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Topics in this section

• Skeleton network-based approaches (Oct 16th, 2018)
• Input/Output Hidden Markov Models
• Multi-task learning of graphs



Goals for today

• Overview of different models to capture context-
specificity/dynamics

• Skeleton network based approaches



What do we mean by context?

• We will define context broadly
• Context can be time, developmental stage, tissue, cell type, 

organ, disease, strains/individuals, species
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INTRODUCTION: The activation of CD4+ 

T lymphocytes by antigen initiates adap-

tive immune responses, amplifying rare 

antigen-specific clones and leading to func-

tional specialization of effector T cells, in 

particular through the spectrum of cyto-

kines they produce. Pathogens have exerted 

selective pressure during recent human 

evolution and migrations, but selection for 

a type of response that is optimal against 

one microbe class could carry a price in 

less-effective responses to other microbes 

or in impaired self-tolerance and autoim-

mune disease. Little is known about inter-
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T cell activation
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RESEARCH ARTICLE SUMMARY

Characterizing the variation in T cell response. A total of 348 individuals from the ImmVar 

cohort donated blood for CD4+ T cell isolation and genotyping. The T cells were subsequently 

activated to mimic the recognition of the cognate antigen. The variability in adaptive immune 

response, which may have genetic and nongenetic components, was characterized by profiling 

the response of activated T cells. A computational analysis uncovered genetic drivers for this 

variation and pinpointed molecular mechanisms by which they may act.
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individual variation in the responsiveness 

of human CD4+ T cells and how genetic 

variation affects the tone and intensity of T 

cell responses in human individuals.

RATIONALE: As the third arm of the 

ImmVar project, we performed a rigorously 

controlled analysis of the responses of hu-

man blood CD4+ T cells to activation in un-

biased conditions or in a culture regimen 

that promotes differentiation to the T helper 

17 cell (T
H
17) phenotype. To permit an ap-

preciation of the breadth of variation across 

humans, we investigated these responses in 

a cohort of 348 healthy human volunteers 

representing three different ancestries (Af-

rican, Asian, and European). Responses to 

activation were evaluated by gene expres-

sion profiling, focused on the transcripts 

that best represent the response, its vari-

ability, and its functional consequences. Re-

lating these data to dense single-nucleotide 

polymorphism genotypes from the partici-

pants, we identified the genetic contribu-

tions to this variation by using heritability 

analysis and fine-mapped previously un-

known expression quantitative trait loci 

(eQTLs) that control these responses by us-

ing trans-ethnic meta-analysis.

RESULTS: We observed a high degree of 

interindividual variability, much of which 

was reproducible for a given subject. This 

variability followed complex patterns and 

did not reduce simply to dominant T
H
1, 2, 

or 17 types. We identified 39 loci associated 

in cis with gene activation in T cells. These 

explained on average 25% of the repeatable 

variation, but a major element could not be 

ascribed to simple genetic effects, instead 

reflecting environmental influences, immu-

nologic history, or complex integration of 

network regulation. Of activation-induced 

genes, cytokines showed the most variabil-

ity, but with little or no cis genetic control, 

in contrast to cytokine receptors, which 

were less variable but for which several 

eQTLs were detected. Ancestry of the do-

nors markedly influenced T cell responses, 

with stronger T
H
17 be-

ing associated with 

African descent. We 

fine-mapped and vali-

dated experimentally a 

single-base variant that 

modulates binding of 

the transcription factor YY1 and hence the 

activity of an enhancer element controlling 

the autoimmune-associated IL2RA gene, af-

fecting its activity in activated but not regu-

latory T cells.

