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Plan for this section

• Overview of network inference (Sep 18th)
• Directed probabilistic graphical models 

Bayesian networks (Sep 18th, Sep 20th)
• Gaussian graphical models (Sep 25th)
• Dependency networks (Sep 27th)
• Integrating prior information for network 

inference (Oct 2nd, 4th)



Goals for today

• Dependency networks
• GENIE3
• Evaluation of expression-based network 

inference methods



Recall the different types of probabilistic 
graphs

• In each graph type we can assert different 
conditional independencies

• Correlation networks 
• Markov networks
– Gaussian Graphical models

• Dependency networks
• Bayesian networks



Dependency  network

• A type of probabilistic graphical model
• Approximate Markov networks
– Are much easier to learn from data

• As in Bayesian networks has
– A graph structure
– Parameters capturing dependencies between a 

variable and its parents
• Unlike Bayesian network 
– Can have cyclic dependencies
– Computing a joint probability is harder

• It is approximated with a “pseudo” likelihood.

Dependency Networks for Inference, Collaborative Filtering and Data visualization
Heckerman, Chickering, Meek, Rounthwaite, Kadie 2000



Original motivation of dependency networks

• Introduced by Heckerman, Chickering, Meek, et al 
2000

• Often times Bayesian networks can get confusing
– Bayesian networks learned represent correlation or 

predictive relationships
– But the directionality of the edges are mistakenly 

interpreted as causal connections
• (Consistent) Dependency networks were 

introduced to distinguish between these cases



Dependency network vs Bayesian network
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Income

Age Gender
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Dependency Networks for Inference, Collaborative Filtering and Data visualization
Heckerman, Chickering, Meek, Rounthwaite, Kadie 2000

Bayesian network Dependency network

Often times, the Bayesian network on the left is read as if “Age” determines “Income”. 
However, all this model is capturing is that “Age” is predictive of “Income”.



Learning dependency networks

?? ?…
Bj • Let Bj denote the Markov Blanket of a 

variable Xj.
• X-j denotes all variables other than Xj
• Given Bj, Xj is independent of all other 
variables, X-j

• Bj can be estimated by finding the set of 
variables that best predict Xj
• This requires us to specify the form of 
P(Xj|Bj)

fj=P(Xj|Bj)

• Entails estimating the Markov blanket of each random 
variable

Xj

P (Xj |X�j) = P (Xj |Bj)



Different representations of fj=P(Xj|Bj)

• If Xj is continuous
– fj can be a linear function
– fj can be a regression tree
– fj can be an ensemble of trees
• E.g. random forests

• If Xj is discrete
– fj can be a conditional probability table
– fj can be a conditional probability tree



Popular dependency networks 
implementations

• Learned by solving a set of linear regression problems

• TIGRESS (Haury et al, 2010)

• Uses a constraint to learn a “sparse” Markov blanket 

• Uses “stability selection” to estimate confidence of edges

• Learned by solving a set of non-linear regression problems

• Non-linearity captured by Regression Tree (Heckerman et al, 2000)

• GENIE3: Non-linearity captured by Random forest (Huynh-Thu et 

al, 2010)

• Inferelator (Bonneau et al, Genome Biology 2005)

• Can handle time course and single time point data

• Non-linear regression is done using a logistic transform

• Handles linear and non-linear regression



Goals for today

• Dependency networks
• GENIE3
• Evaluation of expression-based network 

inference methods
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GENIE3: GEne Network Inference with 
Ensemble of trees

• Solves a set of regression problems
– One per random variable
– Minimizes the prediction error per variable Xj

• Uses an Ensemble of regression trees to represent fj
– Models non-linear dependencies 

• Outputs a directed cyclic graph with a confidence of each 
edge
– Directionality means “good predictor”

• Focus on generating a ranking over edges rather than a graph 
structure and parameters
– Rank is determined by confidence

Inferring Regulatory Networks from Expression Data Using Tree-Based Methods Van Anh
Huynh-Thu, Alexandre Irrthum, Louis Wehenkel, Pierre Geurts, Plos One 2010

⌃N
i=1(x

i
j � fj(x

i
�j))

2



Recall our very simple regression tree for two 
variables

X2

X3

e1 e2

µ1,�1

µ2,�2
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X2 > e1

X2 > e2
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The tree specifies X3 as a function of X2 Interior nodes

Leaf nodes



Prediction of Xj using a single tree

split nodes
leaf nodes

x-j

Taken from ICCV09 tutorial by Kim, Shotton and Stenger: http://www.iis.ee.ic.ac.uk/~tkkim/iccv09_tutorial   

µ Prediction is the mean at each leaf node



Prediction example with a regression tree

LEARNING MODULE NETWORKS
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INTL<4%
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Figure 6: Example of a regression tree with univariate Gaussian distributions at the leaves for rep-
resenting the CPD P(M3 | AMAT, INTL), associated withM3. The tree has internal nodes
labeled with a test on the variable (e.g. AMAT < 5%). Each univariate Gaussian distri-
bution at a leaf is parameterized by a mean and a variance. The tree structure captures
the local dependency structure of the conditional distributions. In the example shown,
when AMAT ≥ 5%, then the distribution over values of variables assigned toM3 will be
Gaussian with mean 1.4 and standard deviation 0.8 regardless of the value of INTL.

