Dynamics and context-specificity in biological networks

Sushmita Roy

sroy@biostat.wisc.edu

Computational Network Biology

Biostatistics & Medical Informatics 826

https://compnetbiocourse.discovery.wisc.edu

Oct 16th 2018

Topics in this section

- Skeleton network-based approaches (Oct 16th, 2018)
- Input/Output Hidden Markov Models
- Multi-task learning of graphs

Goals for today

- Overview of different models to capture contextspecificity/dynamics
- Skeleton network based approaches

What do we mean by context?

- We will define context broadly
- Context can be time, developmental stage, tissue, cell type, organ, disease, strains/individuals, species

Different cell types

Different individuals

Different species

Network dynamics and context specificity

- What does modeling "dynamics" mean?
 - The activity of nodes change over time and we want to model how this happens
 - The network (structure or parameters) changes with time
 - Structure can change due to changes at the node or edge level
- What models can be used for capturing dynamics in networks?
- How do these models capture dynamics?
 - Node level
 - Edge level

Strategies for capturing dynamics in networks

- Ordinary Differential Equation (ODE) based approaches
- Skeleton network-based approaches
- Dynamic Bayesian Networks and non-stationary extensions
- Input/Output Hidden Markov Models
- Multi-task learning approaches
- Dynamic networks with temporal transition of edges/Time varying networks

ODE based models in networks

- Assume we are modeling a gene regulatory network
- Let x_i denote the expression level of the i^{th} gene
- ODE for the change in expression of i^{th} gene is Expression level of regulator p $\frac{dx_i}{dt} = -\alpha_i x_i + \sum_{p \in P_i \leftarrow \text{Regulators of } i^{th} \text{ gene}} \beta_{i,p} x_p$
- This is often approximated by a finite difference approximation

$$\frac{x_i(t+1) - x_i(t)}{t_{k+1} - t_k} = -\alpha_i x_i(t_k) + \sum_{p \in P_i} \beta_{i,p} x_p(t_k)$$

Greenfield et al., Bioinformatics 2013

Skeleton network-based approaches

- Assume that we have background/skeleton network that defines the universe of possible edges
- The network changes because node activity levels change

Kim et al. 2013, Briefings in Bioinformatics

Dynamic Bayesian networks (DBNs)

- Suppose we have a time course of node activity levels
- We assume that the activity levels at time t+1 depends upon t
 - But this does not change with t
- DBNs can be used to model how the system evolves over time
 - We may have a different network at the first time point

Non-stationary Dynamic Bayesian Networks (nsDBNs)

- The standard DBN assumes that the dependency between the previous time point (*t*-1) and the current time point (t) is the same
 - This is called the stationarity assumption in DBNs
- Non-stationary DBNs are DBNs where this assumption is relaxed
 - Introduced by Robinson and Hartemink 2010
 - Depending upon the time-window/epoch we might have a different dependency structure

Non-stationary Dynamic Bayesian Networks

- Suppose we have three time windows
- nsDBNs require us to define the dependency structure in each time window

Non-stationary Dynamic Bayesian Networks continued

• For *m* epochs, we would like to find *G*₁,.., *G*_{*m*} by optimizing their posterior distribution

$$P(G_1, .., G_m | D) \propto P(D | G_1, .., G_m)$$
$$P(G_1, .., G_m)$$

Prior over *m* graphs; can be used to incorporate our prior knowledge of how the graphs transition

$$P(G_1, .., G_m | D) \propto P(D | G_1, .., G_m)$$
$$P(G_1, \Delta g_1, \Delta g_2, .., \Delta g_{m-1})$$

Time-varying Networks

- The network changes between time at the node and edge levels
- Example approaches
 - TESLA (Ahmed & Xing, PNAS 2009)
 - KELLER (Song et al., Bioinformatics 2009)
- TESLA
 - Based on temporal Exponential Random Graph Models
 - Assumes binary node values
 - works by imposing a regularization term to make the graphs change smoothly over time
 - estimates the graph structure by solving a set of local regularized logistic regression problems

Applying TESLA to US senators of the 109th congress

Each node is a senator. The networks were inferred using voting records of 642 bills. Votes are binary states at each time point. Voting records were grouped into 12 epochs, each epoch comprising 2 months.

