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Plan for this section

* Gaussian graphical models (Sep 25t")
» Dependency networks (Sep 27t")

* |Integrating prior information for network
inference (Oct 2n9. 4th)



Goals for today

* Dependency networks
* GENIE3

e Evaluation of expression-based network
inference methods



Recall the different types of probabilistic
graphs

In each graph type we can assert different
conditional independencies

Correlation networks

Markov networks

— Gaussian Graphical models
Dependency networks
Bayesian networks



Dependency network

* A type of probabilistic graphical model

* Approximate Markov networks
— Are much easier to learn from data

* As in Bayesian networks has
— A graph structure

— Parameters capturing dependencies between a
variable and its parents

* Unlike Bayesian network
— Can have cyclic dependencies
— Computing a joint probability is harder
It is approximated with a “pseudo” likelihood.

Dependency Networks for Inference, Collaborative Filtering and Data visualization
Heckerman, Chickering, Meek, Rounthwaite, Kadie 2000



Original motivation of dependency networks

* |Introduced by Heckerman, Chickering, Meek, et al
2000

e Often times Bayesian networks can get confusing

— Bayesian networks learned represent correlation or
predictive relationships

— But the directionality of the edges are mistakenly
interpreted as causal connections
* (Consistent) Dependency networks were
introduced to distinguish between these cases



Dependency network vs Bayesian network

(a) (b)

Bayesian network Dependency network

Often times, the Bayesian network on the left is read as if “Age” determines “Income”.
However, all this model is capturing is that “Age” is predictive of “Income”.

Dependency Networks for Inference, Collaborative Filtering and Data visualization
Heckerman, Chickering, Meek, Rounthwaite, Kadie 2000



Learning dependency networks

* Entails estimating the Markov blanket of each random

variable
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e Let BJ- denote the Markov Blanket of a
variable X]
. X_]- denotes all variables other than XJ

* Given B;, X;is independent of all other
variables, X ;

P(X;|X ;) = P(X;|B;)

* B;can be estimated by finding the set of
variables that best predict X

* This requires us to specify the form of
P(X,/B))



Different representations of f=P(X/B))

* If X;is continuous
—f; can be a linear function
—f;can be a regression tree
—f; can be an ensemble of trees
* E.g. random forests
* If X;is discrete
— f; can be a conditional probability table
— f; can be a conditional probability tree



Popular dependency networks
implementations

* Learned by solving a set of linear regression problems
 TIGRESS (Haury et al, 2010)
 Uses a constraint to learn a “sparse” Markov blanket
e Uses “stability selection” to estimate confidence of edges
* Learned by solving a set of non-linear regression problems
 Non-linearity captured by Regression Tree (Heckerman et al, 2000)
 GENIE3: Non-linearity captured by Random forest (Huynh-Thu et
al, 2010)
* |nferelator (Bonneau et al, Genome Biology 2005)
 (Can handle time course and single time point data
* Non-linear regression is done using a logistic transform
 Handles linear and non-linear regression




Goals for today

* GENIE3
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GENIE3: GEne Network Inference with
Ensemble of trees

* Solves a set of regression problems
— One per random variable
— Minimizes the predlctlon error per varlable X;

Sim1 (@) — f3(x1))°

* Uses an Ensemble of regression trees to represent f;
— Models non-linear dependencies
* Qutputs a directed cyclic graph with a confidence of each
edge
— Directionality means “good predictor”

* Focus on generating a ranking over edges rather than a graph
structure and parameters

— Rank is determined by confidence

nferring Regulatory Networks from Expression Data Using Tree-Based Methods Van Anh
Huynh-Thu, Alexandre Irrthum, Louis Wehenkel, Pierre Geurts, Plos One 2010



Recall our very simple regression tree for two

The tree specifies X; as a function of X,

variables

Interior nodes

Leaf nodes 7
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Prediction of X;using a single tree

[O leaf nodes ]

() split nodes

,U Prediction is the mean at each leaf node

Taken from ICCV09 tutorial by Kim, Shotton and Stenger: http://www.iis.ee.ic.ac.uk/~tkkim/iccv09_tutorial



Prediction example with a regression tree

AMAT<S%

/:\ - — DELL

0 0
N(1.4,0.8) N(0.1,1.6) N(-2,0.7) ,

Suppose we observe AMAT=10% and INTL=7%

What is DELL’s predicted value? 1.4



Quantifying a split on the tree

* Let X ; denote the set of candidate variables we can
split on

* Asplitis defined by a tuple, (X,,s), s is the test value
of X;, X; € X_;