Figure 6. We note that, in some domains, Gaussian distributions may not be the appropriate choice
of models to assign at the leaves of the regression tree. In such cases, we can apply transforma-
tions to the data to make it more appropriate for modeling by Gaussian distributions, or use other
continuous or discrete distributions at the leaves.

To learn module networks with regression-tree CPDs, we must extend our previous discus-
sion by adding another component to S that represents the trees T1, . . . ,TK associated with the dif-
ferent modules. Once we specify these components, the above discussion applies with several
small differences. These issues are similar to those encountered when introducing decision trees to
Bayesian networks (Chickering et al., 1997; Friedman and Goldszmidt, 1998), so we discuss them
only briefly.

Given a regression tree Tj for P(M j | PaM j), the corresponding sufficient statistics are the statis-
tics of the distributions at the leaves of the tree. For each leaf ℓ in the tree, and for each data instance
x[m], we let ℓ j[m] denote the leaf reached in the tree given the assignment to PaM j in x[m]. The mod-
ule likelihood decomposes as a product of terms, one for each leaf ℓ. Each term is the likelihood for
the Gaussian distribution N

(

µℓ;σ2ℓ
)

, with the usual sufficient statistics for a Gaussian distribution.
Given a regression tree Tj for P(M j | PaM j), the corresponding sufficient statistics are the statis-

tics of the distributions at the leaves of the tree. For each leaf ℓ in the tree, and for each data instance
x[m], we let ℓ j[m] denote the leaf reached in the tree given the assignment to PaM j in x[m]. The mod-
ule likelihood decomposes as a product of terms, one for each leaf ℓ. Each term is the likelihood for

573

Suppose we observe AMAT=10% and INTL=7%

DELL

DELL

AMAT INTL

What is DELL’s predicted value? 1.4



Quantifying a split on the tree
• Let X-j denote the set of candidate variables we can 

split on
• A split is defined by a tuple, (Xi,s), s is the test value 

of !", !" ∈ %&'
• The best split of a leaf node is found by enumerating 

over all possible splits defined by the predictor 
variables and split values s:

The set of samples in the left node The set of samples in the right node

mini,s

0

@
X

k2Sleft

(xk
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l2Sright
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Sleft and Sright are sets of samples obtained by testing Xi for a particular split s



Algorithm for learning a regression tree

• Input: dataset D, variable Xj, candidate predictors X-j
of Xj

• Output: Tree T
• Initialize T to a leaf node,          estimated from all 

samples of Xj. Assign all samples to leaf node
• While not converged
– For every leaf node l in T

• Find the best split, ("#, %) at l
• If the split improves prediction power or convergence 

criteria are not met
– add two leaf nodes, lleft and lright to l
– Assign sample x(m) to lleft if '#( < %, and to lright otherwise
– Update parameters associated with lleft and lright

µ,�



One iteration of regression tree learning
• Let X={X1,X2,X3,X4}
• Assume we are searching for the neighbors of X3 and it already has two neighbors 

X1 and X2
• X1, X2, X4 will all be considered as candidate splits using the examples at each 

current leaf node
• If we split on X4, then we will have a new neighbor. 
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Nl: Gaussian associated with leaf l

Iteration i
X1 > e1

X2 > e2

YES

NO

NO YES

X4 > e3

YES

N2
N3

N4 N5
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Convergence criteria

• Minimum number of examples at a leaf node
• Depth of a tree
• Error tolerance



An Ensemble of trees

• A single tree is prone to “overfitting”
• Instead of learning a single tree, ensemble 

models make use of a collection of trees



– Prediction is

Prediction using an Ensemble of Trees

……

tree
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Taken from ICCV09 tutorial by Kim, Shotton and Stenger: http://www.iis.ee.ic.ac.uk/~tkkim/iccv09_tutorial   
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Expression data matrix
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of Xj in all m 
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GENIE3 will use 
the transpose of 
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Observations (expression levels) 
of all variables in sample i



GENIE3 algorithm sketch

we assume that we can write:

xjk~fj(x
{j
k )zek,Vk ð1Þ

where ek is a random noise with zero mean (conditionally to x{j
k ).

