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Goals for this lecture

• Incorporating priors in Dependency networks using 
linear regression

• Incorporating priors in Dependency networks using 
tree models



Prior-based approaches for network inference

• Given
– Gene expression data and
– Complementary data that supports the presences of an edge

• Presence of a sequence motif on a gene promoter
• ChIP-chip/seq binding of factor X on gene Y’s promoter

• Do
– Predict which regulators drive the expression of a target gene, 

while incorporating complementary evidences as much possible
• How?

– Place a prior on the graph where the prior is obtained from 
complementary data



Recall Dependency  network

• A type of probabilistic graphical model
• Approximate Markov networks

– Are much easier to learn from data

• As in Bayesian networks has
– A graph structure
– Parameters capturing dependencies between a variable and its 

parents

• Unlike Bayesian network 
– Can have cyclic dependencies
– Computing a joint probability is harder

• It is approximated with a “pseudo” likelihood.

Dependency Networks for Inference, Collaborative Filtering and Data visualization
Heckerman, Chickering, Meek, Rounthwaite, Kadie 2000



Learning dependency networks

?? ?…
Bj • Let Bj denote the Markov Blanket of a 

variable Xj.
• Bj is the set of variables that make Xj
independent of all other variables, X-j

• Bj can be estimated by finding the set 
of variables that best predict Xj
• This requires us to specify the form of 
P(Xj|Bj)

fj=P(Xj|Bj)

• One can think about this problem as estimating the 
Markov blanket of each random variable

Xj

P (Xj |X�j) = P (Xj |Bj)



Overview of the Inferelator algorithm

• Based on linear regression models
• Handles time series and steady state data
• Prior is incorporated at the edge weight using two 

strategies
– Modified Elastic Net
– Bayesian Best Subset Regression

Greefield et al. 2013, Bonneau et al. 2007



Notation

• p regulators
• xi: Gene expression levels for the ith gene
– xi(t): Expression of gene i at time t/sample t

• R: Number of samples
• !: Regression weight vector 



Modeling the relationship between regulator 
and target in Inferalator

• Time series

• Steady state
contain two distinct sets of experiments: (i) time-series (Xts), and
(ii) steady-state (Xss). In a time-series experiment, mRNA expression is
measured at consecutive time points after some stimulus. To simplify
notation, and without loss of generality, we assume that Xts is one such
time series experiment, with K observations, t1, t2, . . . , tk [i.e. xðt1Þ,
xðt2Þ, . . . ,xðtKÞ are the columns of Xts]. In a steady-state experiment,
the mRNA expression is observed once, when the system has reached
steady state. We consider all steady state experiments as Xss with L ob-
servations, e1, e2, . . . eL [i.e. xðe1Þ, xðe2Þ, . . .xðeLÞ are the columns of Xss].
The method takes as input Xts and Xss and the output is a matrix S, where
each entry si, j 2 S corresponds to the confidence that there exists a regu-
latory interaction between gene xj and gene xi (i.e. xj ! xi). S can be
thought of as a ranking of every possible regulatory interaction, where
a higher value of si, j indicates a stronger confidence in xj ! xi. A flow-
chart summarizing our approach is depicted in Figure 1.

2.2 Limiting the number of regulators for each gene
When we infer transcriptional regulatory networks, we consider only
a-priori known (or predicted) transcription factors as potential regulators.
We define P to be the set of indices of the regulators in x. For each gene i,
we have a specific set of regulators Pi # P. The members of Pi are deter-
mined using tlCLR as in (Greenfield et al., 2010; Madar et al., 2010),
and limited to the union of the 10 highest-scoring predictors and all
predictors with prior knowledge. Note that we do not attempt to infer
self-regulation in either method presented here, i.e. 8xi, i=2Pi.

2.3 Core model
We assume that the time evolution of the x0s is governed by the
following ODE

dxi
dt
¼ % !ixi þ

X

p2Pi

"i, pxp, i ¼ 1, . . . ,N ð1Þ

Where !i40 is the first order degradation rate [estimated from literature
(Hambraeus et al., 2003; Selinger et al., 2003)], " is a set of parameters
to be estimated and Pi is the set of potential regulators for xi. For clarity,
we describe the model formulation only for a linear combination of regu-
lators, and note that as in Bonneau et al. (2006), this is easily extended
to combinatorial interactions, and other non-linear functional forms.
Recall that xi contains both time-series and steady-state observations,
which we describe separately.

In the case of time-series data, we proceed by applying the finite
difference approximation to the left hand side of Equation (1), isolating

the unknown parameters " on the right hand side, and dividing both sides
by !i. We can now write Equation (1) as

#i
xiðtkþ 1Þ % xiðtkÞ

tkþ 1 % tk
þ xiðtkÞ ¼ #i

X

p2Pi

"i, pxpðtkÞ,

i ¼ 1, . . . ,N

ð2Þ

Where #i ¼ 1
!i

is related to the half-life t1
2
by t1

2
¼ #ilogð2Þ. Note that

here the design variable xpðtkÞ is time-lagged relative to the response
variable xiðtkþ 1Þ by one time point. This can easily be extended to con-
sider a lag of multiple time points; however, multiple time-lags did not
increase performance on the datasets tested here.

We summarize the left-hand side of the equation as yi, which we refer
to as the time-series response variable, and approximate it as a linear
combination of the xj’s, which we refer to as the time-series predictor
(i.e. design variable). Over the time series conditions:

yiðtkþ mÞ ¼
X

p2Pi

"i, pxpðtkÞ

i ¼ 1, . . . ,N, k ¼ 1, . . . ,K % 1

ð3Þ

Note that the design and response variables are indexed only over the
time-series conditions, and the design variables (xj’s) are time-lagged with
respect to the response variable.

In the case of steady-state observations, dxi
dt ¼ 0, and Equation (1)

becomes

xiðelÞ ¼ #i
X

p2Pi

"i, pxpðelÞ,

i ¼ 1, . . . ,N, l ¼ 1, . . . ,L

ð4Þ

The two sides of the equation correspond to the steady-state response
and design variables. To construct the final response and design variables,
we concatenate the response and design variables over time-series
and steady-state observations. The final step before model selection is
to normalize and scale the response and design variables such that they
have zero mean and variance of 1.

There are many ways to solve Equation (3), including regression.
It was previously shown that sparse models of regulatory networks can
accurately capture the topology and dynamics, and that using L1 shrink-
age (and variations such as the Elastic-Net) can be used to enforce model
parsimony (Greenfield et al., 2010; Gustafsson and Hörnquist, 2010).
Below, we describe MEN and BBSR, two different model selection
procedures, both of which treat y as the response variables and the
x as the predictor variables, learn parsimonious models, and have the
ability to incorporate prior information.

2.4 Modified elastic net

Algorithm Overview Here we describe the MEN approach for estimating
the parameters " in Equation (3). We use MEN to both: (i) enforce a
sparsity constraint on the parameters ", and (ii) incorporate prior know-
ledge of regulatory interactions xj ! yi. This approach has been previ-
ously described, but has never been rigorously tested in the context of
incorporating constraints into GRN inference. We begin by describing
the application of the Elastic-Net to model selection in the context of the
core model described in Equation 3.

Elastic-Net regression The Elastic-Net (Zou and Hastie, 2005) finds a
parsimonious solution to a regression problem [e.g. Equation (3)], and
enforces sparsity through a penalty on the regression coefficients, which is
a combination of the l1 lasso penalty, and the l2 ridge penalty. Let R be
the total number of elements in response and design variable. We estimate
the parameters " in Equation (3) by minimizing the following objective
function (i.e. the sum of squares of the residuals).

Eið"Þ ¼
XR

r¼1

!!!!!yiðrÞ %
X

p2Pi

"i, pxpðrÞ

!!!!!

2

ð5Þ

resample data
matricestime-lagged

response and
design

variables

MEN/BBSR

prior known
interactions

Rank combine
ensemble

Fig. 1. Method flow chart. Our method takes as input an expression
dataset. To build a mechanistic model of gene expression, we create
time-lagged response and design variables, such that the expression of
the TF is time-lagged with respect to the expression of the target. We then
resample the response and designing matrices, running model selection
(using either MEN or BBSR) for each resample. This generates an ensemble
of networks, which we rank combine into one final network
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 contain two distinct sets of experiments: (i) time-series (Xts), and
(ii) steady-state (Xss). In a time-series experiment, mRNA expression is
measured at consecutive time points after some stimulus. To simplify
notation, and without loss of generality, we assume that Xts is one such
time series experiment, with K observations, t1, t2, . . . , tk [i.e. xðt1Þ,
xðt2Þ, . . . ,xðtKÞ are the columns of Xts]. In a steady-state experiment,
the mRNA expression is observed once, when the system has reached
steady state. We consider all steady state experiments as Xss with L ob-
servations, e1, e2, . . . eL [i.e. xðe1Þ, xðe2Þ, . . .xðeLÞ are the columns of Xss].
The method takes as input Xts and Xss and the output is a matrix S, where
each entry si, j 2 S corresponds to the confidence that there exists a regu-
latory interaction between gene xj and gene xi (i.e. xj ! xi). S can be
thought of as a ranking of every possible regulatory interaction, where
a higher value of si, j indicates a stronger confidence in xj ! xi. A flow-
chart summarizing our approach is depicted in Figure 1.

2.2 Limiting the number of regulators for each gene
When we infer transcriptional regulatory networks, we consider only
a-priori known (or predicted) transcription factors as potential regulators.
We define P to be the set of indices of the regulators in x. For each gene i,
we have a specific set of regulators Pi # P. The members of Pi are deter-
mined using tlCLR as in (Greenfield et al., 2010; Madar et al., 2010),
and limited to the union of the 10 highest-scoring predictors and all
predictors with prior knowledge. Note that we do not attempt to infer
self-regulation in either method presented here, i.e. 8xi, i=2Pi.

2.3 Core model
We assume that the time evolution of the x0s is governed by the
following ODE

dxi
dt
¼ % !ixi þ

X

p2Pi

"i, pxp, i ¼ 1, . . . ,N ð1Þ

Where !i40 is the first order degradation rate [estimated from literature
(Hambraeus et al., 2003; Selinger et al., 2003)], " is a set of parameters
to be estimated and Pi is the set of potential regulators for xi. For clarity,
we describe the model formulation only for a linear combination of regu-
lators, and note that as in Bonneau et al. (2006), this is easily extended
to combinatorial interactions, and other non-linear functional forms.
Recall that xi contains both time-series and steady-state observations,
which we describe separately.

