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Plan for this section

* |Integrating prior information for network
inference (Oct 2n9. 4th)



Integrating priors into graph structure learning

 We will look at two approaches to integrate
other types of data to better learn regulatory
networks

* Bayesian network structure prior distributions
(Oct 2M9)

« Dependency network parameter prior
distributions (Oct 4t")



Plan for today

Overview of integrative network inference
Defining priors on graph structure

Learning Bayesian networks with priors using
Markov Chain Monte Carlo

Applications of Bayesian networks with priors
— Inferring the yeast cell cycle network
— Inferring cancer signaling



Why prior-based structure learning?

* Priors enable us to provide additional information
to constrain the structure of the graph

* Learning genome-scale networks is
computationally challenging
— The space of possible graphs is huge

— There is not sufficient amount of training examples to
learn these networks reliably

— Multiple equivalent models can be learned

* One type of data (expression) might not inform
us of all the regulatory edges



Types of integrative inference frameworks

* Supervised learning

— Require examples of interaction and non-
Interactions

— Train a classifier based on edge-specific features

* Unsupervised learning
— Edge aggregation
— Model-based learning

* Auxiliary datasets serve to provide priors on the graph
structure



Unsupervised network inference

* Do not assume the presence of a gold standard set of
edges
* Have been applied primarily for regulatory networks
with a few exceptions
 Some approaches for integrative inference in
regulatory networks
— Inferelator (Greenfield et al., Bioinformatics 2013)
— Lirnet (Lee et al., Plos computational biology 2009)

— Physical Module Networks (Novershtern et al.,
Bioinformatics 2011)

— iRafNet (Petralia et al., 2015)
— MERLIN+P (Fotuhi-Siahpirani & Roy, 2016)



Types of data for reconstructing transcriptional

networks

* Expression data

— Genome-wide mRNA levels from multiple
microarray or RNA-seq experiments

— Gene expression can come from time
courses as well as single time point

-
 Complementary datasets

— ChIP-chip and ChIP-seq
— Sequence specific motifs
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Classes of methods for incorporating priors

 Parameter prior based approaches

* Inferelator (Greenfield et al., Bioinformatics 2013)
 Lirnet (Lee et al., Plos computational biology 2009)

e Structure prior based approaches

* Dynamic Bayesian network (Hill et al., Bioinformatics,
2012, Werhli et al., 2007)

* Physical module networks (Novershtern et al.,
Bioinformatics 2011)

* MERLIN-P (Siahpirani et al.,2016)



Prior-based approaches for network inference

* Given
— Gene expression data and

— Complementary data that supports the presences of an
edge
* Presence of a sequence motif on a gene promoter
* ChIP-chip/seq binding of factor X on gene Y’s promoter

* Do

— Predict which regulators drive the expression of a target
gene, while incorporating complementary evidences as
much possible

e How?

— Place a prior on the graph where the prior is obtained from
complementary data



Plan for today

Overview of integrative network inference
Defining priors on graph structure

Learning Bayesian networks with priors using
Markov Chain Monte Carlo

Applications of Bayesian networks with priors
— Inferring the yeast cell cycle network
— Inferring cancer signaling



Bayesian formulation of network inference

" P@GID) x P(DIG)P(9)

e S

Posterior distribution Data likelihood Model prior

Optimize posterior distribution of graph given
data



A few computational concepts

Energy of a graph and the Gibbs distribution
Dynamic Bayesian networks
Markov Chain Monte Carlo

Hyper parameters



Energy function of a network G

* A function that measures agreement between
a given graph G and prior knowledge

* Allows one to incorporate both positive and
negative prior knowledge




Energy function on a graph

 Agraph G isrepresented by a binary adjacency
matrix

— G;; = O if there is no edge from node i to node j
— G = I if there is an edge from i toj
— G;; = I if there is an edge from jto i
* Encode a “prior” network as follows:
— B,;= 0.5 if we don’t have any prior
— 0<B;<0.5 if we know that there is no edge
— B;>0.5 if we know there is an edge

* Energy of G is
E(G) =) |Bij — Gyl

ij=1



Energy function of a graph

* Energy E of a network G is defined as

E(G) =) |Bi — Gyl
ij=1
* This is 0 when there is perfect agreement
between prior knowledge B and G