We further make the assumption that the function fj only exploits

the expression in x{j of the genes that are direct regulators of
gene j, i.e. genes that are directly connected to gene j in the
targeted network. Recovering the regulatory links pointing to
gene j thus amounts at finding those genes whose expression is
predictive of the expression of the target gene. In machine
learning terminology, this can be considered as a feature selection
problem (in regression) for which many solutions exist [28]. We
assume here the use of a feature ranking technique that, instead
of directly returning a feature subset, yields a ranking of the
features from the most relevant to the less relevant for predicting
the output.
The proposed network inference procedure is illustrated in

Figure 1 and works as follows:

N For j=1 to p:

– Generate the learning sample of input-output pairs for gene
j:

LSj~f(x{j
k ,xjk),k~1, . . . ,Ng:

– Use a feature selection technique on LSj to compute
confidence levels wi,j,Vi=j, for all genes except gene j itself.

N Aggregate the p individual gene rankings to get a global
ranking of all regulatory links.

Note that depending of the interpretation of the weights wi,j,
their aggregation to a get a global ranking of regulatory links is not
trivial. We will see in the context of tree-based methods that it
requires to normalize each expression vector appropriately.

Gene Ranking with Tree-based Methods
The nature of the problem and the proposed solution put some

constraints on candidate feature selection techniques. The nature
of the functions fj is unknown but they are expected to involve the
expression of several genes (combinatorial regulation) and to be
non-linear. The number of input features in each of these
problems is typically much greater than the number of
observations. Computationally, since the identification of a
network involving p genes requires to rerun the algorithm p times,
it is also of interest for this algorithm to be fast and to require as
few manual tuning as possible. Tree-based ensemble methods are
good candidates for that purpose. These methods do not make any
assumption about the nature of the target function, can potentially
deal with interacting features and non-linearity. They work well in
the presence of a large number of features, are fast to compute,
scalable, and essentially parameter-free (see [29] for a review).
We first briefly describe these methods and their built-in feature

ranking mechanism and then discuss their use in the context of the
network inference procedure described in the previous section.

Tree-based Ensemble Methods
Each subproblem, defined by a learning sample LSj, is a

supervised (non-parametric) regression problem. Using square
error loss, each problem amounts at finding a function fj that
minimizes the following error:

XN

k~1

(xjk{fj(x
{j
k ))2 : ð2 Þ

Regression trees [30] solve this problem by developing tree
structured models. The basic idea of this method is to recursively
split the learning sample with binary tests based each on one input

variable (selected in x{j), trying to reduce as much as possible the

variance of the output variable (xj) in the resulting subsets of
samples. Candidate splits for numerical variables typically
compare the input variable values with a threshold which is
determined during the tree growing.

Figure 1. GENIE3 procedure. For each gene j~1, . . . ,p, a learning sample LSj is generated with expression levels of j as output values and
expression levels of all other genes as input values. A function fj is learned from LSj and a local ranking of all genes except j is computed. The p local
rankings are then aggregated to get a global ranking of all regulatory links.
doi:10.1371/journal.pone.0012776.g001

Inferring GRNs with Trees

PLoS ONE | www.plosone.org 3 September 2010 | Volume 5 | Issue 9 | e12776

Figure from Huynh-Thu et al. 

Predictor ranking



GENIE3 algorithm sketch

• For each Xj, generate learning samples of 
input/output pairs
– LSj={(x-j

k,xj
k), k=1..N}

– On each LSj learn fj  to predict the value of Xj

– fj is an ensemble of regression trees
– Estimate wij for all genes i ≠ j

• wij quantifies the confidence of the edge between Xi and Xj
• Associated with the decrease in variance of Xj when Xi is included in fj

• Generate a global ranking of edges based on each 
wij



Learning fj in GENIE3
• Uses two types of Ensembles to represent the fj:

– Random forest or Extra Trees
• Learning the Random forest

– Generate M=1000 bootstrap samples
– At each node to be split, search for best split among K randomly 

selected variables
– K was set to p-1 or (p-1)1/2, where p is the number of 

regulators/parents
• Learning the Extra-Trees 

– Learn 1000 trees
– Each tree is built from the original learning sample
– At each node, the best split is determined among K random splits, 

each split determined by randomly selecting one input (without 
replacement) and a threshold



Computing the importance weight of a 
predictor

• Importance is computed at each interior node
• Remember each predictor can show up multiple 

times as interior nodes
• For an interior node, importance is given by the 

reduction in variance when  splitting on that node
I(N ) = #SV ar(S)�#StV ar(St)�#SfV ar(Sf )