CONCLUSION: Echoing the linked ImmVar 

studies, we find that the relevant cell type 

and context are essential for discovering 

the genetic drivers of cell-specific responses 

and of connected autoinflammatory dis-

eases. Our study lays the groundwork for 

further explorations into the relative con-

tributions of genes and their environment 

on immunological processes, which should 

aid in our understanding of autoimmune 

disease and its genetic underpinnings.  � 
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Network dynamics and context specificity

• What does modeling “dynamics” mean?
– The activity of nodes change over time and we want to 

model how this happens
– The network (structure or parameters) changes with time
• Structure can change due to changes at the node or 

edge level
• What models can be used for capturing dynamics in 

networks?
• How do these models capture dynamics?
– Node level
– Edge level



Strategies for capturing dynamics in 
networks

• Ordinary Differential Equation (ODE) based approaches
• Skeleton network-based approaches 
• Dynamic Bayesian Networks and non-stationary extensions
• Input/Output Hidden Markov Models
• Multi-task learning approaches
• Dynamic networks with temporal transition of edges/Time 

varying networks



ODE based models in networks

• Assume we are modeling a gene regulatory network
• Let xi denote the expression level of the ith gene
• ODE for the change in expression of ith gene is

• This is often approximated by a finite difference 
approximation

dxi

dt
= �↵ixi +

X

p2Pi

�i,pxp

Greenfield et al., Bioinformatics 2013

xi(t+ 1)� xi(t)

tk+1 � tk
= �↵ixi(tk) +

X

p2Pi

�i,pxp(tk)

Regulators of ith gene

Expression level of 
regulator p



Skeleton network-based approaches

• Assume that we have background/skeleton network that 
defines the universe of possible edges

• The network changes because node activity levels change

GlobalMIT [20] and BNFinder [21] have been
developed [20–23].

RN methods [9, 24, 25] have been also used to
reconstruct GINs [9, 24] and TRNs [25] using

time-course gene expression data. For the inference,
they use relevance measures for pairs of the nodes
(Relevance network in Figure 2), such as correlation
coefficients (CC) [9] and mutual information (MI)

Figure 2: Inferred example networks. The networks with temporal associations inferred from time-course gene
expression data (first row) are represented as BNs, DBNs and RNs. Using time-course gene expression data, BN
and RN methods infer directed and undirected relationships between the nodes (x i), respectively. These edges are
estimated from statistical dependence between the nodes across the whole time span. DBN methods first infer a
prior BN and then a transition network showing directed relationships between the nodes (x i

t and x i
tþ1) at t and

tþ1. The inferred network from DBN contains two feedback loops, x1!x1 and x1!x2!x3!x1. The dynamic net-
work with temporal transition of nodes (second row) involves activation of a set of nodes (x i

t) in the network (Gt)
at each t.The nodes activated at t are linked (thick lines) when they interact with each other based on known inter-
actomes. The dynamic networks with temporal transition of edges (third row) involve activation of a set of nodes
and edges in the network at each t. Non-stationary DBNs (nsDBNs; Im) show transition of directed edges in m
time ranges. The activation of node 2 (x 2 ) by node 1 (x 1) disappeared, and the positive regulation of node 3 (x 3 ) by
node 1 (x 1) was newly formed at second time range (m¼ 2). MRF networks (GT) show transition of undirected
edges at each t.
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Dynamic Bayesian networks (DBNs)
• Suppose we have a time course of node activity levels
• We assume that the activity levels at time t+1 depends upon t
– But this does not change with t

• DBNs can be used to model how the system evolves over time
– We may have a different network at the first time point



Non-stationary Dynamic Bayesian 
Networks (nsDBNs)

• The standard DBN assumes that the dependency between the 
previous time point (t-1) and the current time point (t) is the 
same
– This is called the stationarity assumption in DBNs

• Non-stationary DBNs are DBNs where this assumption is 
relaxed
– Introduced by Robinson and Hartemink 2010
– Depending upon the time-window/epoch we might have a 

different dependency structure



Non-stationary Dynamic Bayesian 
Networks 

• Suppose we have three time windows
• nsDBNs require us to define the dependency structure in each 

time window

Adapted from Robinson & Hartermink 2010
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Non-stationary Dynamic Bayesian 
Networks continued

• For m epochs, we would like to find G1,.., Gm by optimizing 
their posterior distribution

Prior over m graphs; can be used to incorporate our prior 
knowledge of how the graphs transition



Time-varying Networks 

• The network changes between time at the node and edge levels
• Example approaches

– TESLA (Ahmed & Xing, PNAS 2009)
– KELLER (Song et al., Bioinformatics 2009)

• TESLA 
– Based on temporal Exponential Random Graph Models
– Assumes binary node values
– works by imposing a regularization term to make the graphs 

change smoothly over time
– estimates the graph structure by solving a set of local 

regularized logistic regression problems



Applying TESLA to US senators of the 
109th congress

Each node is a senator. The networks were inferred using voting records of 642 bills. Votes
are binary states at each time point. Voting records were grouped into 12 epochs, each epoch
comprising 2 months.

