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Topics in this section

» Skeleton network-based approaches (Oct 16", 2018)
* |nput/Output Hidden Markov Models
* Multi-task learning of graphs



Goals for today

* Overview of different models to capture context-
specificity/dynamics

» Skeleton network based approaches



What do we mean by context?

 We will define context broadly

* Context can be time, developmental stage, tissue, cell type,
organ, disease, strains/individuals, species

HSCs @ )\ ]
I.a:‘;;q‘!;nn Tt e &
M‘:lb:r'::ﬂ _\_} ‘/qn"\_/
S ~ " HsC
@28)9\
s L N A

- 5 e ‘ZB
N NG % ® )
\\ ® ) ©

2

/—- A
O X 9 RE aim 2B 2B
EM"'OW‘“%OO @ Gt N el \__/| —=(aj = aj - - -;—
Q Neutroptl Y col
Magakaryocyts  Ecsncphi
&7 platedals

Different cell types Different individuals Different species



Network dynamics and context specificity

 What does modeling “dynamics” mean?

— The activity of nodes change over time and we want to
model how this happens

— The network (structure or parameters) changes with time

e Structure can change due to changes at the node or
edge level

 What models can be used for capturing dynamics in
networks?

* How do these models capture dynamics?
— Node level
— Edge level



Strategies for capturing dynamics in
networks

Ordinary Differential Equation (ODE) based approaches
Skeleton network-based approaches

Dynamic Bayesian Networks and non-stationary extensions
Input/Output Hidden Markov Models

Multi-task learning approaches

Dynamic networks with temporal transition of edges/Time
varying networks



ODE based models in networks

 Assume we are modeling a gene regulatory network

* Let x;denote the expression level of the i gene
_ . . . Expression level of
* ODE for the change in expression of i’ gene is regulator p

i = ot Y B

peP; . Regulators of ith gene

* This is often approximated by a finite difference
approximation

Qiz'(t —+ 1) — xz(t)
ter1 — Tk

— —aimi(tk) + Z Bi,pmp(tk)

peP;

Greenfield et al., Bioinformatics 2013



Skeleton network-based approaches

e Assume that we have background/skeleton network that
defines the universe of possible edges

 The network changes because node activity levels change
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Kim et al. 2013, Briefings in Bioinformatics



Dynamic Bayesian networks (DBNs)

* Suppose we have a time course of node activity levels

* We assume that the activity levels at time t+1 depends upon t
— But this does not change with t

 DBNs can be used to model how the system evolves over time

— We may have a different network at the first time point
t=1 t=2 t=T t-1 t




Non-stationary Dynamic Bayesian
Networks (nsDBNs)

 The standard DBN assumes that the dependency between the

previous time point (t-1) and the current time point (t) is the
same

— This is called the stationarity assumption in DBNs

* Non-stationary DBNs are DBNs where this assumption is
relaxed

— Introduced by Robinson and Hartemink 2010

— Depending upon the time-window/epoch we might have a
different dependency structure



Non-stationary Dynamic Bayesian
Networks

e Suppose we have three time windows

 nsDBNs require us to define the dependency structure in each

time window
Edge set change between time windows
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Non-stationary Dynamic Bayesian
Networks continued

* For m epochs, we would like to find G,.., G,, by optimizing
their posterior distribution

P(Gl, oo Gm‘D) X P(D‘Gl, oo Gm)
P(G1,..,Gm)

Prior over m graphs; can be used to incorporate our prior
knowledge of how the graphs transition

P(Gl, oos Gm‘D) X P(D‘Gl, oos Gm)
P(G1,Ag1,A92, -, Agm-—1)



Time-varying Networks

* The network changes between time at the node and edge levels
 Example approaches

— TESLA (Ahmed & Xing, PNAS 2009)

— KELLER (Song et al., Bioinformatics 2009)
 TESLA

— Based on temporal Exponential Random Graph Models

— Assumes binary node values

— works by imposing a regularization term to make the graphs

change smoothly over time

— estimates the graph structure by solving a set of local
regularized logistic regression problems



Applying TESLA to US senators of the
109" congress
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Each node is a senator. The networks were inferred using voting records of 642 bills. Votes
are binary states at each time point. Voting records were grouped into 12 epochs, each epoch
comprising 2 months.



Goals for today

 Overview of different models to capture context-
specificity/dynamics

» Skeleton network based approaches



Skeleton network-based approaches

e @Given

— A fixed network of nodes (genes, proteins, metabolites)

— Activity levels of network nodes in a set of contexts (e.g.
tissues, time points)

* Do

— Find subset of edges that are active in each context
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Kim et al. 2013, Briefings in Bioinformatics | ransitional networks



Active subnetworks: A skeleton-network
based approach

Active subnetworks: A subnetwork that exhibits an
unexpectedly high level of expression change

— “Discovering regulatory and signalling circuits in molecular
interaction networks”. By Trey Ideker, Owen Ozier, Benno
Schwikowski, Andrew Siegel. Bioinformatics. 2002;18 Suppl
1:5233-40.