Interior node Set of data samples that reach this node

#S: Size of the set S
Var(S): variance of the output variable xj in set S
St: subset of S when a test at N is true
Sf: subset of S when a test at N is false

V ar(S) =
1

#S

#SX

i=1

(µS
j � xi

j)
2



Computing the importance weight of a 
predictor

• For a single tree the overall importance is then 
sum over all points in the tree where this node 
is used to split

• For an ensemble the importance is averaged 
over all trees

• To avoid bias towards highly variable genes, 
normalize the expression genes to all have 
unit variance



Goals for today

• Dependency networks
• GENIE3
• Evaluation of expression-based network 

inference methods



Evaluating the network

• Assessing confidence
• Area under the precision recall curve
• Do modules or target sets of genes participate 

in coherent function?
• Can the network predict expression in a new 

condition?



Assessing confidence in the learned network 

• Typically the number of training samples is not 
sufficient to reliably determine the “right” 
network

• One can however estimate the confidence of 
specific features of the network
– Graph features f(G)

• Examples of f(G)
– An edge between two random variables
– Order relations: Is X, Y’s ancestor?



How to assess confidence in graph features?

• What we want is P(f(G)|D), which is

• But it is not feasible to compute this sum

• Instead we will use a “bootstrap” procedure

�Gf(G)P (G|D)



Bootstrap to assess graph feature confidence

• For i=1 to m
– Construct dataset Di by sampling with 

replacement N samples from dataset D, where N
is the size of the original D

– Learn a graphical model {Gi,Θi}
• For each feature of interest f, calculate 

confidence

Conf(f) =
1
m

mX

i=1

f(Gi)
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Bootstrap/stability selection

34

differences from the mean ranged from 30 (in vineyard strain I14)
to nearly 600 (in clinical isolate YJM789), with a median of 88
expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).

Influence of Copy Number Variation on Gene Expression
Variation
Expression from transposable Ty elements was highly variable

across strains. However, Ty copy number is known to vary widely

Figure 3. Variation in gene expression in S. cerevisiae isolates. The diagrams show the average log2 expression differences measured in the
denoted strains. Each row represents a given gene and each column represents a different strain, color-coded as described in Figure 1. (A) Expression
patterns of 2,680 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to S288c. (B) Expression patterns of 953
genes that varied significantly in at least one strain compared to strain YPS163 (FDR= 0.01, unpaired t-test). For (A) and (B), a red color indicates
higher expression and a green color represents lower expression in the denoted strain compared to S288c, according to the key. (C) Expression
patterns of 1,330 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to the mean expression of all 17 strains.
Here, red and green correspond to higher and lower expression, respectively, compared to the mean expression of that gene in all strains. Genes
were organized independently in each plot by hierarchical clustering.
doi:10.1371/journal.pgen.1000223.g003

Phenotypic Variation in Yeast
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differences from the mean ranged from 30 (in vineyard strain I14)
to nearly 600 (in clinical isolate YJM789), with a median of 88
expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).

Influence of Copy Number Variation on Gene Expression
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Expression from transposable Ty elements was highly variable
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of the observed expression differences are likely linked in trans to
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interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
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the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).

Influence of Copy Number Variation on Gene Expression
Variation
Expression from transposable Ty elements was highly variable

across strains. However, Ty copy number is known to vary widely

Figure 3. Variation in gene expression in S. cerevisiae isolates. The diagrams show the average log2 expression differences measured in the
denoted strains. Each row represents a given gene and each column represents a different strain, color-coded as described in Figure 1. (A) Expression
patterns of 2,680 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to S288c. (B) Expression patterns of 953
genes that varied significantly in at least one strain compared to strain YPS163 (FDR= 0.01, unpaired t-test). For (A) and (B), a red color indicates
higher expression and a green color represents lower expression in the denoted strain compared to S288c, according to the key. (C) Expression
patterns of 1,330 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to the mean expression of all 17 strains.
Here, red and green correspond to higher and lower expression, respectively, compared to the mean expression of that gene in all strains. Genes
were organized independently in each plot by hierarchical clustering.
doi:10.1371/journal.pgen.1000223.g003