In the case of time-series data, we proceed by applying the finite
difference approximation to the left hand side of Equation (1), isolating

the unknown parameters " on the right hand side, and dividing both sides
by !i. We can now write Equation (1) as

#i
xiðtkþ 1Þ % xiðtkÞ

tkþ 1 % tk
þ xiðtkÞ ¼ #i

X

p2Pi

"i, pxpðtkÞ,

i ¼ 1, . . . ,N

ð2Þ

Where #i ¼ 1
!i

is related to the half-life t1
2
by t1

2
¼ #ilogð2Þ. Note that

here the design variable xpðtkÞ is time-lagged relative to the response
variable xiðtkþ 1Þ by one time point. This can easily be extended to con-
sider a lag of multiple time points; however, multiple time-lags did not
increase performance on the datasets tested here.

We summarize the left-hand side of the equation as yi, which we refer
to as the time-series response variable, and approximate it as a linear
combination of the xj’s, which we refer to as the time-series predictor
(i.e. design variable). Over the time series conditions:

yiðtkþ mÞ ¼
X

p2Pi

"i, pxpðtkÞ

i ¼ 1, . . . ,N, k ¼ 1, . . . ,K % 1

ð3Þ

Note that the design and response variables are indexed only over the
time-series conditions, and the design variables (xj’s) are time-lagged with
respect to the response variable.

In the case of steady-state observations, dxi
dt ¼ 0, and Equation (1)

becomes

xiðelÞ ¼ #i
X

p2Pi

"i, pxpðelÞ,

i ¼ 1, . . . ,N, l ¼ 1, . . . ,L

ð4Þ

The two sides of the equation correspond to the steady-state response
and design variables. To construct the final response and design variables,
we concatenate the response and design variables over time-series
and steady-state observations. The final step before model selection is
to normalize and scale the response and design variables such that they
have zero mean and variance of 1.

There are many ways to solve Equation (3), including regression.
It was previously shown that sparse models of regulatory networks can
accurately capture the topology and dynamics, and that using L1 shrink-
age (and variations such as the Elastic-Net) can be used to enforce model
parsimony (Greenfield et al., 2010; Gustafsson and Hörnquist, 2010).
Below, we describe MEN and BBSR, two different model selection
procedures, both of which treat y as the response variables and the
x as the predictor variables, learn parsimonious models, and have the
ability to incorporate prior information.

2.4 Modified elastic net

Algorithm Overview Here we describe the MEN approach for estimating
the parameters " in Equation (3). We use MEN to both: (i) enforce a
sparsity constraint on the parameters ", and (ii) incorporate prior know-
ledge of regulatory interactions xj ! yi. This approach has been previ-
ously described, but has never been rigorously tested in the context of
incorporating constraints into GRN inference. We begin by describing
the application of the Elastic-Net to model selection in the context of the
core model described in Equation 3.

Elastic-Net regression The Elastic-Net (Zou and Hastie, 2005) finds a
parsimonious solution to a regression problem [e.g. Equation (3)], and
enforces sparsity through a penalty on the regression coefficients, which is
a combination of the l1 lasso penalty, and the l2 ridge penalty. Let R be
the total number of elements in response and design variable. We estimate
the parameters " in Equation (3) by minimizing the following objective
function (i.e. the sum of squares of the residuals).

Eið"Þ ¼
XR

r¼1

!!!!!yiðrÞ %
X
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Fig. 1. Method flow chart. Our method takes as input an expression
dataset. To build a mechanistic model of gene expression, we create
time-lagged response and design variables, such that the expression of
the TF is time-lagged with respect to the expression of the target. We then
resample the response and designing matrices, running model selection
(using either MEN or BBSR) for each resample. This generates an ensemble
of networks, which we rank combine into one final network
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m is the time lag

Network inference: Estimate coefficients �i,p

Number of genes Number of samples

Change in expression with 
time



Two approaches to integrate prior graph 
structure

• Modified Elastic Net (MEN)

• Bayesian Best Subset Regression (BBSR)



Recall regularized regression

• The regularized regression framework can be 
generally described as follows:

minimize�0,�i

2

4 1

2N

NX

i=1

(yi � �0 �
pX

j=1

xij�j)
2

3

5+ �f(�)

Depending upon f we may 
have different types of 
regularized regression 
frameworks 

Regularization term



Regularized regression

• takes the form of some norm of
• L1 norm

• L2 norm

• Elastic net

f(�) �



Elastic net regression

• If there are correlated predictors, LASSO will
arbitrarily decide between the two to include or 
exclude

• Elastic net provides a tradeoff between ridge and 
LASSO.



Elastic net regression

• Elastic net regression objective for the ith gene

• Which can be equivalently written as

contain two distinct sets of experiments: (i) time-series (Xts), and
(ii) steady-state (Xss). In a time-series experiment, mRNA expression is
measured at consecutive time points after some stimulus. To simplify
notation, and without loss of generality, we assume that Xts is one such
time series experiment, with K observations, t1, t2, . . . , tk [i.e. xðt1Þ,
xðt2Þ, . . . ,xðtKÞ are the columns of Xts]. In a steady-state experiment,
the mRNA expression is observed once, when the system has reached
steady state. We consider all steady state experiments as Xss with L ob-
servations, e1, e2, . . . eL [i.e. xðe1Þ, xðe2Þ, . . .xðeLÞ are the columns of Xss].
The method takes as input Xts and Xss and the output is a matrix S, where
each entry si, j 2 S corresponds to the confidence that there exists a regu-
latory interaction between gene xj and gene xi (i.e. xj ! xi). S can be
thought of as a ranking of every possible regulatory interaction, where
a higher value of si, j indicates a stronger confidence in xj ! xi. A flow-
chart summarizing our approach is depicted in Figure 1.

2.2 Limiting the number of regulators for each gene
When we infer transcriptional regulatory networks, we consider only
a-priori known (or predicted) transcription factors as potential regulators.
We define P to be the set of indices of the regulators in x. For each gene i,
we have a specific set of regulators Pi # P. The members of Pi are deter-
mined using tlCLR as in (Greenfield et al., 2010; Madar et al., 2010),
and limited to the union of the 10 highest-scoring predictors and all
predictors with prior knowledge. Note that we do not attempt to infer
self-regulation in either method presented here, i.e. 8xi, i=2Pi.

2.3 Core model
We assume that the time evolution of the x0s is governed by the
following ODE

dxi
dt
¼ % !ixi þ

X

p2Pi

"i, pxp, i ¼ 1, . . . ,N ð1Þ

Where !i40 is the first order degradation rate [estimated from literature
(Hambraeus et al., 2003; Selinger et al., 2003)], " is a set of parameters
to be estimated and Pi is the set of potential regulators for xi. For clarity,
we describe the model formulation only for a linear combination of regu-
lators, and note that as in Bonneau et al. (2006), this is easily extended
to combinatorial interactions, and other non-linear functional forms.
Recall that xi contains both time-series and steady-state observations,
which we describe separately.

In the case of time-series data, we proceed by applying the finite
difference approximation to the left hand side of Equation (1), isolating

the unknown parameters " on the right hand side, and dividing both sides
by !i. We can now write Equation (1) as

#i
xiðtkþ 1Þ % xiðtkÞ

tkþ 1 % tk
þ xiðtkÞ ¼ #i

X

p2Pi

"i, pxpðtkÞ,

i ¼ 1, . . . ,N

ð2Þ

Where #i ¼ 1
!i

is related to the half-life t1
2
by t1

2
¼ #ilogð2Þ. Note that

here the design variable xpðtkÞ is time-lagged relative to the response
variable xiðtkþ 1Þ by one time point. This can easily be extended to con-
sider a lag of multiple time points; however, multiple time-lags did not
increase performance on the datasets tested here.

We summarize the left-hand side of the equation as yi, which we refer
to as the time-series response variable, and approximate it as a linear
combination of the xj’s, which we refer to as the time-series predictor
(i.e. design variable). Over the time series conditions:

yiðtkþ mÞ ¼
X

p2Pi

"i, pxpðtkÞ

i ¼ 1, . . . ,N, k ¼ 1, . . . ,K % 1

ð3Þ

Note that the design and response variables are indexed only over the
time-series conditions, and the design variables (xj’s) are time-lagged with
respect to the response variable.

In the case of steady-state observations, dxi
dt ¼ 0, and Equation (1)

becomes

xiðelÞ ¼ #i
X

p2Pi

"i, pxpðelÞ,

i ¼ 1, . . . ,N, l ¼ 1, . . . ,L

ð4Þ

The two sides of the equation correspond to the steady-state response
and design variables. To construct the final response and design variables,
we concatenate the response and design variables over time-series
and steady-state observations. The final step before model selection is
to normalize and scale the response and design variables such that they
have zero mean and variance of 1.

There are many ways to solve Equation (3), including regression.
It was previously shown that sparse models of regulatory networks can
accurately capture the topology and dynamics, and that using L1 shrink-
age (and variations such as the Elastic-Net) can be used to enforce model
parsimony (Greenfield et al., 2010; Gustafsson and Hörnquist, 2010).
Below, we describe MEN and BBSR, two different model selection
procedures, both of which treat y as the response variables and the
x as the predictor variables, learn parsimonious models, and have the
ability to incorporate prior information.

2.4 Modified elastic net

Algorithm Overview Here we describe the MEN approach for estimating
the parameters " in Equation (3). We use MEN to both: (i) enforce a
sparsity constraint on the parameters ", and (ii) incorporate prior know-
ledge of regulatory interactions xj ! yi. This approach has been previ-
ously described, but has never been rigorously tested in the context of
incorporating constraints into GRN inference. We begin by describing
the application of the Elastic-Net to model selection in the context of the
core model described in Equation 3.

Elastic-Net regression The Elastic-Net (Zou and Hastie, 2005) finds a
parsimonious solution to a regression problem [e.g. Equation (3)], and
enforces sparsity through a penalty on the regression coefficients, which is
a combination of the l1 lasso penalty, and the l2 ridge penalty. Let R be
the total number of elements in response and design variable. We estimate
the parameters " in Equation (3) by minimizing the following objective
function (i.e. the sum of squares of the residuals).

Eið"Þ ¼
XR

r¼1

!!!!!yiðrÞ %
X

p2Pi

"i, pxpðrÞ

!!!!!

