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Goals for this lecture

* |ncorporating priors in Dependency networks using
linear regression

* |ncorporating priors in Dependency networks using
tree models



Prior-based approaches for network inference

* Given
— Gene expression data and

— Complementary data that supports the presences of an edge
* Presence of a sequence motif on a gene promoter
* ChIP-chip/seq binding of factor X on gene Y’s promoter

* Do

— Predict which regulators drive the expression of a target gene,
while incorporating complementary evidences as much possible

e How?

— Place a prior on the graph where the prior is obtained from
complementary data



Recall Dependency network

* Atype of probabilistic graphical model

* Approximate Markov networks
— Are much easier to learn from data

* As in Bayesian networks has
— A graph structure

— Parameters capturing dependencies between a variable and its
parents

e Unlike Bayesian network
— Can have cyclic dependencies
— Computing a joint probability is harder
* |tis approximated with a “pseudo” likelihood.

Dependency Networks for Inference, Collaborative Filtering and Data visualization
Heckerman, Chickering, Meek, Rounthwaite, Kadie 2000



Learning dependency networks

* One can think about this problem as estimating the
Markov blanket of each random variable

000

f—P(X /B )

\ /

o

* Let B;denote the Markov Blanket of a
variable X.

* B;jisthe set of variables that make X;
independent of all other variables, X

P(X;|X ;) = P(X;|B;)

* B;can be estimated by finding the set
of variables that best predict X;

* This requires us to specify the form of
P(X//B))



Overview of the Inferelator algorithm

* Based on linear regression models
 Handles time series and steady state data

* Priorisincorporated at the edge weight using two
strategies

— Modified Elastic Net
— Bayesian Best Subset Regression

Greefield et al. 2013, Bonneau et al. 2007



Notation

p regulators

x;: Gene expression levels for the i gene
— x,(t): Expression of gene i at time t/sample ¢

R: Number of samples

[: Regression weight vector



Modeling the relationship between regulator
and target in Inferalator

Change in expression with
time

e Time series
N m is the time la
Viltiem) = Y Bipxp(ti) &
PEP;

i=1,....,.N, k=1,....,K—1

e Steady state
xile) =1 Y BipXpler),

PEP;
i=1,....N, [=1,...,L

Number of genes  Number of samples

Network inference: Estimate coefficients 57;,19



Two approaches to integrate prior graph
structure

 Modified Elastic Net (MEN)

* Bayesian Best Subset Regression (BBSR)



Recall regularized regression

* The regularized regression framework can be
generally described as follows:

Regularization term
N

1
minimizeg, s, Z — Bo — Z zijBi)% | + )\/ﬁ

2N
i=1

Depending upon f we may
have different types of
regularized regression
frameworks



Regularized regression

. f(@) takes the form of some norm of 3

* L1 norm D
811 = Z‘B’i‘
j=1

e L2 norm

P
18I13=) B7
j=1

e Elastic net
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Elastic net regression

* If there are correlated predictors, LASSO will
arbitrarily decide between the two to include or
exclude

e Elastic net provides a tradeoff between ridge and
LASSO.



Elastic net regression

* Elastic net regression objective for the i’ gene

R 2
minimizeﬁ% > (y(r) — Zﬁpxp(r)> + A [ (1— )83 + 8]
r=1 p

* Which can be equivalently written as

Minimize R 2
Z yi(r) — Z Bi.pxp(r)
Subject to r=1 peki
L1 norm L2 norm
]
A=8) IBipl +E) B, <si ) _|BD
PEP; PEP; peP;

Estimate via cross validation



Modified Elastic Net (MEN)

* The modification to Elastic net

A —&)) 10:ipBipl +EY B, <si ) 1B

PEP; I PEP; PEP;

Set this <1 so that if there is a prior edge between x,->y;, the regression
coefficient will be penalized less



Two approaches to integrate prior graph
structure

* Bayesian Best Subset Regression (BBSR)



Probabilistic interpretation for the one
predictor case

e Recall our linear model for one predictor

Yi = T;01 + €;

* Assume noise is distributed according a Gaussian
with mean 0 and variance o

Yi ~ N(xiﬁla U)

* How to estimate 61 from N datapoints?
— Maximize likelihood of data given model



Maximum Likelihood estimate of (3

e Likelihood of data

N
LL = || P(yilzs, 61, 0)
1=1

N
L =T] 1 exp (_ (yi —2:;51)2)

Taking log

1=
Deriving wrt 3; and settingto 0

B1 = ZN 2 Would get the same answer if
i=1""¢ minimizing RSS



Probabilistic interpretation in case of p inputs

* Assume outputYis

Yi ~ N(Xiﬁa U)

e Again can compute likelihood, maximize it to find 6

* Again the ML estimate would be the same as we
derived by minimizing the RSS



Bayesian framework to estimate parameters

* Instead of optimizing the likelihood, we put a prior
on the parameters and optimize the posterior
probability of the parameters

/I

Gaussian data likelihood

P(3|D) o< P(D|B)P(J)
<

Parameter prior

What types of priors can we use?