Goals for today

- Overview of different models to capture contextspecificity/dynamics
- Skeleton network based approaches

Skeleton network-based approaches

- Given
 - A fixed network of nodes (genes, proteins, metabolites)
 - Activity levels of network nodes in a set of contexts (e.g. tissues, time points)
- Do
 - Find subset of edges that are active in each context

Kim et al. 2013, Briefings in Bioinformatics Transitional networks

Active subnetworks: A skeleton-network based approach

- Active subnetworks: A subnetwork that exhibits an unexpectedly high level of expression change
 - "Discovering regulatory and signalling circuits in molecular interaction networks". By Trey Ideker, Owen Ozier, Benno Schwikowski, Andrew Siegel. Bioinformatics. 2002;18 Suppl 1:S233-40.
- Enables us to gain a better understanding of how expression is controlled at the network level
- Enables us to link gene expression changes to higher order interactions

Active subnetworks key idea

- Given
 - Network structure and expression data (actually P-values specifying the significance of expression of a gene)
- Find
 - Subnetwork that is differentially active
- Active network identification requires solving these tasks:
 - Define a score of subnetwork activity
 - One or multiple conditions
 - Search for high-scoring subnetworks

Defining the score for subnetwork activity

- The score is going to be a z-score
 - The number of standard deviations from the mean.
- Need to compute a z-score associated with each subnetwork A
- Start with assessing differential expression of each gene
 - P-value for significance of expression p_i
- Convert P-value to gene level z-score z_i

$$z_i = \Phi^{-1}(1 - p_i)$$

Inverse normal CDF

Aggregate z-scores for all genes in subnetwork A

$$z_A = \frac{1}{\sqrt{k}} \Sigma_{i \in A} z_i$$

Calibrate this against a background distribution $z_A - \mu_k$

 $s_A =$

Estimated from randomly sampling gene sets of size k

Example of a score of subnetwork activity

Extending the scoring criteria to multiple conditions

- Suppose we had *m* different conditions
- Given a subnetwork A, compute a set of z-scores for A in all m conditions

$$(z_{A(1)}, z_{A(2)}, \cdots, z_{A(m)})$$

- Score of a subnetwork for multiple conditions is proportional to the probability that the subnetwork is active in at least j of the m conditions
- ϕ is the CDF of the normal distribution
- The probability of subgraph to have a score of at most $Z_{A(i)}$,

$$\phi(Z_{A(j)}) = P(s_A \le Z_{A(j)})$$

Extending the scoring criteria to multiple conditions

• Hence, the probability that any single condition has score at least $Z_{A(j)}$ $P = 1 - \phi(Z_{A(j)})$

$$P_z = 1 - \phi(Z_{A(j)})$$

- Probability that at least *j* of *m* conditions has score at least $Z_{A(j)}$ $p_{A(j)} = \sum_{h=j}^{m} {m \choose h} P_z^h (1 - P_z)^{m-h}$
- This is equivalent to a p-value for $z_{A(j)}$

$$r_{A(j)} = \phi^{-1}(1 - p_{A(j)})$$

 $r_A^{\max} = \max_i(r_{A(i)})$

- Score associated with the *j*th subset of conditions
- Score associated with best subset

Overview of scoring criteria for multiple conditions

- (i) Score for each condition
- (ii) Sorted scores
- (iii) Z-score calculation for the j^{th} subset

Active subnetwork finding algorithm

- Given a subnetwork, we now have a way to score its activity in one or more conditions
- How do we find such a subnetwork?
- We need to search in the space of subnetworks, score each subnetwork and select the most active ones

