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Plan for this section

• Overview of network inference (Sep 18th)
• Directed probabilistic graphical models 

Bayesian networks (Sep 18th, Sep 20th)
• Gaussian graphical models (Sep 25th)
• Dependency networks (Sep 27th)
• Integrating prior information for network 

inference (Oct 2nd, 4th)



Integrating priors into graph structure learning

• We will look at two approaches to integrate 
other types of data to better learn regulatory 
networks

• Bayesian network structure prior distributions 
(Oct 2nd)

• Dependency network parameter prior 
distributions (Oct 4th)



Plan for today

• Overview of integrative network inference
• Defining priors on graph structure
• Learning Bayesian networks with priors using 

Markov Chain Monte Carlo 
• Applications of Bayesian networks with priors
– Inferring the yeast cell cycle network
– Inferring cancer signaling



Why prior-based structure learning?

• Priors enable us to provide additional information 
to constrain the structure of the graph

• Learning genome-scale networks is 
computationally challenging
– The space of possible graphs is huge
– There is not sufficient amount of training examples to 

learn these networks reliably
– Multiple equivalent models can be learned

• One type of data (expression) might not inform 
us of all the regulatory edges



Types of integrative inference frameworks

• Supervised learning
– Require examples of interaction and non-

interactions
– Train a classifier based on edge-specific features

• Unsupervised learning
– Edge aggregation
– Model-based learning
• Auxiliary datasets serve to provide priors on the graph 

structure 



Unsupervised network inference

• Do not assume the presence of a gold standard set of 
edges

• Have been applied primarily for regulatory networks 
with a few exceptions

• Some approaches for integrative inference in 
regulatory networks
– Inferelator (Greenfield et al., Bioinformatics 2013)
– Lirnet (Lee et al., Plos computational biology 2009)
– Physical Module Networks (Novershtern et al., 

Bioinformatics 2011)
– iRafNet (Petralia et al., 2015)
– MERLIN+P (Fotuhi-Siahpirani & Roy, 2016)



Types of data for reconstructing transcriptional 
networks

• Expression data
– Genome-wide mRNA levels from multiple 

microarray or RNA-seq experiments 
– Gene expression can come from time 

courses as well as single time point

• Complementary datasets
– ChIP-chip and ChIP-seq
– Sequence specific motifs Gene

motifChIP

differences from the mean ranged from 30 (in vineyard strain I14)
to nearly 600 (in clinical isolate YJM789), with a median of 88
expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).

Influence of Copy Number Variation on Gene Expression
Variation
Expression from transposable Ty elements was highly variable

across strains. However, Ty copy number is known to vary widely

Figure 3. Variation in gene expression in S. cerevisiae isolates. The diagrams show the average log2 expression differences measured in the
denoted strains. Each row represents a given gene and each column represents a different strain, color-coded as described in Figure 1. (A) Expression
patterns of 2,680 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to S288c. (B) Expression patterns of 953
genes that varied significantly in at least one strain compared to strain YPS163 (FDR= 0.01, unpaired t-test). For (A) and (B), a red color indicates
higher expression and a green color represents lower expression in the denoted strain compared to S288c, according to the key. (C) Expression
patterns of 1,330 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to the mean expression of all 17 strains.
Here, red and green correspond to higher and lower expression, respectively, compared to the mean expression of that gene in all strains. Genes
were organized independently in each plot by hierarchical clustering.
doi:10.1371/journal.pgen.1000223.g003
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Classes of methods for incorporating priors 

• Parameter prior based approaches

• Inferelator (Greenfield et al., Bioinformatics 2013)

• Lirnet (Lee et al., Plos computational biology 2009)

• Structure prior based approaches

• Dynamic Bayesian network (Hill et al., Bioinformatics, 

2012, Werhli et al., 2007)

• Physical module networks  (Novershtern et al., 

Bioinformatics 2011)

• MERLIN-P (Siahpirani et al.,2016)



Prior-based approaches for network inference

• Given
– Gene expression data and
– Complementary data that supports the presences of an 

edge
• Presence of a sequence motif on a gene promoter
• ChIP-chip/seq binding of factor X on gene Y’s promoter

• Do
– Predict which regulators drive the expression of a target 

gene, while incorporating complementary evidences as 
much possible

• How?
– Place a prior on the graph where the prior is obtained from 

complementary data



Plan for today

• Overview of integrative network inference
• Defining priors on graph structure
• Learning Bayesian networks with priors using 

Markov Chain Monte Carlo 
• Applications of Bayesian networks with priors
– Inferring the yeast cell cycle network
– Inferring cancer signaling



Bayesian formulation of network inference

Optimize posterior distribution of graph given 
data
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differences from the mean ranged from 30 (in vineyard strain I14)
to nearly 600 (in clinical isolate YJM789), with a median of 88
expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).