Phenotypic Variation in Yeast

PLoS Genetics | www.plosgenetics.org 5 October 2008 | Volume 4 | Issue 10 | e1000223
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differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
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expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).
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differences from the mean ranged from 30 (in vineyard strain I14)
to nearly 600 (in clinical isolate YJM789), with a median of 88
expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).
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differences from the mean ranged from 30 (in vineyard strain I14)
to nearly 600 (in clinical isolate YJM789), with a median of 88
expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).
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differences from the mean ranged from 30 (in vineyard strain I14)
to nearly 600 (in clinical isolate YJM789), with a median of 88
expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).
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differences from the mean ranged from 30 (in vineyard strain I14)
to nearly 600 (in clinical isolate YJM789), with a median of 88
expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).
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differences from the mean ranged from 30 (in vineyard strain I14)
to nearly 600 (in clinical isolate YJM789), with a median of 88
expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).
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differences from the mean ranged from 30 (in vineyard strain I14)
to nearly 600 (in clinical isolate YJM789), with a median of 88
expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
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strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
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Expression from transposable Ty elements was highly variable

across strains. However, Ty copy number is known to vary widely

Figure 3. Variation in gene expression in S. cerevisiae isolates. The diagrams show the average log2 expression differences measured in the
denoted strains. Each row represents a given gene and each column represents a different strain, color-coded as described in Figure 1. (A) Expression
patterns of 2,680 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to S288c. (B) Expression patterns of 953
genes that varied significantly in at least one strain compared to strain YPS163 (FDR= 0.01, unpaired t-test). For (A) and (B), a red color indicates
higher expression and a green color represents lower expression in the denoted strain compared to S288c, according to the key. (C) Expression
patterns of 1,330 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to the mean expression of all 17 strains.
Here, red and green correspond to higher and lower expression, respectively, compared to the mean expression of that gene in all strains. Genes
were organized independently in each plot by hierarchical clustering.
doi:10.1371/journal.pgen.1000223.g003

Phenotypic Variation in Yeast

PLoS Genetics | www.plosgenetics.org 5 October 2008 | Volume 4 | Issue 10 | e1000223
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Does the bootstrap confidence represent real 
relationships?

• Compare the confidence distribution to that obtained from 
randomized data

• Shuffle the columns of each row (gene) separately
• Repeat the bootstrap procedure

1,2g ng ,2

1,mg nmg ,

1,1g ng ,1

randomize each
row independently

genes

Experimental conditions

Slide credit Prof. Mark Craven



Bootstrap-based confidence differs between 
real and actual data
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Example of a high confidence sub-networkthemselves transcriptionally regulated. These
regulation mechanisms often involve feed-
forward loops and feedback mechanisms
(18, 31) that change the mRNA expression

level of regulators when their protein activ-
ity changes. As a consequence, we can
detect coordinated changes in the expres-
sion levels of regulators and their targets.

This hypothesis is supported by an analysis
of the discovered regulatory relations against
a database of protein-DNA and protein-
protein interactions (26).

Fig. 3. Different regulatory network architectures. (A) An uncon-
strained acyclic network where each gene can have a different regu-
lator set. This is a fragment of a network learned in the experiments
of Pe’er et al. (24 ). (B) A summary of direct neighbor relations among
the genes shown in (A) based on bootstrap estimates. Degrees of
confidence are denoted by edge thickness. We automatically identify
a subnetwork of genes, with high-confidence relations among them,
that are involved in the yeast-mating pathways. The colors highlight
genes with known function in mating, including signal transduction
(yellow), transcription factors (blue), and downstream effectors
(green). (C) A fragment of a two-level network described by Pe’er et
al. (25). The top level contains a small number of regulators; the

bottom level contains all other genes (targets). Each gene has differ-
ent regulators from among the regulator genes. (D) Visualization of
significant Gene Ontology (42) annotations of the targets of different
regulators. Each significant annotation for the targets of a regulator
(or pairs of regulators) is shown with the hypergeometric p-value. (E)
A fragment of the module network described by Segal et al. (26). Each
module contains several genes that share the same set of regulators and
share the same conditional regulation program given these regulators. (F)
Visualization of the expression levels of the 55 genes in Module 1 (b) and
their regulators (a). Significant Gene Ontology annotations (c) and cis-
regulatory motifs in promoter regions of genes in the module (d) are shown.
[See figure 3 of (26); reproduced with permission]

M A T H E M A T I C S I N B I O L O G Y

6 FEBRUARY 2004 VOL 303 SCIENCE www.sciencemag.org804
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One learned Bayesian network Bootstrapped confidence Bayesian network: 
highlights a subnetwork associated with yeast 
mating pathway. Colors indicate genes with 
known functions.