* The best split of a leaf node is found by enumerating
over all possible splits defined by the predictor
variabfs and split values s:

minge (3 @5 -uteyt N (e

kESleft leSright
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The set of samples in the left node The set of samples in the right node

Sier and S, are sets of samples obtained by testing X; for a particular split s



Algorithm for learning a regression tree

Input: dataset D, variable X, candidate predictors X
of X;
Output: Tree T

Initialize T to a leaf node, 1t, 0 estimated from all
samples of X; Assign all samples to leaf node

While not converged

— For every leaf node [/ in T
 Find the best split, (X;,s) at !
* If the split improves prediction power or convergence
criteria are not met
— add two leaf nodes, [, and [,;,,, to [
— Assign sample x(" to [, if x;"" < s, and to [,;,,, otherwise
— Update parameters associated with /4 and ..,



One iteration of regression tree learning
Let X={X;.X».X3.X4}

Assume we are searching for the neighbors of X; and it already has two neighbors
X;and X,

X; X, X, will all be considered as candidate splits using the examples at each
current leaf node

If we split on X, then we will have a new neighbor.

lteration i+1

lteration j

@ YES ‘

N] N2 N3

N,. Gaussian associated with leaf |




Convergence criteria

* Minimum number of examples at a leaf node
* Depth of a tree
* Error tolerance



An Ensemble of trees

* Asingle tree is prone to “overfitting”

* |nstead of learning a single tree, ensemble
models make use of a collection of trees



Prediction using an Ensemble of Trees
[O leaf nodes ]

O split nodes

tree, tree;

L1

— Prediction is T

t=1

Taken from ICCV09 tutorial by Kim, Shotton and Stenger: http://www.iis.ee.ic.ac.uk/~tkkim/iccv09_tutorial



Expression data matrix

N Experiments/Time points etc

A Observations (expression levels)

’ ] ! of all variables in sample i
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GENIE3 will use
the transpose of
this data matrix =

p Genes
A
sjuawiadx3y N

R

Observations (expression levels) of all
variables in sample i



GENIE3 algorithm sketch

Expression data

Exp,
Exp;
Exps

il
i

Expy

Gene1 Gene2 Gene
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Gene
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Input gene

Learning f; Predictor ranking

Tree ensemble, )
Tree eensemble2 )
— ) —

Tree ensemble

My 38

Figure from Huynh-Thu et al.

Interaction ranking



GENIE3 algorithm sketch

* For each X, generate learning samples of
input/output pairs
— LSj:{(x_jk,Xjk), k:] N}
— On each LS; learn f; to predict the value of X,
— f;is an ensemble of regression trees

— Estimate w;; for all genes i #j

* w;; quantifies the confidence of the edge between X; and X;
* Associated with the decrease in variance of X; when X; is included in f;

* Generate a global ranking of edges based on each

w;;



Learning f;in GENIE3

* Uses two types of Ensembles to represent the f;:

— Random forest or Extra Trees
* Learning the Random forest
— Generate M=1000 bootstrap samples

— At each node to be split, search for best split among K randomly
selected variables

— K was set to p-1 or (p-1)?> where p is the number of
regulators/parents

* Learning the Extra-Trees
— Learn 1000 trees
— Each tree is built from the original learning sample

— At each node, the best split is determined among K random splits,
each split determined by randomly selecting one input (without
replacement) and a threshold




Computing the importance weight of a
predictor

* |mportance is computed at each interior node

* Remember each predictor can show up multiple
times as interior nodes

* For an interior node, importance is given by the
reduction in variance when splitting on that node
IN) =#SVar(S) — #S:Var(Sy) —#SsVar(Sy)
/ t

Interior node Set of data samples that reach this node

#S: Size of the set S #S

1 S 1\2
Var(S): variance of the output variable x; in set S Var(S) = % Z(,uj — ajj)
S,: subset of S when a test at Mis true 1=1
Sy subset of S when a test at Vis false



Computing the importance weight of a
predictor

* For a single tree the overall importance is then
sum over all points in the tree where this node
is used to split

 For an ensemble the importance is averaged
over all trees

* To avoid bias towards highly variable genes,
normalize the expression genes to all have
unit variance



Goals for today

e Evaluation of expression-based network
inference methods



Evaluating the network

Assessing confidence

Area under the precision recall curve

Do modules or target sets of genes participate
in coherent function?

Can the network predict expression in a new
condition?



Assessing confidence in the learned network

* Typically the number of training samples is not

sufficient to reliably determine the “right”
network

* One can however estimate the confidence of
specific features of the network

— Graph features f(G)
* Examples of f(G)

— An edge between two random variables
— Order relations: Is X, Y’s ancestor?