2

ð5Þ

resample data
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Fig. 1. Method flow chart. Our method takes as input an expression
dataset. To build a mechanistic model of gene expression, we create
time-lagged response and design variables, such that the expression of
the TF is time-lagged with respect to the expression of the target. We then
resample the response and designing matrices, running model selection
(using either MEN or BBSR) for each resample. This generates an ensemble
of networks, which we rank combine into one final network
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Minimize

Subject to under the elastic net penalty on regression coefficients,

ð1" !Þ
X

p2Pi

j"i, pjþ !
X

p2Pi

"2i, p % si
X

p2Pi

j"olsi, pj ð6Þ

where "olsi, p is the value of "i, p determined by ordinary least squares
regression. ! determines the balance between the lasso and ridge penalties,
where ! ¼ 0 amounts to lasso regression, and ! ¼ 1 amounts to
ridge regression. In practice, ! is a vector, for each value of which we
use 10-fold CV to pick si. The final model for yi is determined by the
value ! and si, which minimize the prediction error. This approach
amounts to a grid search of the parameter space as described in Zou
and Hastie (2005).

Modified Elastic Net To incorporate prior information directly into
the model selection approach, we minimize Equation (5) subject to a
new penalty function, closely related to Equation (6)

ð1" !Þ
X

p2Pi

j#i, p"i, pjþ !
X

p2Pi

"2i, p % si
X

p2Pi

j"olsi, pj ð7Þ

Where #i, p is a modifier on the shrinkage incurred on each parameter.
If there is prior belief for a regulatory interaction xp ! yi, then #i, p51
corresponds to less shrinkage being incurred on the corresponding "i, p,
hence making it more likely that this parameter is not shrunk out of the
model. Note that only the degree of shrinkage of a parameter is modified,
not the correlation between a target, TF pair, nor the order in which
predictors are selected by the model. In cases where multiple predictors
are correlated (a common occurrence in biology), #i, p will cause pre-
dictors with no prior information to be shrunk from the model before
predictors with prior information. Note that the #i, p modifies only the l1
norm, as in Zou and Zhang (2009). This implementation is based on the
elasticnet R package (Zou and Zhang, 2009).

2.5 Bayesian best subset regression

We now describe the BBSR method, an alternative inference method that
computes all possible regression models for a given gene corresponding to
the inclusion and exclusion of each predictor. Prior knowledge is incor-
porated by using informative priors for the regression parameters, and
sparsity is enforced by a model selection step based on the Bayesian
Information Criterion (BIC).

Bayesian Regression With Informative Prior Here we introduce the
linear regression we use during the model building step of the algorithm.
We assume the prediction error

$i ¼ yi " X"i ð8Þ

to be independent and identically distributed with mean 0 and variance
%2. The response variable of gene i is denoted as yi, the design variables of
TFs as X and the regression solution as "i. For clarity, we will omit the
index i for the remainder of this section. We assume that the target gene
response is distributed according to a multivariate normal

yj", %2,X
! "

/ Nn X", %2I
! "

ð9Þ

with the predicted response as mean, and a variance co-variance matrix
that has the error variance %2 on its diagonal and is 0 otherwise. In this
formulation, n is the number of observations (experiments). This can
be solved by a Bayesian regression where we can incorporate existing
knowledge by tuning the prior on ".

We use a modification of Zellner’s g Prior (Zellner, 1983) to include
subjective information in our Bayesian regression problem. In the original
formulation, the prior distribution of " has the following form

& "j%2
! "

/ Nn "
0, gðX0XÞ"1%2

! "
, ð10Þ

i.e. a distribution proportional to a multivariate normal with an initial
guess "0 as mean and a data-dependent covariance matrix that is scaled
by a user chosen factor of g 2 ð0,1Þ. The prior distribution of %2 is the

same as is typically used with the non-informative prior, & %2
! "
/ 1

%2. The
choice of a large value for g will lead to results centred around the
ordinary least squares solution, and the error variance will be the
lowest. Values of g close to 0 on the other hand will lead to solutions
that are centred around "0 with higher error variance.

The joint posterior distribution has the functional form

& ", %2jy
! "

¼ & "jy, %2
! "

& %2jy
! "

, ð11Þ

and the marginal posterior distributions are

& "jy, %2
! "

/ N
g

gþ 1

"0

g
þ "ols

# $
,
%2g

gþ 1
X0Xð Þ"1

# $
, ð12Þ

& %2jy
! "

/ IG
n

2
,
SSR

2
þ
"0 " "ols
! "

X 0X 1
gþ1 "

0
i " "ols

! "

2

 !

, ð13Þ

where IG is the Inverse Gamma distribution with shape and scale par-
ameter, and SSR is the sum of squares of the residuals of the ordinary
least squares solution "ols.

With this set-up, we can propose a prior guess "0 of the vector of
regression coefficients, and encode our belief in this guess with g.
To allow for different levels of confidence in the different elements
of "0, we extend the original formulation of the g prior to use a vector
!g with one entry per predictor. The scale parameter of the Inverse
Gamma distribution of the marginal posterior distribution of %2 then
becomes

scale ¼ SSR

2
þ
"0 " "ols
! "

GX 0XG "0i " "ols
! "

2
, ð14Þ

where G is a square diagonal matrix whose diagonal entries starting in the
upper left corner are

ffiffiffiffiffiffi
1

!gþ1

q
and all remaining entries are 0.

In practice, we choose "0 to be a vector with all entries having the
value 0. This reflects our prior belief that the regulatory network is
generally quite sparse. We set the vector !g to values of g for those
predictors that we have additional knowledge for and believe that they
regulate gene i, and to 1

g for the other predictors. A value of g ¼ 1 treats
all predictors equally and we refer to it as ‘no priors’, whereas g41 allows
the predictors with priors to explain for more of the variance of the
response.

Model Selection We use the BIC to select the final model from the
2p possible regression models for a gene i. For a given model m, the BIC
is defined as

BICm ¼ n lnð%2Þ þ k lnðnÞ ð15Þ

where n is the number of observations and k the number of predictors.
To be more robust, we avoid using a point estimator for %2 directly,
but use the expected value of BICm based on the posterior distribution
of %2

E½BICm( ¼ nE½lnð%2Þ( þ k lnðnÞ ð16Þ

E½BICm( ¼ n lnðshapeÞ "DigammaðscaleÞð Þ þ k lnðnÞ, ð17Þ

where shape and scale parameterize the marginal posterior distribution
of %2 as in Equation 14. As a final step, the predictors of the model with
the lowest E½BIC( are selected as the TFs regulating gene i. If p is large
(410), we use an initial filtration step to discover the 10 most promising
predictors (see Supplementary Material for details).

2.6 Ranking interactions and bootstrapping
After model selection is carried out by either MEN or BBSR, the output is a
matrix of dynamical parameters ", where each "i, j 2 " corresponds to the
direction (i.e. activation or repression) and strength (i.e. magnitude) of a
regulatory interaction. These parameters can be used to predict the re-
sponse of the system to new perturbations. If the goal is to rank
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Modified Elastic Net (MEN)

• The modification to Elastic net

under the elastic net penalty on regression coefficients,

ð1" !Þ
X

p2Pi

j"i, pjþ !
X

p2Pi

"2i, p % si
X

p2Pi

j"olsi, pj ð6Þ

where "olsi, p is the value of "i, p determined by ordinary least squares
regression. ! determines the balance between the lasso and ridge penalties,
where ! ¼ 0 amounts to lasso regression, and ! ¼ 1 amounts to
ridge regression. In practice, ! is a vector, for each value of which we
use 10-fold CV to pick si. The final model for yi is determined by the
value ! and si, which minimize the prediction error. This approach
amounts to a grid search of the parameter space as described in Zou
and Hastie (2005).

Modified Elastic Net To incorporate prior information directly into
the model selection approach, we minimize Equation (5) subject to a
new penalty function, closely related to Equation (6)

ð1" !Þ
X

p2Pi

j#i, p"i, pjþ !
X

p2Pi

"2i, p % si
X

p2Pi

j"olsi, pj ð7Þ

Where #i, p is a modifier on the shrinkage incurred on each parameter.
If there is prior belief for a regulatory interaction xp ! yi, then #i, p51
corresponds to less shrinkage being incurred on the corresponding "i, p,
hence making it more likely that this parameter is not shrunk out of the
model. Note that only the degree of shrinkage of a parameter is modified,
not the correlation between a target, TF pair, nor the order in which
predictors are selected by the model. In cases where multiple predictors
are correlated (a common occurrence in biology), #i, p will cause pre-
dictors with no prior information to be shrunk from the model before
predictors with prior information. Note that the #i, p modifies only the l1
norm, as in Zou and Zhang (2009). This implementation is based on the
elasticnet R package (Zou and Zhang, 2009).

2.5 Bayesian best subset regression

We now describe the BBSR method, an alternative inference method that
computes all possible regression models for a given gene corresponding to
the inclusion and exclusion of each predictor. Prior knowledge is incor-
porated by using informative priors for the regression parameters, and
sparsity is enforced by a model selection step based on the Bayesian
Information Criterion (BIC).

Bayesian Regression With Informative Prior Here we introduce the
linear regression we use during the model building step of the algorithm.
We assume the prediction error

$i ¼ yi " X"i ð8Þ

to be independent and identically distributed with mean 0 and variance
%2. The response variable of gene i is denoted as yi, the design variables of
TFs as X and the regression solution as "i. For clarity, we will omit the
index i for the remainder of this section. We assume that the target gene
response is distributed according to a multivariate normal

yj", %2,X
! "

/ Nn X", %2I
! "

ð9Þ

with the predicted response as mean, and a variance co-variance matrix
that has the error variance %2 on its diagonal and is 0 otherwise. In this
formulation, n is the number of observations (experiments). This can
be solved by a Bayesian regression where we can incorporate existing
knowledge by tuning the prior on ".

We use a modification of Zellner’s g Prior (Zellner, 1983) to include
subjective information in our Bayesian regression problem. In the original
formulation, the prior distribution of " has the following form

& "j%2
! "

/ Nn "
0, gðX0XÞ"1%2

! "
, ð10Þ

i.e. a distribution proportional to a multivariate normal with an initial
guess "0 as mean and a data-dependent covariance matrix that is scaled
by a user chosen factor of g 2 ð0,1Þ. The prior distribution of %2 is the

same as is typically used with the non-informative prior, & %2
! "
/ 1

%2. The
choice of a large value for g will lead to results centred around the
ordinary least squares solution, and the error variance will be the
lowest. Values of g close to 0 on the other hand will lead to solutions
that are centred around "0 with higher error variance.

The joint posterior distribution has the functional form
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, ð11Þ

and the marginal posterior distributions are
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where IG is the Inverse Gamma distribution with shape and scale par-
ameter, and SSR is the sum of squares of the residuals of the ordinary
least squares solution "ols.