Nir Friedman, Science 2004



Area under the precision recall curve (AUPR)

• Assume we know what the “right” network is
• One can use Precision-Recall curves to 

evaluate the predicted network
• Area under the PR curve (AUPR) curve 

quantifies performance

Precision= 
# of correct edges
# of predicted edges

Recall= 
# of correct edges
# of true edges



Experimental datasets to assess network 
structure for gene regulatory networks

• Sequence specific motifs

• ChIP-chip and ChIP-seq

• Factor knockout followed by whole-
transcriptome profiling



AUPR based performance comparison

GENIE3 got the best performance on the DREAM4 In Silico
Multifactorial challenge and is competitive with existing algorithms
to decipher the genetic regulatory network of Escherichia coli
assuming that transcription factors are known. When no prior
knowledge is available about transcription factors, our results on
the E. coli network were however not better than random guessing.
The reason of this discrepancy with respect to the results on the
DREAM4 challenge deserves to be further analysed.
Our algorithm can be improved along several directions. As

tree-based ensemble methods, we used the Random Forests and
the Extra-Trees algorithms, that both gave comparable results.
However, the performances of these methods depend to some
extent on their main parameter, the number K of randomly
selected attributes at each node of one tree. On the DREAM4
Multifactorial datasets, improved predictions were obtained by
increasing K to its maximum value (K~p{1 ), while on the E. coli
dataset, the best ranking of interactions was obtained by using
K~

ffiffiffiffiffiffiffiffi
nTF

p
. It would thus be of interest to find a way to

automatically tune this parameter. A first solution could be to
select the value of the parameter that leads to the best performance
for the prediction of the expression values, i.e. that minimizes
mean square error in (2) estimated by cross-validation. Unfortu-
nately, this solution did not work on the E. coli dataset, where using
K~nTF led to lower mean square error but a less good precision-
recall curve.
There is also a potential room for improvement on the way

variable importance scores are normalized. One apparent
drawback of the measure we proposed is that it does not take
into account the quality of the trees in generalization. Indeed since
our trees are fully grown, importance weights satisfy equation (4)
which, given our normalization, attributes equal weights to all tree

models irrespective of their quality when used to predict the
expression values of the target gene. We tried to correct for this
bias by normalizing the variable importance scores by the effective
variance reduction brought by the model as estimated by cross-
validation but it actually deteriorated the performances. The
question of the optimal normalization remains thus open at this
stage.
In this paper, we focused on providing a ranking of the

regulatory interactions. In some practical applications however,
one would like to determine a threshold on this ranking to obtain a
practical predicted network. To address this question, we have
tried to exploit cross-validation estimates of the mean-square error
as a criterion to determine such a threshold but we have not been
successfull so far. As future work, we therefore would like to extend
the technique developed in [46] to better assess the significance of
the predicted regulatory links and thus help determining a
threshold.
Our experiments on the DREAM4 dataset show that GENIE3

is able to predict the direction of the edges to some extent, even
though it only exploits steady-state measurements. This is an
interesting result as this is commonly admitted to be a difficult
problem. Bayesian networks also potentially allow to predict edge
directionality. A comparison with this family of methods would be
an interesting future work direction. Note that with respect to our
approach, Bayesian networks do not allow for the presence of
cycles in the predicted network, which could be a limiting factor
for networks such as those in DREAM4 that contain cycles by
construction.
Several procedures using regression trees have already been

proposed to solve the regulatory network inference problem. Most
of these procedures exploits other kinds of data in addition to
expression data, e.g. counts of regulatory motifs that serve as
binding sites for transcription factors [47,48], or ChIP-based
binding data [49]. The closest work to ours is the procedure
developed by Segal et al. [50], that recovers module networks from
expression data, so that the genes in each module share the same
regulators in the network and the same conditional probability
distribution, represented by a (single) regression tree.
Finally, although we exploited tree-based ensemble methods,

our framework is general and other feature selection techniques
could have been used as well. Actually, several existing methods

Figure 4. Precision-Recall curves for the E. coli network. Only known transcription factors were used as input genes. A. Comparison between
the four different settings of the tree procedure. B. Comparison to other approaches.
doi:10.1371/journal.pone.0012776.g004

Table 7. Overall scores for the directed networks of DREAM4.

GENIE3-RF-all CLR ARACNE MRNET GGM

Overall score 40.471 31.57 28.488 30.435 23.705

Links (i,j) and (j,i) were both assigned the same weights by CLR, ARACNE,
MRNET, and GGM, while GENIE3 was used unmodified.
doi:10.1371/journal.pone.0012776.t007

Inferring GRNs with Trees

PLoS ONE | www.plosone.org 8 September 2010 | Volume 5 | Issue 9 | e12776



DREAM: Dialogue for reverse engineeting
assessments and methods

Community effort to assess regulatory network inference
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Where do different methods rank?
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Methods tend to cluster together
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ANALYSIS

methods explicitly used this informa-
tion. Consequently, these methods recov-
ered target genes of deleted transcription  
factors more reliably than the inference 
methods that did not leverage this infor-
mation (Fig. 2c). Explicit use of such 
knockouts also helped methods to draw 
the direction of edges between tran-
scription factors more reliably. These 
observations suggest that measurements 
of transcription-factor knockouts can 
be informative for network reconstruc-
tion. In particular, this is the case for the  
E. coli data set, which contained the larg-
est number of such experiments (Online 
Methods). To further explore the informa-
tion content of different experiments, we employed a machine 
learning framework22 to systematically analyze the information 
gain from microarrays grouped according to the type of experi-
mental perturbation (knockouts, drug perturbations, environ-
mental perturbations and time series; Supplementary Note 5). 
We found that experimental conditions independent of transcrip-
tion factor knockout and overexpression also provide informa-
tion, though at a reduced level.

