promoter region of a gene.

co-expression, but also share a common regulatory 
binding site (identified by de novo motif detection or ChIP 
analysis). Exploiting complementary data sources to con-
firm expression-based module assignments reduces the 
assignment of false members to true modules and  
the detection of spurious modules. As the observed co-
expression in a module also implies true co-regulation 
when using integrative module inference methods, the 
module inherently contains information that infers  
the transcriptional programme: for example, each 
module is assigned the regulator that is known to 
recognize the motif or binding site associated with 
the module. Applying DISTILLER to a cross-plat-
form E. coli expression compendium and motif data 
for 67 known regulators resulted in the prediction 
of 278 new interactions for 29 different regulators8. 
Of the 11 new interactions for fumarate and nitrate 
reduction regulatory protein (Fnr) that were experi-
mentally verified by ChIP–quantitative real-time PCR, 
none were predicted by the non-integrative meth-
ods CLR32 and Stochastic LeMoNe29. When using 

integrative approaches in combination with de novo-
detected motifs, the assignment of a cognate regulator 
will be based on additional, computationally derived  
criteria (for example, the genomic proximity of the genes 
encoding the regulator and its targets)5 or on a concomi-
tant expression-based inference of the regulatory pro-
gramme25. In the future, mapping of cognate regulators 
to novel motifs  will be further facilitated by integration 
with data resulting from protocols that globally survey an 
organism’s proteome for sequence-specific interactions  
with putative DNA regulatory elements49,50.

So, inference methods that use only expression data 
are useful for organisms for which there is little addi-
tional information available. Integrative methods, on the 
other hand, provide a more complete view of the net-
work and are more likely to predict true positive interac-
tions. However, the additive value of integrative methods 
depends on the quality of both the additional data51 and 
the algorithm used.

Global versus query-driven inference. Global module 
inference methods22,52–59 search for the modules that 
explain most of the data. This usually corresponds to 
identifying large pathways that consist of many genes 
and that are usually responsible for the general responses 
to major metabolic or condition shifts, such as the path-
ways that regulate flagellar synthesis, amino acids bio-
synthesis and the DNA damage response. As such, global 
approaches provide a general view of the active TRN 
and the resulting physiological state in the cell. Query-
driven module detection methods, on the other hand60,61,  
search for genes that are co-expressed, in a condition-
dependent way, with a predefined set of genes (also called 
query genes). These algorithms are deliberately biased 
towards finding a specific local solution in the search 
space according to the particular interests of the user. 
This solution is usually not easy to find using a global 
approach, as either the expression signals of the query 
genes are too low to be significant or the local solution 
is obscured by a more global one. For example, searching 
an E. coli compendium for a PurR-related module using 
a known PurR target as a query returns a module that is 
indeed significantly enriched for previously known PurR 
targets (P < 1 × 10–15), whereas with a global approach 
the module that contains the most PurR-related genes 
(under default conditions) is much larger and enriched 
for more general functions related to amino acid bio-
synthesis and translation (R.D.S., unpublished observa-
tions). Query-driven approaches are thus typically used 
to expand or curate a particular pathway or process either 
by searching for additional genes that are co-expressed 
with genes known to be involved in the pathway or by 
filtering out genes that are not co-expressed with the 
majority of the so-called pathway genes. For instance, 
the query-driven Signature Algorithm (SA) refined the 
gene set involved in the tricarboxylic acid (TCA) cycle 
in Saccharomyces cerevisiae using the homologues of  
37 E. coli TCA cycle genes as queries61.

Most of the global network inference methods 
described above can be applied in a query-driven set-
ting by restricting their input data sets. In some cases 

Figure 2 | Complementarity in the type of interactions inferred by direct  
and module-based inference methods. CLR (context likelihood of relatedness) and 
Stochastic LeMoNe (learning module networks), as representatives of direct and 
module-based inference methods, respectively, were applied to the same Escherichia coli 
compendium32. The precision of the inferred interactions was calculated as described in 
Faith et al.32, using experimentally documented interactions in RegulonDB69 as a standard. 
a | A comparison of the precision with which true interactions were inferred for both 
methods; the difference in the precision obtained with CLR and with LeMoNe was 
calculated for each regulator. Regulators are ranked according to this difference in 
precision. A high negative value indicates a higher precision for LeMoNe than for CLR, 
and high positive values indicate the opposite. b | The values of the regulator-specific 
precision for LeMoNe and CLR. c | The size distribution of the the known regulon 
membership, according to RegulonDB, for the regulators for which either LeMoNe or 
CLR show a higher precision. Parts a and b illustrate the complementarity between both 
methods in retrieving interactions for different regulators. Part c shows that LeMoNe 
predicts, on average, correct targets for more global regulators (with a larger regulon 
size), whereas CLR typically predicts targets for regulators with fewer known targets. 
Note that predictions for regulators that are not documented in RegulonDB are not 
included in this plot.
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Some comments about expression-based 
network inference methods

• We have seen multiple types of algorithms to learn these networks
– Per-gene methods (learn regulators for individual genes)

• Sparse candidate, GENIE3, ARACNE, CLR

– Per-module methods
• Module networks: learn regulators for sets of genes/modules
• Other implementations of module networks exist

– LIRNET: Learning a Prior on Regulatory Potential from eQTL Data (Su In Lee et al, Plos genetics 2009, 
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000358)

– LeMoNe: Learning Module Networks (Michoel et al 2007, http://www.biomedcentral.com/1471-
2105/8/S2/S5)

– Methods that combine per-gene and per-module (MERLIN)

• Methods differ in 
– how they quantify dependence between genes 
– Higher-order or pairwise
– Focus on structure or structure & parameters

• Expression alone is not enough to infer the structure of the network
• Integrative approaches that combine expression with other types of 

data are likely more successful (next lectures)

http://www.biomedcentral.com/1471-2105/8/S2/S5
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