Epoch 2 Epoch 7 Epoch 10

Democrats
Republicans



Goals for today

• Overview of different models to capture context-
specificity/dynamics

• Skeleton network based approaches



Skeleton network-based approaches

• Given 
– A fixed network of nodes (genes, proteins, metabolites)
– Activity levels of network nodes in a set of contexts (e.g. 

tissues, time points)
• Do
– Find subset of edges that are active in each context

GlobalMIT [20] and BNFinder [21] have been
developed [20–23].

RN methods [9, 24, 25] have been also used to
reconstruct GINs [9, 24] and TRNs [25] using

time-course gene expression data. For the inference,
they use relevance measures for pairs of the nodes
(Relevance network in Figure 2), such as correlation
coefficients (CC) [9] and mutual information (MI)

Figure 2: Inferred example networks. The networks with temporal associations inferred from time-course gene
expression data (first row) are represented as BNs, DBNs and RNs. Using time-course gene expression data, BN
and RN methods infer directed and undirected relationships between the nodes (x i), respectively. These edges are
estimated from statistical dependence between the nodes across the whole time span. DBN methods first infer a
prior BN and then a transition network showing directed relationships between the nodes (x i

t and x i
tþ1) at t and

tþ1. The inferred network from DBN contains two feedback loops, x1!x1 and x1!x2!x3!x1. The dynamic net-
work with temporal transition of nodes (second row) involves activation of a set of nodes (x i

t) in the network (Gt)
at each t.The nodes activated at t are linked (thick lines) when they interact with each other based on known inter-
actomes. The dynamic networks with temporal transition of edges (third row) involve activation of a set of nodes
and edges in the network at each t. Non-stationary DBNs (nsDBNs; Im) show transition of directed edges in m
time ranges. The activation of node 2 (x 2 ) by node 1 (x 1) disappeared, and the positive regulation of node 3 (x 3 ) by
node 1 (x 1) was newly formed at second time range (m¼ 2). MRF networks (GT) show transition of undirected
edges at each t.
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Active subnetworks: A skeleton-network 
based approach 

• Active subnetworks: A subnetwork that exhibits an 
unexpectedly high level of expression change

– “Discovering regulatory and signalling circuits in molecular 
interaction networks”. By Trey Ideker, Owen Ozier, Benno 
Schwikowski, Andrew Siegel. Bioinformatics. 2002;18 Suppl
1:S233-40.

• Enables us to gain a better understanding of how expression is 
controlled at the network level

• Enables us to link gene expression changes to higher order 
interactions 



Active subnetworks key idea

• Given 
– Network structure and expression data (actually P-values 

specifying the significance of expression of a gene)
• Find
– Subnetwork that is differentially active 

• Active network identification requires solving these tasks:
– Define a score of subnetwork activity
• One or multiple conditions

– Search for high-scoring subnetworks



Defining the score for subnetwork activity

• The score is going to be a z-score
– The number of standard deviations from the mean.

• Need to compute a z-score associated with each subnetwork A
• Start with assessing differential expression of each gene

– P-value for significance of expression pi
• Convert P-value to gene level z-score zi

• Aggregate z-scores for all genes in subnetwork A

• Calibrate this against a background distribution

zi = ��1(1� pi)

zA =
1p
k
⌃i2Azi

sA =
zA � µk

�k

Estimated from 
randomly sampling 
gene sets of size k

Inverse normal CDF



Example of a score of subnetwork activity

Genes in a subnetwork

Gene level z-scores
Calibrate against a background 
distribution

Aggregated z-score



Extending the scoring criteria to multiple 
conditions

• Suppose we had m different conditions
• Given a subnetwork A, compute a set of z-scores for A in all m 

conditions

• Score of a subnetwork for multiple conditions is proportional 
to the probability that the subnetwork is active in at least j of 
the m conditions