With this set-up, we can propose a prior guess "0 of the vector of
regression coefficients, and encode our belief in this guess with g.
To allow for different levels of confidence in the different elements
of "0, we extend the original formulation of the g prior to use a vector
!g with one entry per predictor. The scale parameter of the Inverse
Gamma distribution of the marginal posterior distribution of %2 then
becomes

scale ¼ SSR

2
þ
"0 " "ols
! "

GX 0XG "0i " "ols
! "

2
, ð14Þ

where G is a square diagonal matrix whose diagonal entries starting in the
upper left corner are

ffiffiffiffiffiffi
1

!gþ1

q
and all remaining entries are 0.

In practice, we choose "0 to be a vector with all entries having the
value 0. This reflects our prior belief that the regulatory network is
generally quite sparse. We set the vector !g to values of g for those
predictors that we have additional knowledge for and believe that they
regulate gene i, and to 1

g for the other predictors. A value of g ¼ 1 treats
all predictors equally and we refer to it as ‘no priors’, whereas g41 allows
the predictors with priors to explain for more of the variance of the
response.

Model Selection We use the BIC to select the final model from the
2p possible regression models for a gene i. For a given model m, the BIC
is defined as

BICm ¼ n lnð%2Þ þ k lnðnÞ ð15Þ

where n is the number of observations and k the number of predictors.
To be more robust, we avoid using a point estimator for %2 directly,
but use the expected value of BICm based on the posterior distribution
of %2

E½BICm( ¼ nE½lnð%2Þ( þ k lnðnÞ ð16Þ

E½BICm( ¼ n lnðshapeÞ "DigammaðscaleÞð Þ þ k lnðnÞ, ð17Þ

where shape and scale parameterize the marginal posterior distribution
of %2 as in Equation 14. As a final step, the predictors of the model with
the lowest E½BIC( are selected as the TFs regulating gene i. If p is large
(410), we use an initial filtration step to discover the 10 most promising
predictors (see Supplementary Material for details).

2.6 Ranking interactions and bootstrapping
After model selection is carried out by either MEN or BBSR, the output is a
matrix of dynamical parameters ", where each "i, j 2 " corresponds to the
direction (i.e. activation or repression) and strength (i.e. magnitude) of a
regulatory interaction. These parameters can be used to predict the re-
sponse of the system to new perturbations. If the goal is to rank
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Set this <1 so that if there is a prior edge between xp->yi, the regression 
coefficient will be penalized less



Two approaches to integrate prior graph 
structure

• Modified Elastic Net (MEN)

• Bayesian Best Subset Regression (BBSR)



Probabilistic interpretation for the one 
predictor case

• Recall our linear model for one predictor

• Assume noise is distributed according a Gaussian 
with mean 0 and variance σ

• How to estimate       from N datapoints?
– Maximize likelihood of data given model

yi = xi�1 + ⇥i
Noise

yi � N (xi�1, ⇥)

�1



Maximum Likelihood estimate of 

• Likelihood of data

�1

LL =
NY

i=1

P (yi|xi, �1, ⇥)

Taking log

LL =
NY

i=1

1p
2⇥⇤

exp
✓
� (yi � xi�1)2

2⇤2

◆

=
NX

i=1

1p
2⇥⇤

�
NX

i=1

(yi � xi�1)2

2⇤2

�1 =
PN

i=1 yixiPN
i=1 xi

2

Deriving wrt β1 and setting to 0

Would get the same answer if 
minimizing RSS



Probabilistic interpretation in case of p inputs

• Assume output Y is

• Again can compute likelihood, maximize it to find
• Again the ML estimate would be the same as we 

derived by minimizing the RSS 

yi � N (xi�,⇥)

�



Bayesian framework to estimate parameters

• Instead of optimizing the likelihood, we put a prior 
on the parameters and optimize the posterior 
probability of the parameters

P (�|D) � P (D|�)P (�)
Gaussian data likelihood Parameter prior

What types of priors can we use?



Priors on parameters in regression

• Gaussian prior

– Also called ridge regression
• Laplace prior

– Also called Lasso regression

P (�) = N (0, ⇥2I)

P (�) / exp(��T �

2⇥2
)

P (�i) = Laplace(0, t)

P (�i) ⇥ exp(� |�i|
t

)



Bayesian Best Subset Regression (BBSR)

• Based on a Bayesian framework of model selection
– Search among all subsets of regulators and pick the best one to 

minimize trade off between data fit and model complexity
• Assume that the expression level y is distributed 

according to a Gaussian distribution

• Place a prior distribution on parameters, and incorporate 
prior knowledge of interactions in the parameters

under the elastic net penalty on regression coefficients,

ð1" !Þ
X

p2Pi

j"i, pjþ !
X

p2Pi

"2i, p % si
X

p2Pi

j"olsi, pj ð6Þ

where "olsi, p is the value of "i, p determined by ordinary least squares
regression. ! determines the balance between the lasso and ridge penalties,
where ! ¼ 0 amounts to lasso regression, and ! ¼ 1 amounts to
ridge regression. In practice, ! is a vector, for each value of which we
use 10-fold CV to pick si. The final model for yi is determined by the
value ! and si, which minimize the prediction error. This approach
amounts to a grid search of the parameter space as described in Zou
and Hastie (2005).

Modified Elastic Net To incorporate prior information directly into
the model selection approach, we minimize Equation (5) subject to a
new penalty function, closely related to Equation (6)

ð1" !Þ
X

p2Pi

j#i, p"i, pjþ !
X

p2Pi

"2i, p % si
X

p2Pi

j"olsi, pj ð7Þ

Where #i, p is a modifier on the shrinkage incurred on each parameter.
If there is prior belief for a regulatory interaction xp ! yi, then #i, p51
corresponds to less shrinkage being incurred on the corresponding "i, p,
hence making it more likely that this parameter is not shrunk out of the
model. Note that only the degree of shrinkage of a parameter is modified,
not the correlation between a target, TF pair, nor the order in which
predictors are selected by the model. In cases where multiple predictors
are correlated (a common occurrence in biology), #i, p will cause pre-
dictors with no prior information to be shrunk from the model before
predictors with prior information. Note that the #i, p modifies only the l1
norm, as in Zou and Zhang (2009). This implementation is based on the
elasticnet R package (Zou and Zhang, 2009).

2.5 Bayesian best subset regression

We now describe the BBSR method, an alternative inference method that
computes all possible regression models for a given gene corresponding to
the inclusion and exclusion of each predictor. Prior knowledge is incor-
porated by using informative priors for the regression parameters, and
sparsity is enforced by a model selection step based on the Bayesian
Information Criterion (BIC).

Bayesian Regression With Informative Prior Here we introduce the
linear regression we use during the model building step of the algorithm.
We assume the prediction error

$i ¼ yi " X"i ð8Þ

to be independent and identically distributed with mean 0 and variance
%2. The response variable of gene i is denoted as yi, the design variables of
TFs as X and the regression solution as "i. For clarity, we will omit the
index i for the remainder of this section. We assume that the target gene
response is distributed according to a multivariate normal

yj", %2,X
! "

/ Nn X", %2I
! "

ð9Þ

with the predicted response as mean, and a variance co-variance matrix
that has the error variance %2 on its diagonal and is 0 otherwise. In this
formulation, n is the number of observations (experiments). This can
be solved by a Bayesian regression where we can incorporate existing
knowledge by tuning the prior on ".

We use a modification of Zellner’s g Prior (Zellner, 1983) to include
subjective information in our Bayesian regression problem. In the original
formulation, the prior distribution of " has the following form

& "j%2
! "

/ Nn "
0, gðX0XÞ"1%2

! "
, ð10Þ

i.e. a distribution proportional to a multivariate normal with an initial
guess "0 as mean and a data-dependent covariance matrix that is scaled
by a user chosen factor of g 2 ð0,1Þ. The prior distribution of %2 is the

same as is typically used with the non-informative prior, & %2
! "
/ 1

%2. The
choice of a large value for g will lead to results centred around the
ordinary least squares solution, and the error variance will be the
lowest. Values of g close to 0 on the other hand will lead to solutions
that are centred around "0 with higher error variance.

The joint posterior distribution has the functional form
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, ð11Þ

and the marginal posterior distributions are
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where IG is the Inverse Gamma distribution with shape and scale par-
ameter, and SSR is the sum of squares of the residuals of the ordinary
least squares solution "ols.

With this set-up, we can propose a prior guess "0 of the vector of
regression coefficients, and encode our belief in this guess with g.
To allow for different levels of confidence in the different elements
of "0, we extend the original formulation of the g prior to use a vector
!g with one entry per predictor. The scale parameter of the Inverse
Gamma distribution of the marginal posterior distribution of %2 then
becomes

scale ¼ SSR

2
þ
"0 " "ols
! "

GX 0XG "0i " "ols
! "

2
, ð14Þ

where G is a square diagonal matrix whose diagonal entries starting in the
upper left corner are

ffiffiffiffiffiffi
1

!gþ1

q
and all remaining entries are 0.

In practice, we choose "0 to be a vector with all entries having the
value 0. This reflects our prior belief that the regulatory network is
generally quite sparse. We set the vector !g to values of g for those
predictors that we have additional knowledge for and believe that they
regulate gene i, and to 1

g for the other predictors. A value of g ¼ 1 treats
all predictors equally and we refer to it as ‘no priors’, whereas g41 allows
the predictors with priors to explain for more of the variance of the
response.

Model Selection We use the BIC to select the final model from the
2p possible regression models for a gene i. For a given model m, the BIC
is defined as

BICm ¼ n lnð%2Þ þ k lnðnÞ ð15Þ

where n is the number of observations and k the number of predictors.
To be more robust, we avoid using a point estimator for %2 directly,
but use the expected value of BICm based on the posterior distribution
of %2

E½BICm( ¼ nE½lnð%2Þ( þ k lnðnÞ ð16Þ

E½BICm( ¼ n lnðshapeÞ "DigammaðscaleÞð Þ þ k lnðnÞ, ð17Þ

where shape and scale parameterize the marginal posterior distribution
of %2 as in Equation 14. As a final step, the predictors of the model with
the lowest E½BIC( are selected as the TFs regulating gene i. If p is large
(410), we use an initial filtration step to discover the 10 most promising
predictors (see Supplementary Material for details).