* Higher the energy of G the greater the
mismatch



Using the energy to define a prior distribution
of a graph

* A prior distribution for a graph G can be defined

using E(G) 1
 This is also called a Gibbs distribution

. 5 is the hyperparameter: parameter of the prior
distribution

e Zis the partition function
Z(8) =) exp(—BE(G))
G

* |In general the partition function is hard to
compute



Incorporating multiple sources of prior
networks

e Suppose we have two sources of prior
networks

* We can represent them as two prior networks
B! and B

* And define the energy of G with respect to
both of these

E\(G)= ) |B}; -Gl

2,J=1

Ey(G) = )  |B},; — Gyl

2,J=1



Prior distribution incorporating multiple prior
networks

* The prior takes the form of another Gibbs
distribution

1

P(G|B1, B2) = ZGXP(—(51E1(G) + B2E2(G)))

* This can be extended to more prior networks in
the same way

* The partition functions are in general hard to
compute

* However, for a particular class of BNs, these
partition functions can be computed easily



Dynamic Bayesian networks

* Bayesian networks that we have seen so far do
not allow for cyclic dependencies

* |f we have time series data, we can overcome
this limitation using a Dynamic Bayesian
network



Dynamic Bayesian Nets (DBNs)

A DBN is a Bayesian Network for dynamic processes
Suppose we have a time course with 7' time points

let X' ={X!... ,XpT} denote the set of p random
variables at time t

et X ={X".. X"}
A DBN over these variables defines the joint distribution of
P(X), where

A DBN, like a BN, has a directed acyclic graph G and
parameters &

G typically specifies the dependencies between time points
— In addition we need to specify dependence (if any) at =0



A DBN for p variables and T time points

t=1 t=2

s \
) )

X?'Variables at time t=2

Dependency at the
first time point



Stationary assumption in a Bayesian network

The stationarity assumption states that the dependency
structure and parameters do not change with ¢

P(Xt—l—l ‘Xt) _ P(Xt‘Xt_l)

Due to this assumption, we only need to specify dependencies
between two sets of variables (and possibly for the first time
point)

t=1 t=2 t=T

t t+1




Dynamic Bayesian networks

Joint Probability Distribution can be factored into a product of
conditional distributions :

P(X|G,0) = P(Xh HHP (Xt XL 6,)

Wg(z)’
1=1t=2 T

Graph encoding Parents of X/’ defined
dependency structure by the graph



The partition function for a prior over DBN

* Inthe DBN, if

— we allow parents only from the previous time
point
— we allow each node to have at most m parents
* The prior distribution decomposes over
individual nodes and their possible parent sets

N
E(G) =) E(n,mg(n))
1=1
E(mrc(@)= Y. (1=Bu)+ Y. B

JETG(N) j¢Ema(n)



The partition function for a DBN prior

* The partition function is computed easily by
summing over all variables and their potential
parent sets

Z(B) =) exp(—BE(G))
G
— Z Z exp(—B(E(N,mq(1)) + -+ E(1,ma(N))))

(1) e (N)

Each summation represents a sum over possible configurations for the parent set.
If we restrict the number of parents to m, this is polynomial in N



Plan for today

* Learning Bayesian networks with priors using
Markov Chain Monte Carlo



Markov Chain Monte Carlo (MCMC) sampling

We have looked at a greedy hill climbing
algorithm to learn the structure of the graph

MCMC provides an alternative (non-greedy) way
of finding the graph structure

The idea is to estimate the distribution, P(G/D),
and draw “samples” of G from this distribution

MCMC is a general strategy to sample from a
complex distribution

— If we can sample from the distribution, we can also
estimate specific properties of the distribution



MCMC for learning a graph structure

Recall the Bayesian framework to learning
Bayesian networks

We wish to estimate P(G/D) and draw
multiple G’s from this distribution
— But this distribution is difficult to estimate directly

We will devise a Markov Chain such that its
stationary distribution will be equal to P(G/D)

We will then use the Markov Chain to also
draw potential G’s




Markov chain

A Markov chain is a probabilistic model for sequential
observations where there is a dependency between
the current and the previous state

It is defined by a graph of possible states and a
transition probability matrix defining transitions
between each pair of state

The states correspond to the possible assignments a
variable can state

One can think of a Markov chain as doing a random
walk on a graph with nodes corresponding to each
state



A very simple Markov chain

Suppose we have a time series measurement of a
gene’s expression level

Let the gene’s expression be discretized and so
the gene can take three values: HIGH, MEDIUM,
LOW