• ϕ is the CDF of the normal distribution
• The probability of subgraph to have a score of at most ZA(j), 

(zA(1), zA(2), · · · , zA(m))

�(ZA(j)) = P (sA  ZA(j))



Extending the scoring criteria to multiple 
conditions

• Hence, the probability that any single condition has score at 
least ZA(j)

• Probability that at least j of m conditions has score at least 
ZA(j)

• This is equivalent to a p-value for zA(j)

Pz = 1� �(ZA(j))

pA(j) =
mX

h=j

✓
m

h

◆
Ph
z (1� Pz)

m�h

rA(j) = ��1(1� pA(j))

rmax
A = maxj(rA(j))

Score associated with 
the jth subset of 
conditions

Score associated with 
best subset



Overview of scoring criteria for multiple 
conditions

(i) Score for each condition
(ii) Sorted scores
(iii) Z-score calculation for the jth subset
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Active subnetwork finding algorithm

• Given a subnetwork, we now have a way to score its activity in 
one or more conditions

• How do we find such a subnetwork?
• We need to search in the space of subnetworks, score each 

subnetwork and select the most active ones



Simulated annealing to find active 
subnetworks

• Finding the maximal scoring subnetwork is computationally 
intractable

• Apply simulated annealing to find a close approximation to 
the global optimum

• Simulated annealing
– A heuristic search approach to find  a good approximation 

to the global optimum
– Enables one to take non-optimal steps to avoid being too 

greedy



Simulated annealing

• Requires a “Temperature” schedule that starts from a high 
value and gradually “cools” down
– At high temperatures (beginning), it will accept more non-

optimal moves
– At low temperatures, the probability of accepting non-

optimal moves is smaller
• Let e and e’ be the scores of the current and new moves
• Probability of accepting e’ is



Simulated Annealing example

https://www.youtube.com/watch?v=iaq_Fpr4KZc



Algorithm sketch to find a high scoring 
subnetwork

• Input: Graph G=(V,E), Number of iterations N, Temperature 
function Ti which decreases geometrically from Tstart to Tend

• Output: A subgraph Gw of G

• Initialize Gw (working subgraph) by randomly setting each v to 
active/inactive and obtaining the induced subgraph

• Loop i=1 to N
– Randomly pick a node v in V and toggle its state (new Gw)
– Compute score for new subgraph si
– If si>si-1 keep v toggled
– Else keep v toggled with probability 
– Output Gw

p = e(si�si�1)/Ti



Additional heuristics

• Additional heuristics: Search for multiple (M) 
subnetworks simultaneously 

• dmin (degree): remove low scoring neighbors for 
nodes with degree greater than dmin



Results

• Application to two networks
– 362 protein-protein and protein-dna interactions in a yeast 

galactose utilization study
– 7145 protein-protein and 317 protein-dna interactions

• Each condition was a single or double knockout of a gene in 
the galactose pathway

• Examine subnetworks in one condition (GAL80) (Figure 1)
• Examine subnetworks in multiple conditions (Figure 5)



Fig 1. Subnetworks
identified in the 

362 PPI, PDI  using 
GAL80 knock out 

based z-score

GAL4

Transcription factors 
are often not very 
differentially 
expressed



Analysis on small network with one 
perturbation (one condition)

Simulated annealing score convergence
Distribution of true and random 
subnetwork scores

These red scores correspond to randomized
expression data



Fig 5: Analysis on a larger network with 
multiple conditions

Result of applying another 
round of Simulated 
Annealing on subnetwork 1



Fig 6: Conditions in which specific 
subnetworks were active

Genes in the same subnetwork may be inversely correlated to each other



Take-away points
• A skeleton network based approach

– Fixed network, but the node activity can change across 
conditions

• Key advantages over simple expression-based clustering
– Find weakly expressed genes that are connected to genes that 

are highly expressed
– More interpretative
– Clustering may not connect two genes of opposite expression 

profiles
– Can find subnetworks active for a subset of conditions

• Future extensions
– Correcting for network topology
– Inferring more attributes on the subnetworks
– Better/different ways to find a subnetwork