2.6 Ranking interactions and bootstrapping
After model selection is carried out by either MEN or BBSR, the output is a
matrix of dynamical parameters ", where each "i, j 2 " corresponds to the
direction (i.e. activation or repression) and strength (i.e. magnitude) of a
regulatory interaction. These parameters can be used to predict the re-
sponse of the system to new perturbations. If the goal is to rank
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Response variable Regulators
Prior over parameters is a Gaussian

A number between 0 and infinityPrior

p(�|�2) / Nn(�
0, g(X 0X)�1�2)

g 2 (0,1)



BBSR continued

• The posterior distribution over the parameters is 
given as:

• can be tuned to provide a trade-off between the 
prior  and the OLS solution

• When     is larger, beta is closer to the OLS solution
• When it is smaller, beta is closer to the prior
• The prior is set to be a vector of all 0s

g

g



BBSR continued

• Inferelator uses a p-dimensional vector  for p
predictors

Predictors with prior are set to g (push more towards the OLS solution)



BBSR model selection

• The final step in BBSR is to determine the best model 
out 2p possible sets

• p cannot be very high: the approach sets p to 10
• The best model is the one that minimizes prediction 

error and has the lowest model complexity



Experimental setup

• Three datasets
– DREAM4: In silico dataset with 100 nodes
– E. coli dataset from DREAM5
– B. subtilis dataset

• Evaluation based on AUPR
– Ranking of edges obtained from a bootstrapping strategy

• Questions asked
– How does the prior parameter affect the performance?
– Does the prior hamper performance on parts of the network 

without prior support?
– How robust is the framework to noisy priors?



contain two distinct sets of experiments: (i) time-series (Xts), and
(ii) steady-state (Xss). In a time-series experiment, mRNA expression is
measured at consecutive time points after some stimulus. To simplify
notation, and without loss of generality, we assume that Xts is one such
time series experiment, with K observations, t1, t2, . . . , tk [i.e. xðt1Þ,
xðt2Þ, . . . ,xðtKÞ are the columns of Xts]. In a steady-state experiment,
the mRNA expression is observed once, when the system has reached
steady state. We consider all steady state experiments as Xss with L ob-
servations, e1, e2, . . . eL [i.e. xðe1Þ, xðe2Þ, . . .xðeLÞ are the columns of Xss].
The method takes as input Xts and Xss and the output is a matrix S, where
each entry si, j 2 S corresponds to the confidence that there exists a regu-
latory interaction between gene xj and gene xi (i.e. xj ! xi). S can be
thought of as a ranking of every possible regulatory interaction, where
a higher value of si, j indicates a stronger confidence in xj ! xi. A flow-
chart summarizing our approach is depicted in Figure 1.

2.2 Limiting the number of regulators for each gene
When we infer transcriptional regulatory networks, we consider only
a-priori known (or predicted) transcription factors as potential regulators.
We define P to be the set of indices of the regulators in x. For each gene i,
we have a specific set of regulators Pi # P. The members of Pi are deter-
mined using tlCLR as in (Greenfield et al., 2010; Madar et al., 2010),
and limited to the union of the 10 highest-scoring predictors and all
predictors with prior knowledge. Note that we do not attempt to infer
self-regulation in either method presented here, i.e. 8xi, i=2Pi.

2.3 Core model
We assume that the time evolution of the x0s is governed by the
following ODE

dxi
dt
¼ % !ixi þ

X

p2Pi

"i, pxp, i ¼ 1, . . . ,N ð1Þ

Where !i40 is the first order degradation rate [estimated from literature
(Hambraeus et al., 2003; Selinger et al., 2003)], " is a set of parameters
to be estimated and Pi is the set of potential regulators for xi. For clarity,
we describe the model formulation only for a linear combination of regu-
lators, and note that as in Bonneau et al. (2006), this is easily extended
to combinatorial interactions, and other non-linear functional forms.
Recall that xi contains both time-series and steady-state observations,
which we describe separately.

In the case of time-series data, we proceed by applying the finite
difference approximation to the left hand side of Equation (1), isolating

the unknown parameters " on the right hand side, and dividing both sides
by !i. We can now write Equation (1) as

#i
xiðtkþ 1Þ % xiðtkÞ

tkþ 1 % tk
þ xiðtkÞ ¼ #i

X

p2Pi

"i, pxpðtkÞ,

i ¼ 1, . . . ,N

ð2Þ

Where #i ¼ 1
!i

is related to the half-life t1
2
by t1

2
¼ #ilogð2Þ. Note that

here the design variable xpðtkÞ is time-lagged relative to the response
variable xiðtkþ 1Þ by one time point. This can easily be extended to con-
sider a lag of multiple time points; however, multiple time-lags did not
increase performance on the datasets tested here.

We summarize the left-hand side of the equation as yi, which we refer
to as the time-series response variable, and approximate it as a linear
combination of the xj’s, which we refer to as the time-series predictor
(i.e. design variable). Over the time series conditions:

yiðtkþ mÞ ¼
X

p2Pi

"i, pxpðtkÞ

i ¼ 1, . . . ,N, k ¼ 1, . . . ,K % 1

ð3Þ

Note that the design and response variables are indexed only over the
time-series conditions, and the design variables (xj’s) are time-lagged with
respect to the response variable.

In the case of steady-state observations, dxi
dt ¼ 0, and Equation (1)

becomes

xiðelÞ ¼ #i
X

p2Pi

"i, pxpðelÞ,

i ¼ 1, . . . ,N, l ¼ 1, . . . ,L

ð4Þ

The two sides of the equation correspond to the steady-state response
and design variables. To construct the final response and design variables,
we concatenate the response and design variables over time-series
and steady-state observations. The final step before model selection is
to normalize and scale the response and design variables such that they
have zero mean and variance of 1.

There are many ways to solve Equation (3), including regression.
It was previously shown that sparse models of regulatory networks can
accurately capture the topology and dynamics, and that using L1 shrink-
age (and variations such as the Elastic-Net) can be used to enforce model
parsimony (Greenfield et al., 2010; Gustafsson and Hörnquist, 2010).
Below, we describe MEN and BBSR, two different model selection
procedures, both of which treat y as the response variables and the
x as the predictor variables, learn parsimonious models, and have the
ability to incorporate prior information.

2.4 Modified elastic net

Algorithm Overview Here we describe the MEN approach for estimating
the parameters " in Equation (3). We use MEN to both: (i) enforce a
sparsity constraint on the parameters ", and (ii) incorporate prior know-
ledge of regulatory interactions xj ! yi. This approach has been previ-
ously described, but has never been rigorously tested in the context of
incorporating constraints into GRN inference. We begin by describing
the application of the Elastic-Net to model selection in the context of the
core model described in Equation 3.

Elastic-Net regression The Elastic-Net (Zou and Hastie, 2005) finds a
parsimonious solution to a regression problem [e.g. Equation (3)], and
enforces sparsity through a penalty on the regression coefficients, which is
a combination of the l1 lasso penalty, and the l2 ridge penalty. Let R be
the total number of elements in response and design variable. We estimate
the parameters " in Equation (3) by minimizing the following objective
function (i.e. the sum of squares of the residuals).

Eið"Þ ¼
XR

r¼1

!!!!!yiðrÞ %
X

p2Pi

"i, pxpðrÞ

!!!!!

2

ð5Þ

resample data
matricestime-lagged

response and
design

variables

MEN/BBSR

prior known
interactions

Rank combine
ensemble

Fig. 1. Method flow chart. Our method takes as input an expression
dataset. To build a mechanistic model of gene expression, we create
time-lagged response and design variables, such that the expression of
the TF is time-lagged with respect to the expression of the target. We then
resample the response and designing matrices, running model selection
(using either MEN or BBSR) for each resample. This generates an ensemble
of networks, which we rank combine into one final network
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Workflow of experiments



Key questions asked in experiments

• How does one pick the prior parameter values?

• How does one identify novel edges and not 
incorporate only the prior?



How does the  prior parameter affect the 
performance?

regulatory interactions based on a confidence measure, simply ranking
by j!i, jj is not the best scheme, as this does not take into account the
overall performance of the model for yi. As a result we re-rank inter-
actions, taking into account the relative performance of each model,
and the proportion of variance explained by each !i, j. The result is a
matrix S where the final confidence score for xi, j is given by

si, j ¼ 1"
"2full model for yi

"2model for yi without predictor j

: ð18Þ

To further improve inference and become more robust against
over-fitting and sampling errors, we use a bootstrapping strategy. We
resample the input conditions with replacement and run model selection
on the new dataset. This procedure is repeated 20 times, and the resulting
lists of interactions (S matrices) are rank combined to a final ranked list
as in Marbach et al. (2010).

3 RESULTS

We have conducted systematic thorough testing of the ability of
both MEN and BBSR to accurately reconstruct GRNs using prior
information in biologically relevant settings. We tested both
methods with respect to the number and accuracy of prior
known interactions (PKIs), and the effect of the weight of the
PKIs. Performance is validated against the set of gold standard
interactions (GSIs).

3.1 Effect of varying weight on priors

We assessed how sensitive our performance is to the choice of the
weight parameter (# for MEN and g for BBSR). For this initial
investigation of parameter sensitivity, we used the entire gold
standard as input (the set of PKIs covers all GSIs), and assessed
performance over the set of GSIs. Though this design is circular,
the purpose was to characterize the sensitivity of our method to
the choice of # and g, the parameters that control the relative
influence of the structure prior for MEN and BBSR respectively

(see Section 2). In Figure 2, we see the performance of each
method (in terms of AUPR) as a function of the weight param-
eter. As the value of # is decreased, the performance of
MEN increases to a certain point, followed by a decrease in per-
formance for all datasets (Fig. 2, right panel). This is true for all
tested datasets, and it seems that MEN has a ‘sweet-spot’around
# ¼ 0:01, which results in best performance for all tested
datasets. On the other hand, BBSR has a predictable behaviour
for all tested datasets: performance increases for increasingly
large values of g, limiting to an AUPR of 1 as g approaches
infinity. This trend holds true for all datasets (left panel of
Fig. 2).

3.2 Incorporation of prior interactions is data driven

We next investigated which of the known edges were included in
the resulting network models. We used all GSIs as PKIs and
selected a prior weight of # ¼ 0:5 for all datasets for MEN,
and values for g that resulted in similar AUPRs for BBSR
(g¼ 1:26, 2.2 and 1.6 for Dream4, E.coli and B.subtilis, respect-
ively). We split the predicted interactions in two sets, high-ranked
(recall % 0:5) and low-ranked (recall 40:5 AND in set of PKIs),
and compared the two sets with regard to the signal in the data.
Signal for an interaction (TF-target pair) is defined as the
time-lagged correlation for that pair. We chose this metric, as
we use the time-lagged response and design matrices for model
building (see Section 2).
For both methods and all datasets, we can see that

high-ranked interactions have more signal (fewer near-zero
correlations) than low-ranked interactions (densities peaked
around zero), see Figure 3. However, for smaller values of #,
this trend is less pronounced for MEN, where more high-
ranked interactions show time-lagged correlation of 0 (see
Supplementary Material).