Let X, denote the expression state of the gene at
time ¢

The temporal nature of this data suggests X,
depends on X,

We can model the time series of gene expression
states using a Markov chain



A very simple Markov chain

0.6

T~

These define the transition
probabilities

P(Xs1=high|X;=low)=0.1

We will use the T(X;/X;) to denote the transition probabilities



Markov Chain and Stationary distributions

* The stationary distribution is a fundamental
property of a Markov chain

e Stationary distribution of a Markov Chain
specifies the probability of being in a state
independent of the starting position

* A Markov chain has a stationary distribution if it
IS:
— Irreducible: non-zero probability to all states
— Aperiodic: has self transition probability

* Not all Markov Chains have a stationary
distribution



Stationary distribution of a Markov chain

 Given a Markov chain with transition
probabilities T(X./X,)

* We define the probability distribution over

states at the next time step as X, as:
Po1(Xi) = > T(Xi| Xp) Po(Xp)

k
* When n tends to infinity, P, (X;)
converges to the stationary distribution P, (X;)

Poo(Xi) =  T(Xi|Xk)Poo(X)



Markov Chains for Bayesian network structure
learning

 We need to devise a Markov chain over the
space of possible graphs such that the
stationary distribution of this Markov chain is
the posterior distribution of the graph, P(G/D)

Py (Gi) = P(Gi|D)
* Let G, denote a graph at step i and let G,
denote the graph at previous step k

* We need to define the transition probability of
going from G, to G;



How do we make sure we will draw from the
right distribution?

* That is, when the Markov chain has converged
to its stationary distribution, how do we make
sure that the stationary distribution is the
right posterior distribution?

 |f the transition probabilities satisfy, a

condition called “detailed balance”, we can get
the right distribution

T'(Myg|M;)  P(Gg|D)

T'(M;|My)  P(Gi|D)



Markov Chains for Bayesian network structure
learning

In practice, for us to set up a Markov chain for Bayesian
network search, we need to propose a new structure,
and accept it with some probability

Let Q(G;|G,) denote the proposal probability

— This is dependent upon the local graph moves we allow
Let A(G;|G,) denote the acceptance probability:

— This is designed in a way to make the jump to G,
proportional to how well G, describes the data

The transition probability is T(G,| G,)=Q(G;| G, )A(G, | G,)

We will keep running the propose and accept steps of
our chain until convergence




Acceptance probability

 The acceptance probability is defined as

P(D|Gy)P(Gr)Q(G;|Gr)’

* |f the proposal distribution is symmetric, the

above simplifies to (this is not the case for
DAGS)

P(D|G;)P(G;)
P(D|Gy)P(Gy)

A(GAG]{) = min [ 71




Metropolis Hastings algorithm

Start from an initial structure G,
Iterate from n=1.. N

— Propose a new structure G, from G, _; using O(G,/G,,_;)
— Accept G, with probability A(G,, |Gy —1)

Discard an initial “burn in” period to make sure the
Markov Chain has reached a stationary distribution

Using the new samples, estimate different features
of the graph, or aggregate different graphs



Elementary proposal moves for DAGs

The proposal distribution is defined by the moves on the graph. The above example shows
a scenario where we have two valid configurations, and a third invalid configuration.

Husmeier, 2005



Husmeier 2005

MCMC example
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Defining a proposal distribution from

elementary moves
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Notice that the neighborhood of the two DAGs are not of the same size



A heuristic to check for MCMC convergence
MCMC simulation 1 MCMC simulation 2
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MCMC for learning a graph prior and structure

* Recall that our prior distribution over graphs
nas a parameter [

* |deally, we would like to search over the space
of priors and structures, that is sample from

P(3,G|D)

* The proposal distribution and the acceptance
probabilities need to be updated



MCMC over graph structure and parameters

We need two proposal distributions, one for the
graph structure and one for the hyper parameter

Proposing new graph structures

Q(Gnew |G0ld)

Proposing new a hyper parameter

R(ﬁnew ‘60&1)

Accordingly, we need to define new acceptance
probabilities



Acceptance probabilities

* Acceptance for the graph

P(D‘Gn)P(Gn‘ﬁn—l)Q(Gn—l‘Gn) 1}
(D‘Gn—l)P(Gn—l‘6n—1)Q(Gn‘Gn—1)7

A(Gr|Gp—1) = min { 2

* Acceptance for the hyperparameter

A(Bn|Bn-1) = min { 5 P(Gr1]5n) P(Pn) B(Pn—1]Fn) 1}

(Gn—l |/8n—1)P(5n—1)R(/Bn|Bn—1) ,



MCMC over graph structure and
hyperparameter

* This would proceed in a similar way as before
* We start with an initial configuration {Gy, 8o}
* Repeat for n=1.. N steps