How to assess confidence in graph features?

* What we want is P(f(G)ID), which is
Yaf(G)P(G|D)

* Butitis not feasible to compute this sum

* |[nstead we will use a “bootstrap” procedure



Bootstrap to assess graph feature confidence

e Fori=/tom

— Construct dataset D; by sampling with
replacement N samples from dataset D, where N
is the size of the original D

— Learn a graphical model {G; ©;}
* For each feature of interest f, calculate
confidence
T

Conf( f Z f(G



Bootstrap/stability selection

(a )

o
|

Final inferred

\_ network /
Output

Expresion data

Input

34



Does the bootstrap confidence represent real
relationships?

 Compare the confidence distribution to that obtained from
randomized data

e Shuffle the columns of each row (gene) separately
* Repeat the bootstrap procedure

Experimental conditions

811 oo o S1.n

genes | £ cooeo E2.n
gm,l ® 0O gmn —— randomize each
‘\/ S row independently

Slide credit Prof. Mark Craven



Bootstrap-based confidence differs between
real and actual data
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Example of a high confidence sub-network

One learned Bayesian network

Nir Friedman, Science 2004

I 0.75-1.0
e .5-0.75
=== 035-05

C) Signaling
O Transcription factor

O Downstream effector

s, -
-
-
-
-

Bootstrapped confidence Bayesian network:
highlights a subnetwork associated with yeast
mating pathway. Colors indicate genes with
known functions.



Area under the precision recall curve (AUPR)

 Assume we know what the “right” network is

* One can use Precision-Recall curves to
evaluate the predicted network

* Area under the PR curve (AUPR) curve
guantifies performance

Precision= Recall=

# of correct edges # of correct edges

# of predicted edges # of true edges




Experimental datasets to assess network
structure for gene regulatory networks

Sequence specific motifs

ChIP-chip and ChlIP-seq

Factor knockout followed by whole-

transcriptome profiling
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AUPR based performance comparison
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DREAM: Dialogue for reverse engineeting
assessments and methods

(1) Target network

In silico
195 TFs
1,643 genes

E. coli
296 TFs
4,297 genes

S. cerevisae
183 TFs
5,667 genes

S. aureus
90 TFs

2,677 genes

Community effort to assess regulatory network inference

Simulation

Experiments

knockouts
overexpress
antibiotics
toxins
etc.

(2) Microarray compendia

(3) Inferred networks

805 arrays Anodna);r;lze
487 conds. .
[ |
: Inference methods
805 arrays "
487 conds. .
— .Q.Q “ >
536 arrays . e,
p2 1! CoRg, : 29 methods applied by
: teams (blinded)
160 arrays s+ 6 off-the-shelf methods
53 conds. 35 methods tested

DREAM 5 challenge

Previous challenges: 2006, 2007, 2008, 2009, 2010

Integration‘

>

Marbach et al. 2012, Nature Methods

>

(4) Community network (5) Performance evaluation

True in silico
network

Validation

>

S. aureus not
for evaluation

Experimentally
determined
interactions
ChIP
motifs
etc.

used




Where do different methods rank?

In silico

E. coli

S. cerevisiae

12345678 12345 123 123456 12345678 12345
Regression Ml Corr. Bayesian Other Meta

Community
Random

Marbach et al., 2012 These approaches were mostly per-gene



Methods t

end to cluster together
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Marbach et al., 2012

Second principal component

These approaches were mostly per-gene



Comparing per-module (LeMoNe) and per-gene
(CLR) methods

a b C
1 LeMoNe CLR
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Marchal & De Smet, Nature Reviews Microbiology, 2010



Some comments about expression-based
network inference methods

 We have seen multiple types of algorithms to learn these networks
— Per-gene methods (learn regulators for individual genes)
* Sparse candidate, GENIE3, ARACNE, CLR

— Per-module methods

* Module networks: learn regulators for sets of genes/modules

* Other implementations of module networks exist

— LIRNET: Learning a Prior on Regulatory Potential from eQTL Data (Su In Lee et al, Plos genetics 2009,
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000358)

— LeMoNe: Learning Module Networks (Michoel et al 2007, http://www.biomedcentral.com/1471-
2105/8/S2/S5)

— Methods that combine per-gene and per-module (MERLIN)

* Methods differ in
— how they quantify dependence between genes
— Higher-order or pairwise
— Focus on structure or structure & parameters
* Expression alone is not enough to infer the structure of the network

* Integrative approaches that combine expression with other types of
data are likely more successful (next lectures)



http://www.biomedcentral.com/1471-2105/8/S2/S5
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