Fig. 3. Incorporation of prior interactions is data driven. For all three
datasets, we used all GSIs as PKIs. Here, we display the distribution of
time-lagged correlation of predicted TF-target pairs at a recall level of
% 0:5 (higher ranked, blue), and low ranked interactions that are in the
gold standard (lower ranked, red). Note that high ranked interactions are
less likely to have low absolute time-lagged correlation, and the low
ranked GSIs are centred around 0

Fig. 2. Effect of weight parameter on performance. We use all GSIs as
the set of PKIs, and evaluate performance (in terms of AUPR) against
the set of GSIs. We evaluate this performance for a variety of choices
of the weight parameter for both methods
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Can the data discriminate between different 
types of prior edges?
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by j!i, jj is not the best scheme, as this does not take into account the
overall performance of the model for yi. As a result we re-rank inter-
actions, taking into account the relative performance of each model,
and the proportion of variance explained by each !i, j. The result is a
matrix S where the final confidence score for xi, j is given by

si, j ¼ 1"
"2full model for yi

"2model for yi without predictor j

: ð18Þ

To further improve inference and become more robust against
over-fitting and sampling errors, we use a bootstrapping strategy. We
resample the input conditions with replacement and run model selection
on the new dataset. This procedure is repeated 20 times, and the resulting
lists of interactions (S matrices) are rank combined to a final ranked list
as in Marbach et al. (2010).

3 RESULTS

We have conducted systematic thorough testing of the ability of
both MEN and BBSR to accurately reconstruct GRNs using prior
information in biologically relevant settings. We tested both
methods with respect to the number and accuracy of prior
known interactions (PKIs), and the effect of the weight of the
PKIs. Performance is validated against the set of gold standard
interactions (GSIs).

3.1 Effect of varying weight on priors

We assessed how sensitive our performance is to the choice of the
weight parameter (# for MEN and g for BBSR). For this initial
investigation of parameter sensitivity, we used the entire gold
standard as input (the set of PKIs covers all GSIs), and assessed
performance over the set of GSIs. Though this design is circular,
the purpose was to characterize the sensitivity of our method to
the choice of # and g, the parameters that control the relative
influence of the structure prior for MEN and BBSR respectively

(see Section 2). In Figure 2, we see the performance of each
method (in terms of AUPR) as a function of the weight param-
eter. As the value of # is decreased, the performance of
MEN increases to a certain point, followed by a decrease in per-
formance for all datasets (Fig. 2, right panel). This is true for all
tested datasets, and it seems that MEN has a ‘sweet-spot’around
# ¼ 0:01, which results in best performance for all tested
datasets. On the other hand, BBSR has a predictable behaviour
for all tested datasets: performance increases for increasingly
large values of g, limiting to an AUPR of 1 as g approaches
infinity. This trend holds true for all datasets (left panel of
Fig. 2).

3.2 Incorporation of prior interactions is data driven

We next investigated which of the known edges were included in
the resulting network models. We used all GSIs as PKIs and
selected a prior weight of # ¼ 0:5 for all datasets for MEN,
and values for g that resulted in similar AUPRs for BBSR
(g¼ 1:26, 2.2 and 1.6 for Dream4, E.coli and B.subtilis, respect-
ively). We split the predicted interactions in two sets, high-ranked
(recall % 0:5) and low-ranked (recall 40:5 AND in set of PKIs),
and compared the two sets with regard to the signal in the data.
Signal for an interaction (TF-target pair) is defined as the
time-lagged correlation for that pair. We chose this metric, as
we use the time-lagged response and design matrices for model
building (see Section 2).
For both methods and all datasets, we can see that

high-ranked interactions have more signal (fewer near-zero
correlations) than low-ranked interactions (densities peaked
around zero), see Figure 3. However, for smaller values of #,
this trend is less pronounced for MEN, where more high-
ranked interactions show time-lagged correlation of 0 (see
Supplementary Material).

Fig. 3. Incorporation of prior interactions is data driven. For all three
datasets, we used all GSIs as PKIs. Here, we display the distribution of
time-lagged correlation of predicted TF-target pairs at a recall level of
% 0:5 (higher ranked, blue), and low ranked interactions that are in the
gold standard (lower ranked, red). Note that high ranked interactions are
less likely to have low absolute time-lagged correlation, and the low
ranked GSIs are centred around 0

Fig. 2. Effect of weight parameter on performance. We use all GSIs as
the set of PKIs, and evaluate performance (in terms of AUPR) against
the set of GSIs. We evaluate this performance for a variety of choices
of the weight parameter for both methods
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Low ranked interactions do not 
have a strong positive or negative 
correlation

In other words, is the 
incorporation of prior data-
driven?



3.3 Performance on the leave-out set: using constraints
does not damage our ability to learn new interactions

Here we assess if knowing part of the true regulatory network
limits our ability to learn new regulatory interactions. We define
the leave-out set as the set of GSIs that are not input as PKIs into
our methods. For this experiment, we sampled PKI sets ran-
domly resulting in subsets that consisted of 20, 40, 60 and 80%
of the GSIs for each of the three datasets (we carried out five
repetitions of this random sampling). We used the same weight
parameters as in the previous section. AUPR of the leave-out set
was computed when using PKIs and compared with the perform-
ance when no PKIs were used (Fig. 4). We observe similar trends
for the six dataset–method combinations. Neither one method
shows a consistent trend, and using prior information does not
significantly help or damage performance on the leave-out set.
However, very high weights for BBSR lead to a detectable
performance decrease, whereas MEN is less affected by the prior
weight (see Supplementary Material). Overall, performance on
the leave-out set changes only slightly when priors are used.
In line with these observations, we can observe that overall

performance increases linearly as the fraction of GSIs that is
given as PKIs increases (see Supplementary Material). This
trend is true for all three datasets and both methods.

3.4 Robustness to false prior information

As sources of biological prior knowledge (e.g. literature-derived
regulatory relationships, protein–protein interactions, ChIP-seq-
detected binding events) are expected to have large numbers of
incorrect (false prior) interactions, or interactions not relevant in
a given dataset, it is important that methods for incorporating
prior knowledge are robust to these cases. To test the robustness
of MEN and BBSR to incorrect prior information, for each net-
work, we considered half of the GSIs as true prior interactions
(TPIs), and added a varying number of random false prior
interactions (FPIs). We evaluated performance on the complete
set of GSIs, and used as PKIs sets of interactions that have
TPI:FPI ratios of 1:0, 1:2, 1:5, 1:10. A choice of 1:10 TPI:FPI
for the E.coli dataset, for example, results in a set of PKIs that
contains 1033 true interactions that are GSIs, and 10330 false
interactions which are not GSIs. FPIs were drawn randomly in

five repetitions, and results showed a consistently low variance,
so only mean values are presented here. We tested the perform-
ance of both MEN and BBSR on these PKI sets with increasing
error for two choices of the respective weight parameters as fol-
lows. Low weights: ! for MEN is 0.5 for all datasets, and g for
BBSR is 1.26, 2.2, 1.6 for Dream4, E.coli, B.subtilis. High
weights: ! is 0.01 for all datasets, and g is 2.8, 13, 10. To compare
our results with other methods, we used the web platform
GenePattern (http://dream.broadinstitute.org/) and ran CLR,
GENIE3 and TIGRESS on our data with default parameters.
Additionally, we computed the AUPR of a simple interaction
ranking method which places all PKIs at the top of the list.
In general, high weight parameters make the methods more sus-
ceptible to noise, but for the two large datasets, E.coli and
B.subtilis, performance throughout all noise levels is still better
than any method without PKIs. For low weight parameters,
and the Dream4 and B.subtilis datasets, BBSR is less susceptible
to noise, and results in higher AUPRs than MEN (Fig. 5).
For all three datasets, performance of both methods is always
higher than the naive ranking scheme when false priors are
present.

4 DISCUSSION

We developed two methods for incorporating prior knowledge
into GRN inference. Both methods use the same underlying
ODE model of regulation (see Section 2), but use different
model selection approaches. MEN uses an adaptive weight on
the penalty function to incorporate prior knowledge. BBSR uses
the Bayesian formulation of linear regression, together with
Zellner’s g-prior to incorporate prior information, and best
subset regression with the BIC for sparse model selection.
A key difference between MEN and BBSR is how the choice of

weight (how much influence to give to the prior) effects
performance. Results presented in Figure 2 show that for
BBSR higher values of g result in overall higher confidence in
PKIs, and reduced confidence in all unknown interactions. As
such, g can be interpreted as a confidence measure in the
accuracy and completeness of PKIs, and be chosen accordingly.
It is also possible to introduce multiple sources of prior informa-
tion, each with a different weight (value of g). For MEN,

Fig. 4. Performance change on the leave-out set. PKIs were sampled randomly from 20%, 40%, 60% and 80% of the GSIs in five repetitions. We define
the leave-out set as the set of GSIs that are not PKIs. Here, we compare the AUPR of the leave-out set when using PKIs (y-axis) to the AUPR when not
using PKIs (x-axis). Points above the line indicate a performance increase when PKIs are used
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Ability to recover new edges is not hampered 
on adding prior
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the leave-out set as the set of GSIs that are not input as PKIs into
our methods. For this experiment, we sampled PKI sets ran-
domly resulting in subsets that consisted of 20, 40, 60 and 80%
of the GSIs for each of the three datasets (we carried out five
repetitions of this random sampling). We used the same weight
parameters as in the previous section. AUPR of the leave-out set
was computed when using PKIs and compared with the perform-
ance when no PKIs were used (Fig. 4). We observe similar trends
for the six dataset–method combinations. Neither one method
shows a consistent trend, and using prior information does not
significantly help or damage performance on the leave-out set.
However, very high weights for BBSR lead to a detectable
performance decrease, whereas MEN is less affected by the prior
weight (see Supplementary Material). Overall, performance on
the leave-out set changes only slightly when priors are used.
In line with these observations, we can observe that overall

performance increases linearly as the fraction of GSIs that is
given as PKIs increases (see Supplementary Material). This
trend is true for all three datasets and both methods.