Priors on parameters in regression

* @Gaussian prior
P(8) = N (0.7°1)

P(B) x exp(~ 5)

— Also called ridge regression
* Laplace prior P(8;) = Laplace(0, t)

P(3;) o exp(— |6t7’|)

— Also called Lasso regression



Bayesian Best Subset Regression (BBSR)

Based on a Bayesian framework of model selection

— Search among all subsets of regulators and pick the best one to
minimize trade off between data fit and model complexity
Assume that the expression level y is distributed
according to a Gaussian distribution

(/y\,B o’ X x N, (XB,o°1)

Prior over parameters is a Gaussian
Response variable Regulators

Place a prior distribution on parameters, and incorporate
prior knowledge of interactions in the parameters

p(ﬁ\UWO’%(X/X)—ng)

Prior A number between 0 and infinity § & (O, OO)



BBSR continued

* The posterior distribution over the parameters is
given as:

1 g g _
p(ﬁ‘yaa2) “N(gﬁﬁ(wr Q?BOLS,JQQ+1(X’X) 1)

* gcan be tuned to provide a trade-off between the
prior and the OLS solution

* When g is larger, beta is closer to the OLS solution

When it is smaller, beta is closer to the prior
* The prior is set to be a vector of all Os



BBSR continued

* Inferelator uses a p-dimensional vector for p
predictors

1 1
gz{gv y 94, ,—},Whereg>1

NS A

Predictors with prior are set to g (push more towards the OLS solution)



BBSR model selection

* The final step in BBSR is to determine the best model
out 27 possible sets

* p cannot be very high: the approach sets p to 10

* The best model is the one that minimizes prediction
error and has the lowest model complexity



Experimental setup

* Three datasets
— DREAMA4: In silico dataset with 100 nodes
— E. coli dataset from DREAM5
— B. subtilis dataset

e Evaluation based on AUPR
— Ranking of edges obtained from a bootstrapping strategy

* Questions asked
— How does the prior parameter affect the performance?

— Does the prior hamper performance on parts of the network
without prior support?

— How robust is the framework to noisy priors?



Workflow of experiments
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Key questions asked in experiments

* How does one pick the prior parameter values?

* How does one identify novel edges and not
incorporate only the prior?



How does the prior parameter affect the

performance?
0.75 =
Bl 0.50 -
=
<
0.25 - dataset
=~ Dreamd
-2y E.coli
= B.subtilis
25 5.0 75 10.0 1' 1u"' 15:'2 1u"3 1|:|:"4 14:1'5

weight of priors



Can the data discriminate between different
types of prior edges?
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i
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In other words, is the
incorporation of prior data-
driven?
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Ability to recover new edges is not hampered
o on adding prior
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What happens when one adds noisy priors?
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Fig. 5. Robustness to incorrect prior information. For each dataset, we considered half of the GSIs as TPIs, and added varying numbers of FPIs
that were not GSIs. We show the AUPR of both methods for multiple choices of the respective weight parameters, as well as methods that do not use
any PKIs (horizontal lines). Additionally, we show the performance of a naive interaction ranking method, which places all PKIs at the top of the list

(gray bars)

Low and high in BBSR and MEN means less dense or more dense



Summary

* Extending the Inferelator linear regression model to
Incorporate priors
— Regularized regression
— Probabilistic priors on weights

* Experiments suggest

— The prior incorporation is data-driven
— Adding prior is beneficial even if when it is noisy



Goals for this lecture

* |ncorporating priors in Dependency networks using
tree models



iRafNet

* GENIE3 was shown to be one of the best performing
expression-based algorithms

* Can we extend the GENIE3 Random Forests based
approach to incorporate priors?

* jRafNet uses a weighted sampling scheme to

incorporate information from different sources of
data

Petralia et al. 2015, Bioinformatics



Weighted sampling algorithm in iRafnet

* Each data source d provides a score for a regulator k
and target

* Convert these scores to sampling weights, w, _.;in a
data source and score-specific way

* For each node split, instead of sampling uniformly
from N potential regulators, select a dataset d
randomly and sample N regulators based on their

weights in d



iRafNet overview

Ciene expression

data sets I
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Petralia et al 2015, Bionformatics



Constructing sampling weights

The prior knowledge is described as a set of weighted networks
Weights for selecting a regulator is derived in a dataset specific manner

Undirected protein-protein interactions:

— Weights derived from a diffusion process over graphs (we will see this later
lectures)

Time-series expression data

— Weight w; ., assess how predictive gi's expression at time ¢ is of g;'s expression at a
future time point 7+/

— Derive a P-value to assess the strength of the regression weight
— Convert P-value into a weight

Knockout data

w; ., either are derived in multiple ways:
* If g/’s expression changes significantly when g, is knocked w; ., is derived from the P-value

* Otherwise it is derived based on the overlap of g; and g,’s knockout targets or knockout
regulators



iRafNet application to real data

e Ground truth

— Significant interactions identified from ChlIP-chip
experiments of yeast

* Expression dataset

— This was a large study measuring gene expression in
multiple yeast strains

* Prior datasets (included other expression datasets)
— Expression time course during cell cycle
— Expression data of genetic knockouts of TFs

— Protein-protein interactions from public databases
(BioGRID, MINT, DIP)



Does adding prior help for iRafNet?

Method Data AUC

AUPR

GENIE3 Expression 0.547 (0.537,0.566
iRafNet Multiple weights  0.624 (0.613,0.636
Expression and KO 0.657 (0.645,0.673
Expression and TS 0.543 (0.528,0.557
Expression and PPI 0.574 (0.562,0.591

Evaluate on ChIP-chip network of yeast
Expression dataset
— This was a large study measuring gene expression
Prior datasets (included other expression datasets)
— Expression time course during cell cycle
— Knockout data from Hu et al
— Protein-protein interactions from public databases (BioGRID, MINT, DIP)

)
)
)
)
)

0.542 (0.537,0.548)
0.565 (0.561,0.569)
0.567 (0.562,0.574)
0.536 (0.530,0.541)
0.557 (0.551,0.561)



Concluding remarks

We have seen different ways to incorporate other

data types to improve the quality of the inferred
network

Bayesian networks with structure prior

— Use an energy function to assess concordance
— Sensitive to incorrect prior information
Dependency networks with priors

— Linear regression approach aims to reduce the penalty on
inferred edges

— Tree-based approach enables a “biased” selection of
regulators