Enables us to gain a better understanding of how expression is
controlled at the network level

Enables us to link gene expression changes to higher order
interactions



Active subnetworks key idea

e @Given

— Network structure and expression data (actually P-values
specifying the significance of expression of a gene)

* Find
— Subnetwork that is differentially active
* Active network identification requires solving these tasks:
— Define a score of subnetwork activity
* One or multiple conditions
— Search for high-scoring subnetworks



Defining the score for subnetwork activity

The score is going to be a z-score
— The number of standard deviations from the mean.
Need to compute a z-score associated with each subnetwork A
Start with assessing differential expression of each gene
— P-value for significance of expression p;
Convert P-value to gene level z-score z;

L —1
2 = @d@z)
Inverse normal CDF

Aggregate z-scores for all genes in subnetwork A

A — —Zz‘eAZz'

vk

Calibrate this against a background distribution Estimated from
ZA — U randomly sampling

SA = gene sets of size k
Ok




Example of a score of subnetwork activity

Genes in a subnetwork

Gene level z-scores
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Calibrate against a background

distribution



Extending the scoring criteria to multiple
conditions

Suppose we had m different conditions

Given a subnetwork A, compute a set of z-scores for A in all m
conditions

(ZA(1), ZA(2)s " ZA(m))

Score of a subnetwork for multiple conditions is proportional
to the probability that the subnetwork is active in at least j of
the m conditions

¢ is the CDF of the normal distribution
The probability of subgraph to have a score of at most Z,;,

P(Zaiy) = P(sa < Zagy))



Extending the scoring criteria to multiple
conditions

Hence, the probability that any single condition has score at

least Z,;,
] P, =1-¢(Za)

Probability that at least j of m conditions has score at least

ZaG) ™ /'m
h m—~h
pacy =3 () )Ph - P
h=j

This is equivalent to a p-value for z,; 3 L with
core associated wit

TA(j) = ¢—1(1 _pA(])) the j* subset of

conditions

max Score associated with

A — man (TA (7) ) best subset



Overview of scoring criteria for multiple
conditions
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Active subnetwork finding algorithm

Given a subnetwork, we now have a way to score its activity in
one or more conditions

How do we find such a subnetwork?

We need to search in the space of subnetworks, score each
subnetwork and select the most active ones



Simulated annealing to find active
subnetworks

Finding the maximal scoring subnetwork is computationally
intractable
Apply simulated annealing to find a close approximation to
the global optimum
Simulated annealing
— A heuristic search approach to find a good approximation
to the global optimum
— Enables one to take non-optimal steps to avoid being too
greedy



Simulated annealing

Requires a “Temperature” schedule that starts from a high
value and gradually “cools” down

— At high temperatures (beginning), it will accept more non-
optimal moves

— At low temperatures, the probability of accepting non-
optimal moves is smaller

Let e and e’ be the scores of the current and new moves
Probability of accepting e’ is

1,if e < €

/
€—E€ )

P(e, e, T;) =
exp( ‘L




Simulated Annealing example

.

https://www.youtube.com/watch?v=iaq_Fprd4KZc



Algorithm sketch to find a high scoring
subnetwork

Input: Graph G=(V,E), Number of iterations N, Temperature
function T; which decreases geometrically from T, ., to T, ,

start
Output: A subgraph G,, of G

Initialize G,, (working subgraph) by randomly setting each v to
active/inactive and obtaining the induced subgraph

Loopi=1to N

— Randomly pick a node v in V and toggle its state (new G,))
— Compute score for new subgraph s;

— If s,>5, ; keep v toggled

— Else keep v toggled with probability p =€
— Output G,,

(si—si—1)/T;



Additional heuristics

Additional heuristics: Search for multiple (M)
subnetworks simultaneously

d .., (degree): remove low scoring neighbors for
nodes with degree greater thand_,



Results

Application to two networks

— 362 protein-protein and protein-dna interactions in a yeast
galactose utilization study

— 7145 protein-protein and 317 protein-dna interactions

Each condition was a single or double knockout of a gene in
the galactose pathway

Examine subnetworks in one condition (GAL80) (Figure 1)

Examine subnetworks in multiple conditions (Figure 5)



Fig 1. Subnetworks
identified in the
362 PPI, PDI using
GAL80 knock out
based z-score

Transcription factors
are often not very
differentially
expressed




Analysis on small network with one
perturbation (one condition)

Distribution of true and random

Simulated annealing score convergence subnetwork scores
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Fig 5: Analysis on a larger network with
multiple conditions

Result of applying another
round of Simulated
Annealing on subnetwork 1
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Take-away points

* A skeleton network based approach

— Fixed network, but the node activity can change across
conditions

* Key advantages over simple expression-based clustering

— Find weakly expressed genes that are connected to genes that
are highly expressed

— More interpretative

— Clustering may not connect two genes of opposite expression
profiles

— Can find subnetworks active for a subset of conditions
* Future extensions

— Correcting for network topology

— Inferring more attributes on the subnetworks

— Better/different ways to find a subnetwork