3.4 Robustness to false prior information

As sources of biological prior knowledge (e.g. literature-derived
regulatory relationships, protein–protein interactions, ChIP-seq-
detected binding events) are expected to have large numbers of
incorrect (false prior) interactions, or interactions not relevant in
a given dataset, it is important that methods for incorporating
prior knowledge are robust to these cases. To test the robustness
of MEN and BBSR to incorrect prior information, for each net-
work, we considered half of the GSIs as true prior interactions
(TPIs), and added a varying number of random false prior
interactions (FPIs). We evaluated performance on the complete
set of GSIs, and used as PKIs sets of interactions that have
TPI:FPI ratios of 1:0, 1:2, 1:5, 1:10. A choice of 1:10 TPI:FPI
for the E.coli dataset, for example, results in a set of PKIs that
contains 1033 true interactions that are GSIs, and 10330 false
interactions which are not GSIs. FPIs were drawn randomly in

five repetitions, and results showed a consistently low variance,
so only mean values are presented here. We tested the perform-
ance of both MEN and BBSR on these PKI sets with increasing
error for two choices of the respective weight parameters as fol-
lows. Low weights: ! for MEN is 0.5 for all datasets, and g for
BBSR is 1.26, 2.2, 1.6 for Dream4, E.coli, B.subtilis. High
weights: ! is 0.01 for all datasets, and g is 2.8, 13, 10. To compare
our results with other methods, we used the web platform
GenePattern (http://dream.broadinstitute.org/) and ran CLR,
GENIE3 and TIGRESS on our data with default parameters.
Additionally, we computed the AUPR of a simple interaction
ranking method which places all PKIs at the top of the list.
In general, high weight parameters make the methods more sus-
ceptible to noise, but for the two large datasets, E.coli and
B.subtilis, performance throughout all noise levels is still better
than any method without PKIs. For low weight parameters,
and the Dream4 and B.subtilis datasets, BBSR is less susceptible
to noise, and results in higher AUPRs than MEN (Fig. 5).
For all three datasets, performance of both methods is always
higher than the naive ranking scheme when false priors are
present.

4 DISCUSSION

We developed two methods for incorporating prior knowledge
into GRN inference. Both methods use the same underlying
ODE model of regulation (see Section 2), but use different
model selection approaches. MEN uses an adaptive weight on
the penalty function to incorporate prior knowledge. BBSR uses
the Bayesian formulation of linear regression, together with
Zellner’s g-prior to incorporate prior information, and best
subset regression with the BIC for sparse model selection.
A key difference between MEN and BBSR is how the choice of

weight (how much influence to give to the prior) effects
performance. Results presented in Figure 2 show that for
BBSR higher values of g result in overall higher confidence in
PKIs, and reduced confidence in all unknown interactions. As
such, g can be interpreted as a confidence measure in the
accuracy and completeness of PKIs, and be chosen accordingly.
It is also possible to introduce multiple sources of prior informa-
tion, each with a different weight (value of g). For MEN,

Fig. 4. Performance change on the leave-out set. PKIs were sampled randomly from 20%, 40%, 60% and 80% of the GSIs in five repetitions. We define
the leave-out set as the set of GSIs that are not PKIs. Here, we compare the AUPR of the leave-out set when using PKIs (y-axis) to the AUPR when not
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DREAM4 E. coli B. subtilis

Prior helps

Prior does not help



What happens when one adds noisy priors?

the prior weight parameter ! exhibits a less predictable beha-
viour. Lower values of ! generally lead to higher confidence in
PKIs. However, for all datasets, we observed a performance
peak around ! ¼ 0:01. This non-linear property could be the
result of cross-validation model selection procedure.
We tested the performance of both methods on different sub-

sets of the GSIs. We see that increasing the number of PKIs
increases performance in a linear manner for all datasets and
both methods (Supplementary Fig. S2). This is in concordance
with the results on the leave-out set (the set of GSIs that are not
PKIs), where both methods showed only minor performance
change in the presence of PKIs, regardless of dataset or
number of PKIs used (Fig. 4).
Finally, and most importantly for application to biological

systems where only incomplete and noisy sets of PKIs are
available, we assessed the robustness of both methods to FPIs.
Both methods are robust to FPIs, and outperform the naive
ranking scheme, which assigns high confidence to all PKIs
(Fig. 5). More specifically, for both large real datasets (E.coli
and B.subtilis), both methods perform better than various base-
lines (no PKIs), with up to 10 FPIs for each true prior inter-
action. This means that both methods, given sufficient genomic
data, are able to act as filters to distinguish between true and
false prior interactions. However, BBSR is slightly more robust to
the presence of FPIs.
A key consideration for any practical application of network

inference methods with prior information is the trade-off
between recapitulating the prior, and discovering novel biology.
Intuitively, as the degree of belief in the prior is increased (by
increasing the weight of the prior information), more of the inter-
actions in the prior will be ranked highly by the inference
method. Thus, high weights can lead to the incorporation of
false interactions in the case of inaccurate PKIs (MEN more
prone than BBSR), and impair performance on the leave-out

set (as seen in BBSR). We suggest to the reader to set the
weight parameter for incorporating prior knowledge based on
the expected completeness and accuracy of the PKIs, and,
when in doubt, to choose a low weight.

5 CONCLUSION

In this work, we have presented two methods for incorporating
additional knowledge to constrain GRN inference by adding
priors on the network structure. In the analysis of the methods,
we focused on parameter choice and robustness to false priors,
and show that both methods are remarkably tolerant to error
in the priors. The inclusion of prior knowledge significantly
improves the quality of inferred networks without damaging
our ability to learn new interactions. Of our two methods,
the BBSR inferred more accurate networks than the MEN in the
presence of noise in the set of network priors used, and provides
an intuitive weight parameter to control the strength of priors.
This makes BBSR an appropriate method for integrating
potentially noisy complementary data such as ChIP-Chip,
ChIP-Seq, protein–protein interactions, literature-derived regula-
tory interactions and regulatory hypothesis derived from
DNA-binding motifs into a data-driven regulatory network
inference process.
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Fig. 5. Robustness to incorrect prior information. For each dataset, we considered half of the GSIs as TPIs, and added varying numbers of FPIs
that were not GSIs. We show the AUPR of both methods for multiple choices of the respective weight parameters, as well as methods that do not use
any PKIs (horizontal lines). Additionally, we show the performance of a naive interaction ranking method, which places all PKIs at the top of the list
(gray bars)
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Low and high in BBSR and MEN means less dense or more dense

High noise regime



Summary

• Extending the Inferelator linear regression model to 
incorporate priors
– Regularized regression
– Probabilistic priors on weights

• Experiments suggest
– The prior incorporation is data-driven
– Adding prior is beneficial even if when it is noisy



Goals for this lecture

• Incorporating priors in Dependency networks using 
linear regression

• Incorporating priors in Dependency networks using 
tree models



iRafNet

• GENIE3 was shown to be one of the best performing 
expression-based algorithms

• Can we extend the GENIE3 Random Forests based 
approach to incorporate priors?

• iRafNet uses a weighted sampling scheme to 
incorporate information from different sources of 
data

Petralia et al. 2015, Bioinformatics



Weighted sampling algorithm in iRafnet

• Each data source d provides a score for a regulator k
and target j

• Convert these scores to sampling weights, wk->j in a 
data source and score-specific way

• For each node split, instead of sampling uniformly 
from N potential regulators, select a dataset d
randomly and sample N regulators based on their 
weights in d



iRafNet overview

consist of P-values, weights are calculated as wd
k!j ¼ ð1=s

d
k!j # 1Þ.

The procedure utilized to sample potential regulators in Step A2 is an

extension of the one introduced by Amaratunga et al. (2008). As we

described in Section 2.1, the importance score for a given predictor is

derived by averaging the decrease in node impurities across all trees.

Under the standard random forest algorithm, at each node, N poten-

tial regulators are proposed as candidates for the splitting rule via ran-

dom sampling. When the number of potential regulators is large,

relevant variables will less likely be sampled as candidates for estab-

lishing splitting rules. Consequently, for each tree, the total decrease

in node impurity of relevant variables will be reduced. iRafNet over-

comes this problem by sampling potential regulators according to

prior information so that variables supported as relevant by other

data will be more frequently sampled as candidates for the splitting

procedure.

Generally, potential regulators of a target gene gj consist of any

other gene gk with k 6¼ j; in some cases, the set of potential regulators

may be set as a smaller subset based on certain prior knowledge. It

is worth noting that Step A2 can be performed using either steady-

state (Huynh-Thu et al., 2009) or time-series gene expression data

(Maduranga et al., 2013). Because steady-state gene expression data

usually contains more samples than time-series data, we use the for-

mer as main dataset for random forest construction and the latter to

derive prior weights in Step A1.

2.3 Construction of sampling weights
One key step of iRafNet is to transform information embedded in

supporting data into indicators of potential gene regulations. In this

section, we focus on some commonly used data types which include

steady-state gene expression, time-series gene expression, protein-

protein interactions and gene expression from knockout experi-

ments. For each data type, we provide detailed information on how

weights are derived.

2.3.1 Weights based on protein–protein interactions

We use diffusion kernel to capture and transform the protein–pro-

tein interaction information (Lee et al., 2005). We define the

diffusion matrix as F¼ eH with H being a p % p symmetric matrix

with:

a. hj, k equals one if genes gj and gk interact, and zero otherwise for

j 6¼ k(off-diagonal element)

b. hk,k¼# ik, where ik is the total number of interactions of gene gk

(diagonal element).

Given the diffusion matrix F, regulatory weights are constructed

as wPPI
k!j ¼ Fk;j, i.e. the element (k, j) of F. Because protein–protein

interactions are bi-directional, the following identity holds

wPPI
k!j ¼ wPPI

j!k ¼ Fk;j ¼ Fj;k.

2.3.2 Weights based on time-series gene expression

In contrast to protein–protein interactions, time series data can pro-

vide information on the directionality of regulatory relationships.

According to the definition of Granger causality, a gene gk is causal

for gene gj if past values of gk are predictive for future values of gj

(Lozano et al., 2009). For a pair of genes (gj, gk), the expression

value of gene gj at future time (t þ 1) is modeled as a linear function

of the expression value of gene gk at current time (t) and the signifi-

cance of regulation gk ! gj is tested via a standard t-test. The result-

ing P-values fPTS
k!jg are, then, utilized to derive sampling weights as

follows wTS
k!j ¼ ð1=p

TS
k!j # 1Þ.