Community networks outperform individual inference methods
Network inference methods have complementary advantages and 
limitations under different contexts, which suggests that combining  
the results of multiple inference methods could be a good strategy 
for improving predictions. We therefore integrated the predic-
tions of all participating teams to construct community networks 
by rescoring interactions according to their average rank across 
all methods (Supplementary Note 6). The integrated community 
network ranks first for in silico, third for E. coli and sixth for  
S. cerevisiae out of the 35 applied inference methods, which shows 
that the community network is consistently as good or better than 
the top individual methods (Fig. 2a). Thus it has by far the best 
performance reflected in the overall score. We stress that, even 
though top-performing methods for a given network are com-
petitive with the integrated community method, the performance  
of individual methods does not generalize across networks.  

Given the biological variation among organisms and the experi-
mental variation among gene-expression data sets, it is difficult 
to determine beforehand which methods will perform optimally 
for reconstructing an unknown regulatory network. In con-
trast, the community approach performs robustly across diverse  
data sets.

We next analyzed how the number of integrated methods 
affects the performance of community predictions by examin-
ing randomly sampled combinations of individual methods. 
On average, community methods perform better than indi-
vidual inference methods even when integrating small sets of 
individual predictions: for example, just five teams (Fig. 3a).  
Performance increases further with the number of integrated 
methods. For instance, given 20 inference methods, their inte-
gration ranks first or second in 98% of the cases (Fig. 3b). We 
also found that the performance of the community network can 
be improved by increasing the diversity of the underlying infer-
ence methods. Consensus predictions from teams using similar 
methodologies were outperformed by consensus predictions from 
diverse methodologies (Fig. 3c).

A key feature in taking a community network approach is robust-
ness to the inclusion of a limited subset (up to ~20%) of poorly per-
forming inference methods (Fig. 3d). Poor predictors essentially 
contributed noise, but this did not affect the performance of the 
community approach as a whole. This finding is crucial because 
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Figure 2 | Evaluation of network inference 
methods. Inference methods are indexed 
according to Table 1. (a) The plots depict the 
performance for the individual networks (area 
under precision-recall curve, AUPR) and the 
overall score summarizing the performance across 
networks (Online Methods). R, random predictions; 
C, integrated community predictions. (b) Methods 
are grouped according to the similarity of their 
predictions via principal-component analysis. 
The second versus third principal components 
are shown; the first principal component 
accounts mainly for the overall performance 
(Supplementary Note 4). (c) The heat map 
depicts method-specific biases in predicting 
network motifs. Rows represent individual 
methods and columns represent different types of 
regulatory motifs. Red and blue show interactions 
that are easier and harder to detect, respectively.

These approaches were mostly per-gene
Marbach et al., 2012



Comparing per-module (LeMoNe) and per-gene 
(CLR) methods
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Motif
TF-binding site or specific 
sequence tag that is recognized 
by a TF and is located in the 
promoter region of a gene.

co-expression, but also share a common regulatory 
binding site (identified by de novo motif detection or ChIP 
analysis). Exploiting complementary data sources to con-
firm expression-based module assignments reduces the 
assignment of false members to true modules and  
the detection of spurious modules. As the observed co-
expression in a module also implies true co-regulation 
when using integrative module inference methods, the 
module inherently contains information that infers  
the transcriptional programme: for example, each 
module is assigned the regulator that is known to 
recognize the motif or binding site associated with 
the module. Applying DISTILLER to a cross-plat-
form E. coli expression compendium and motif data 
for 67 known regulators resulted in the prediction 
of 278 new interactions for 29 different regulators8. 
Of the 11 new interactions for fumarate and nitrate 
reduction regulatory protein (Fnr) that were experi-
mentally verified by ChIP–quantitative real-time PCR, 
none were predicted by the non-integrative meth-
ods CLR32 and Stochastic LeMoNe29. When using 

integrative approaches in combination with de novo-
detected motifs, the assignment of a cognate regulator 
will be based on additional, computationally derived  
criteria (for example, the genomic proximity of the genes 
encoding the regulator and its targets)5 or on a concomi-
tant expression-based inference of the regulatory pro-
gramme25. In the future, mapping of cognate regulators 
to novel motifs  will be further facilitated by integration 
with data resulting from protocols that globally survey an 
organism’s proteome for sequence-specific interactions  
with putative DNA regulatory elements49,50.