— Given current value of the hyperparameter @n,—l
propose G, from G,_; and accept with

A(Gr|Gr-1)

— Given current G, propose a new parameter and
accept with probability A(ﬁn |5n—1)



Plan for today

* Applications of Bayesian networks with priors

— Inferring the yeast cell cycle network



Performance on real data

* Two settings

— Yeast cell cycle time series expression data
* Two time course datasets were available
* Two prior networks

— RAF signaling pathway
* One non-time course data
* One prior network

* Questions asked
— Can different prior networks be distinguished
— Does prior improve the network inference
— Are the hyperparameters estimated accurately



Inferred hyperparameters for the yeast cell

Red and blue
show the
trajectory of the
hyperparameter
values during
the MCMC

Posterior
probability of
the hyper
parameters:
close to 0.
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Using a slightly different prior

* Use one of the expression datasets to learn a
graph

e Use this graph as one prior and combine with
one of the other two binding network priors
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Conclusions from the Yeast cell cycle study

* None of the TF binding priors appear
consistent with the data

* More consistency is observed if a prior
network is obtained from an expression
dataset



Assessing on a well-studied gold standard
network: Raf signaling pathway

11 phospho proteins in all.



Results on RAF signaling

 The data are not time course

 However the partition function computation is
a “tight” upper bound and can be used
* Compare against

— Prior alone
— Data alone
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Method can discriminate between true and
random prior
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Plan for today

* Applications of Bayesian networks with priors

— Inferring cancer signaling



Bayesian Inference of Signaling Network
Topology in a Cancer Cell Line (Hill et al 2012)

Protein signaling networks are important for many
cellular diseases

— The networks can differ between normal and disease cell
types
But the structure of the network remains incomplete

Temporal activity of interesting proteins can be
measured over time, that can be used infer the
network structure

Build on prior knowledge of signaling networks to learn
a better, predictive network

BNs are limiting because they do not model time



Applying DBNs to infer signaling network topology
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Application of DBNs to signaling networks

* Dataset description
— Phospho-protein levels of 20 proteins
— Eight time points
— Four growth conditions
* Use known signaling network as a graph prior

e Estimate CPDs as conditional regularized
Gaussians

e Assume a first-order Markov model
— X’ depends on on X*!



Integrating prior signaling network into the
DBN

A Bayesian approach to graph learning

P(GID) x P(D|G)P(G)
Data likelihood  Graph prior
Graph prior is encoded as (Following Mukherjee & Speed

2008)
P(G) x ex%)\f(C@

Prior strength Graph features

Where f{G)=-IE(G)\E'l is defined as the number of edges in
the graph G, E(G), that are not in the prior set E”

This prior does not promote new edges, but penalizes
edges that are not in the prior



Calculating posterior probabilities of edges

* For each edge e, we need to calculate

e Although this is intractable in general, this work makes
some assumptions

— Allow edges only forward in time

* The learning problem decomposes to smaller per-variable
problems that can be solved by variable selection

— Assume P(G) factorizes over individual parent sets

— To compute the posterior probability, the sum goes over all
possible parent sets
e Assume a node can have no more thand, ,, parents



Inferred signaling network using a DBN

DBN Collapsed
network
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Using the DBN to make predictions

Although many edges were expected, several edges
were unexpected

Select novel edges based on posterior probability and
test them based on inhibitors

For example, if an edge was observed from X to Y,
inhibition of X should affect the value of Y if X is a
causal regulator of Y

Example edge tested

— MAPKp to STAT3p(S727) with high probability (0.98)

* Apply MEKi, which is an inhibitor of MAPK, and measure MAPKp
and STAT3p post inhibition

— AKTp to p70S6Kp, AKTp to MEKp and AKTp to cJUNp



Experimental validation of links

Add MAPK inhibitor and measure MAPK and STAT3
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MAPK is significantly inhibited (P-value 5X10-4)
STAT3 is also inhibited (P-value 3.3X104)

Their success is measured by the difference in the levels of the targets
as a function of the levels of the inhibitors



Summary

Prior knowledge can be incorporated as a energy functions
on a graph and used to define a prior distribution

— Extensible to multiple priors
Markov Chain Monte Carlo (MCMC) sampling approach

enables us to search over the graph and hyperparameter
space

MCMC can distinguish between good and bad (inconsistent
priors)

Adding prior helped network structure learning for a small
gold-standard network

Adding priors was also helpful in simulations for the cancer
signaling network
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