Simulated annealing to find active subnetworks

- Finding the maximal scoring subnetwork is computationally intractable
- Apply simulated annealing to find a close approximation to the global optimum
- Simulated annealing
 - A heuristic search approach to find a good approximation to the global optimum
 - Enables one to take non-optimal steps to avoid being too greedy

Simulated annealing

- Requires a "Temperature" schedule that starts from a high value and gradually "cools" down
 - At high temperatures (beginning), it will accept more nonoptimal moves
 - At low temperatures, the probability of accepting nonoptimal moves is smaller
- Let e and e' be the scores of the current and new moves
- Probability of accepting e' is

$$P(e, e', T_i) = \begin{cases} 1, \text{ if } e < e' \\ \exp(\frac{e - e'}{T_i}) \end{cases}$$

Simulated Annealing example

https://www.youtube.com/watch?v=iaq_Fpr4KZc

Algorithm sketch to find a high scoring subnetwork

- **Input**: Graph G=(V,E), Number of iterations N, Temperature function T_i which decreases geometrically from T_{start} to T_{end}
- **Output**: A subgraph G_w of G
- Initialize G_w (working subgraph) by randomly setting each v to active/inactive and obtaining the induced subgraph
- Loop i=1 to N
 - Randomly pick a node v in V and toggle its state (new G_w)
 - Compute score for new subgraph s_i
 - If $s_i > s_{i-1}$ keep v toggled
 - Else keep v toggled with probability $p = e^{(s_i s_{i-1})/T_i}$
 - Output G_w

Additional heuristics

- Additional heuristics: Search for multiple (M) subnetworks simultaneously
- d_{min} (degree): remove low scoring neighbors for nodes with degree greater than d_{min}

Results

- Application to two networks
 - 362 protein-protein and protein-dna interactions in a yeast galactose utilization study
 - 7145 protein-protein and 317 protein-dna interactions
- Each condition was a single or double knockout of a gene in the galactose pathway
- Examine subnetworks in one condition (GAL80) (Figure 1)
- Examine subnetworks in multiple conditions (Figure 5)

Fig 1. Subnetworks identified in the 362 PPI, PDI using GAL80 knock out based z-score

Transcription factors are often not very differentially expressed

Analysis on small network with one perturbation (one condition)

Simulated annealing score convergence

Distribution of true and random subnetwork scores

Fig 5: Analysis on a larger network with multiple conditions

Result of applying another round of Simulated Annealing on subnetwork 1

Fig 6: Conditions in which specific subnetworks were active

[a]	Perturbations red red	ر - ga (d]
Subnetwork #	gal 3Δ -gal gal 3Δ -gal gal 7Δ +gal gal 7Δ +gal gal 3Δ +gal gal 3Δ +gal gal 3Δ +gal gal 3Δ +gal gal 3Δ -gal gal 3Δ -gal gal 5Δ -gal gal 5Δ -gal gal 5Δ +gal gal 2Δ +gal gal 2Δ +gal gal 2Δ +gal gal 3Δ -gal gal 3Δ -gal	Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Balton Ba
1 2 3		RPL1B GAL3 VBB042C +1
4567		GAL7 GAL10 GAL1 GCY1
1a 1b 1c		GAL2 SER3 HXT6
1d 1e		YBR241C GAL4

Genes in the same subnetwork may be inversely correlated to each other

Take-away points

- A skeleton network based approach
 - Fixed network, but the node activity can change across conditions
- Key advantages over simple expression-based clustering
 - Find weakly expressed genes that are connected to genes that are highly expressed
 - More interpretative
 - Clustering may not connect two genes of opposite expression profiles
 - Can find subnetworks active for a subset of conditions
- Future extensions
 - Correcting for network topology
 - Inferring more attributes on the subnetworks
 - Better/different ways to find a subnetwork