So, inference methods that use only expression data 
are useful for organisms for which there is little addi-
tional information available. Integrative methods, on the 
other hand, provide a more complete view of the net-
work and are more likely to predict true positive interac-
tions. However, the additive value of integrative methods 
depends on the quality of both the additional data51 and 
the algorithm used.

Global versus query-driven inference. Global module 
inference methods22,52–59 search for the modules that 
explain most of the data. This usually corresponds to 
identifying large pathways that consist of many genes 
and that are usually responsible for the general responses 
to major metabolic or condition shifts, such as the path-
ways that regulate flagellar synthesis, amino acids bio-
synthesis and the DNA damage response. As such, global 
approaches provide a general view of the active TRN 
and the resulting physiological state in the cell. Query-
driven module detection methods, on the other hand60,61,  
search for genes that are co-expressed, in a condition-
dependent way, with a predefined set of genes (also called 
query genes). These algorithms are deliberately biased 
towards finding a specific local solution in the search 
space according to the particular interests of the user. 
This solution is usually not easy to find using a global 
approach, as either the expression signals of the query 
genes are too low to be significant or the local solution 
is obscured by a more global one. For example, searching 
an E. coli compendium for a PurR-related module using 
a known PurR target as a query returns a module that is 
indeed significantly enriched for previously known PurR 
targets (P < 1 × 10–15), whereas with a global approach 
the module that contains the most PurR-related genes 
(under default conditions) is much larger and enriched 
for more general functions related to amino acid bio-
synthesis and translation (R.D.S., unpublished observa-
tions). Query-driven approaches are thus typically used 
to expand or curate a particular pathway or process either 
by searching for additional genes that are co-expressed 
with genes known to be involved in the pathway or by 
filtering out genes that are not co-expressed with the 
majority of the so-called pathway genes. For instance, 
the query-driven Signature Algorithm (SA) refined the 
gene set involved in the tricarboxylic acid (TCA) cycle 
in Saccharomyces cerevisiae using the homologues of  
37 E. coli TCA cycle genes as queries61.

Most of the global network inference methods 
described above can be applied in a query-driven set-
ting by restricting their input data sets. In some cases 

Figure 2 | Complementarity in the type of interactions inferred by direct  
and module-based inference methods. CLR (context likelihood of relatedness) and 
Stochastic LeMoNe (learning module networks), as representatives of direct and 
module-based inference methods, respectively, were applied to the same Escherichia coli 
compendium32. The precision of the inferred interactions was calculated as described in 
Faith et al.32, using experimentally documented interactions in RegulonDB69 as a standard. 
a | A comparison of the precision with which true interactions were inferred for both 
methods; the difference in the precision obtained with CLR and with LeMoNe was 
calculated for each regulator. Regulators are ranked according to this difference in 
precision. A high negative value indicates a higher precision for LeMoNe than for CLR, 
and high positive values indicate the opposite. b | The values of the regulator-specific 
precision for LeMoNe and CLR. c | The size distribution of the the known regulon 
membership, according to RegulonDB, for the regulators for which either LeMoNe or 
CLR show a higher precision. Parts a and b illustrate the complementarity between both 
methods in retrieving interactions for different regulators. Part c shows that LeMoNe 
predicts, on average, correct targets for more global regulators (with a larger regulon 
size), whereas CLR typically predicts targets for regulators with fewer known targets. 
Note that predictions for regulators that are not documented in RegulonDB are not 
included in this plot.
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Some comments about expression-based 
network inference methods

• We have seen multiple types of algorithms to learn these networks
– Per-gene methods (learn regulators for individual genes)

• Sparse candidate, GENIE3, ARACNE, CLR

– Per-module methods
• Module networks: learn regulators for sets of genes/modules
• Other implementations of module networks exist

– LIRNET: Learning a Prior on Regulatory Potential from eQTL Data (Su In Lee et al, Plos genetics 2009, 
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000358)

– LeMoNe: Learning Module Networks (Michoel et al 2007, http://www.biomedcentral.com/1471-
2105/8/S2/S5)

– Methods that combine per-gene and per-module (MERLIN)

• Methods differ in 
– how they quantify dependence between genes 
– Higher-order or pairwise
– Focus on structure or structure & parameters

• Expression alone is not enough to infer the structure of the network
• Integrative approaches that combine expression with other types of 

data are likely more successful (next lectures)

http://www.biomedcentral.com/1471-2105/8/S2/S5
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