2.3.3 Weights based on knockout data

We denote xwt
j the expression of gene gj in wild-type condition,

and xKO
k!j the expression of gene gj after knocking out gene

gk. Similarly to time-series data, weights wKO
k!j are derived as wKO

k!j ¼
ð1=PKO

k!j # 1Þ with PKO
k!j being the P-value testing the regulatory re-

lationship gk ! gj based on knockout data. Specifically, PKO
k!j is

computed via a two-tailed t-test on the difference ðxwt
j # wKO

k!jÞ. In

real world applications, only a small subset of genes is generally

knocked-out and only some regulatory relationships could be inferred

by this approach. To overcome this problem, we propose a method

that imputes causal relationships by borrowing information from

other knocked-out genes. Let R be the set of knocked-out genes; then,

missing causal relationships are inferred based on the following steps:

Step B1. For any gene gk with gk 2 R, we derive P-values fPKO
k!jg

and we consider the regulatory event gk ! gj true if PKO
k!j is smaller

than 0.01;

Step B2. For each pair of genes (gh, gk), a measure of similarity is ob-

tained as follows:

• We derive the sets of genes which are functionally related to

genes gh and gk based on knockout data. In particular,

a. when both gh and gk belong to R, we compute (Eh, Ek),

the sets of genes affected by knocking-out genes (gh, gk),

and (Ch, Ck), the sets of knocked-out genes which affect

genes (gh, gk);

b. otherwise, we compute only (Ch, Ck), the sets of

knocked-out genes which affect genes (gh, gk);
• Letting J(A, B) be the Jaccard index between sets A and B,

the similarity measure Gh,k between genes gh and gk is

derived as

a. Gh;k ¼ ðJðEh;EkÞ þ JðCh;CkÞÞ=2;

b. Gh;k ¼ JðCh;CkÞ;
Step B3. For genes fgs; s62 Rg, we impute missing weights as follows:

wKO
s!j ¼

P
‘2RGs;‘wKO

‘!jP
‘2RGs;‘

(1)

Fig. 1. iRafNet schematics. For each gene gj2 f1; :::;pg, we determine a

ranked list of potential regulators via iRafNet. Based on each data

d 2 f1; :::;Dg, we derive weights fwd
k!jg measuring the prior belief of regula-

tory relationships fgk ! gjg. Using expression data, we run random forest to

find genes regulating gj. At each node, instead of sampling a random sub-

set of genes from the entire set of genes; we randomly choose an integer I

2 f1; :::;Dg and we sample genes according to weights fw I
k!jg. The final net-

work is derived by ranking potential regulators based on the random forest

importance score
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Constructing sampling weights

• The prior knowledge is described as a set of weighted networks 
• Weights for selecting a regulator is derived in a dataset specific manner
• Undirected protein-protein interactions: 

– Weights derived from a diffusion process over graphs (we will see this later 
lectures)

• Time-series expression data
– Weight wj->k assess how predictive gj’s expression at time t is of gi’s expression at a 

future time point t+1
– Derive a P-value to assess the strength of the regression weight
– Convert P-value into a weight

• Knockout data
– wj->k either are derived in multiple ways:

• If gk’s expression changes significantly when gk is knocked wj->k is derived from the P-value
• Otherwise it is derived based on the overlap of gj and gk’s knockout targets or knockout 

regulators



iRafNet application to real data

• Ground truth
– Significant interactions identified from ChIP-chip 

experiments of yeast
• Expression dataset
– This was a large study measuring gene expression in 

multiple yeast strains
• Prior datasets (included other expression datasets)
– Expression time course during cell cycle
– Expression data of genetic knockouts of TFs
– Protein-protein interactions from public databases 

(BioGRID, MINT, DIP)



Does adding prior help for iRafNet?

• Evaluate on ChIP-chip network of yeast
• Expression dataset

– This was a large study measuring gene expression
• Prior datasets (included other expression datasets)

– Expression time course during cell cycle
– Knockout data from Hu et al
– Protein-protein interactions from public databases (BioGRID, MINT, DIP)

For the time-series data (Spellman et al., 1998), we selected time-

course gene expression data from cdc28 cell cycle arrest which

consists of 17 time points. For the knockout data, we considered

P-values provided by Hu et al. (2007). The total number of knock-

out genes from this experiment was 169 and missing causal relation-

ships were inferred as described in Methods section. Further details

on how sampling weights were derived are provided in Methods

section. The random forest parameters were set as T¼1000 and

N¼ r1/2, respectively, where r¼3664. In order to evaluate the per-

formance of both models, the following criteria were considered:

GO terms enrichment and prediction of TF regulations.

3.2.1 iRafNet results in more enriched GO categories

We compared networks resulting from GENIE3 and iRafNet based

on GO terms enrichment. We focused on 58 GO Slim terms ob-

tained from the Saccharomyces Genome Database (Cherry et al.,

1998) containing from 20 to 200 genes. For each model, importance

scores for all regulatory relationships were derived and we focused

on the 200 000 highest scored regulatory relationships (in the

DREAM5 challenge, only the first 100 000 predicted regulations

were considered for the competition, we relax the cutoff so that true

predictions are less likely to be excluded due to this parameter

setting). For each GO term, the enrichment score was computed

via a one-sided Kolmogorov-Smirnov test (Aravind et al., 2005).

Specifically, for each GO term, we considered every undirected edge

between all pairs of genes contained in the GO category and calcu-

lated the Kolmogorov-Smirnov statistics based on importance scores

of undirected edges resulting from each method.

The importance score of each undirected edge (gs" gk) was

defined as the mean between importance scores of the two directed

edges gs ! gkð Þ and ðgs  gkÞ. The Kolmogorov-Smirnov statistics

reflects the degree to which a gene ontology (GO) category is overre-

presented at the top of the ranked list of importance scores. Table 3

shows the number of GO terms with significant enrichment. As

shown, iRafNet results in more enriched GO categories than the ori-

ginal algorithm which relies on a single data type. Supplementary

Table S1 in the supplementary material shows the list of GO catego-

ries and corresponding P-values under each method.

3.2.2 iRafNet better predicts TF regulations

In this section, we evaluate the ability of our model to predict TF

regulations. For this purpose, we consider results from Lee et al.

(2002) which used chromatin immuno-precipitation techniques to

detect TF-gene interactions and provided P-values of regulations be-

tween 72 TFs and 3644 genes. Based on these P-values, we

derive the ‘true’ network. Specifically, an edge between TF gk and

gene gj ðgk ! gjÞ is considered true if the corresponding P-value is

smaller than 0.01; while the edge of the opposite direction ðgj ! gkÞ
is used as negative control. Table 4 shows the AUC and AUPR for

GENIE3 and iRafNet. Specifically, for iRafNet, we used different

set of weights derived from either knockout, time-series or protein–

protein interactions data, as well as used all these weights

simultaneously.

Overall, iRafNet results in better predictive performance than

GENIE3. The best predictive performance is achieved when sam-

pling weights were obtained from knockout data alone. This result

is not completely surprising since knockout data is considered one

of the most informative data for inferring regulatory relationships

(Marbach et al., 2012). The slightly less optimal performance result-

ing from integrating all data types may be due to the inconsistency

among different datasets (e.g. some datasets could have less optimal

quality). This result suggests that a careful selection of input data is

very important regardless the underlying algorithms.

We perform another comparison based on the ability to predict

TF regulations. Let Rth
be the top th directed regulations with the

largest importance scores. Then, we derive Re % Rth
, defined as the

set of directed edges belonging to set Rth
which were found to be sig-

nificant (P<0.01) by Lee et al. (2002) and Rd % Re, defined as the

set of directed edges for which the opposite direction is not included

in set Rth
. A higher cardinality of Re indicates that the algorithm is

more capable of revealing the regulatory relationships as detected by

Lee et al. (2002); while the higher cardinality of Rd indicates the al-

gorithm is more accurate in excluding the ‘wrong’ directed edges. As

shown in Table 5, for different values of th, iRafNet consistently

identifies larger Re and Rd than GENIE3. Supplementary Table S2

in the supplementary material provides a list of regulations identi-

fied by iRafNet but not recovered by GENIE3. Multiple regulations

are supported by independent experiments, suggesting the validity

of the predictions. For example, Chou et al. (2006) showed that

Dig1 forms a complex with Ste12, Tec1 or Dig2. Dig1 knockout

caused up-regulation of Fus1 gene expression, the effect was particu-

larly significant when both Dig1 and Dig2 were knocked out (Chou

et al., 2006). As another example, Santangelo and Tornow (1990)

showed that the transcription of ADH1 was sensitive to GCR1 dis-

ruption, which is consistent with our prediction.

4 Discussion

In this article, we develop iRafNet, a unified framework based on

random forest which constructs GRNs by integrating information

from multiple data types. Specifically, information from different

data sources is used to derive a series of weights, which, then, are

utilized for sampling potential regulators during the tree construc-

tion. This weighting scheme provides multiple benefits compared

with the sampling procedure adopted by the standard random

Table 3. Networks output from GENIE3 and iRafNet

No of

edges

No of

directed

edges

No of

shared

edges

No of

shared

directed

edges

No of

enriched

GO terms

0.05 0.01

GENIE3 156 359 200 000 102 501 126 009 51 44

iRafNet 163 886 200 000 102 501 126 009 61 51

For both GENIE3 and iRafNet, we consider the set of 200 000 highest

scored directed edges, referred to as D. As shown, the number of unique un-

directed edges a " b was 156 359 and 163 886 for GENIE3 and iRafNet, re-

spectively. For each method, we show the number of GO categories with

significant enrichment for different P-value thresholds (0.05 and 0.01).

Table 4. Prediction performance of TF regulations

Method Data AUC AUPR

GENIE3 Expression 0.547 (0.537,0.566) 0.542 (0.537,0.548)

iRafNet Multiple weights 0.624 (0.613,0.636) 0.565 (0.561,0.569)

Expression and KO 0.657 (0.645,0.673) 0.567 (0.562,0.574)

Expression and TS 0.543 (0.528,0.557) 0.536 (0.530,0.541)

Expression and PPI 0.574 (0.562,0.591) 0.557 (0.551,0.561)

For each model, the AUC and the AUPR and corresponding 95% confi-

dence intervals are reported.
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Concluding remarks

• We have seen different ways to incorporate other 
data types to improve the quality of the inferred 
network

• Bayesian networks with structure prior
– Use an energy function to assess concordance
– Sensitive to incorrect prior information

• Dependency networks with priors
– Linear regression approach aims to reduce the penalty on 

inferred edges
– Tree-based approach enables a “biased” selection of 

regulators