Influence of Copy Number Variation on Gene Expression
Variation
Expression from transposable Ty elements was highly variable

across strains. However, Ty copy number is known to vary widely

Figure 3. Variation in gene expression in S. cerevisiae isolates. The diagrams show the average log2 expression differences measured in the
denoted strains. Each row represents a given gene and each column represents a different strain, color-coded as described in Figure 1. (A) Expression
patterns of 2,680 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to S288c. (B) Expression patterns of 953
genes that varied significantly in at least one strain compared to strain YPS163 (FDR= 0.01, unpaired t-test). For (A) and (B), a red color indicates
higher expression and a green color represents lower expression in the denoted strain compared to S288c, according to the key. (C) Expression
patterns of 1,330 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to the mean expression of all 17 strains.
Here, red and green correspond to higher and lower expression, respectively, compared to the mean expression of that gene in all strains. Genes
were organized independently in each plot by hierarchical clustering.
doi:10.1371/journal.pgen.1000223.g003
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Algorithm Y1

X1 X5

Y2

X2

P (G|D) � P (D|G)P (G)

Model prior

P (G|D) � P (D|G)P (G)

Posterior distribution Data likelihood



A few computational concepts

• Energy of a graph and the Gibbs distribution
• Dynamic Bayesian networks
• Markov Chain Monte Carlo
• Hyper parameters



Energy function of a network G

• A function that measures agreement between 
a given graph G and prior knowledge

• Allows one to incorporate both positive and 
negative prior knowledge



Energy function on a graph

• A graph G is represented by a binary adjacency 
matrix
– Gij = 0 if there is no edge from node i to node j
– Gij = 1 if there is an edge from i to j
– Gji = 1 if there is an edge from j to i

• Encode a “prior” network as follows:
– Bij= 0.5 if we don’t have any prior
– 0<Bij<0.5 if we know that there is no edge
– Bij>0.5 if we know there is an edge

• Energy of G is 
E(G) =

X

ij=1

|Bij �Gij |



Energy function of a graph

• Energy E of a network G is defined as

• This is 0 when there is perfect agreement 
between prior knowledge B and G

• Higher the energy of G the greater the 
mismatch

E(G) =
X

ij=1

|Bij �Gij |



Using the energy to define a prior distribution 
of a graph

• A prior distribution for a graph G can be defined 
using E(G)

• This is also called a Gibbs distribution
• is the hyperparameter: parameter of the prior 

distribution
• Z is the partition function

• In general the partition function is hard to 
compute

P (G|�) = 1

Z(�)
exp(��E(G))

Z(�) =
X

G

exp(��E(G))

�



Incorporating multiple sources of prior 
networks

• Suppose we have two sources of prior 
networks

• We can represent them as two prior networks 
B1 and B2

• And define the energy of G with respect to 
both of these

E1(G) =
X

i,j=1

|B1
i,j �Gij |

E2(G) =
X

i,j=1

|B2
i,j �Gij |



Prior distribution incorporating multiple prior 
networks

• The prior takes the form of another Gibbs 
distribution

• This can be extended to more prior networks in 
the same way

• The partition functions are in general hard to 
compute

• However, for a particular class of BNs, these 
partition functions can be computed easily



Dynamic Bayesian networks

• Bayesian networks that we have seen so far do 
not allow for cyclic dependencies

• If we have time series data, we can overcome 
this limitation using a Dynamic Bayesian 
network



Dynamic Bayesian Nets (DBNs)

• A DBN is a Bayesian Network for dynamic processes
• Suppose we have a time course with T time points
• Let                                                   denote the set of p random 

variables at time t
• Let 
• A DBN over these variables defines the joint distribution of 

P(X), where
• A DBN, like a BN, has a directed acyclic graph G and 

parameters Θ
• G typically specifies the dependencies between time points
– In addition we need to specify dependence (if any) at t=0



A DBN for p variables and T time points

p

t=0

X1
1

X2
1

Xp
1

…

Dependency at the 
first time point

X2: Variables at time t=2
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…
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1

X1
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Xp

…

2

2

2

X1

X2

Xp

…

T

T

T

t=1 t=2 t=T

…

…

…



Stationary assumption in a Bayesian network

Due to this assumption, we only need to specify dependencies 
between two sets of variables (and possibly for the first time 
point)

The stationarity assumption states that the dependency 
structure and parameters do not change with t

p

t

X1t

X2t

Xpt

…

X1t+1

X2t+1

Xpt+1

…

t+1

X1

X2

Xp

…

1

1

1

X1

X2

Xp

…

2

2

2

X1

X2

Xp

…
T

T

T

t=1 t=2 t=T

…

…

…

P (Xt+1|Xt) = P (Xt|Xt�1)



Dynamic Bayesian networks
Joint Probability Distribution can be factored into a product of 
conditional distributions :

Parents of Xit defined 
by the graph

Graph encoding 
dependency structure



The partition function for a prior over DBN

• In the DBN, if 
– we allow parents only from the previous time 

point
– we allow each node to have at most m parents

• The prior distribution decomposes over 
individual nodes and their possible parent sets

E(n,⇡G(i)) =
X

j2⇡G(n)

(1�Bjn) +
X

j /2⇡G(n)

Bjn

E(G) =
NX

i=1

E(n,⇡G(n))



The partition function for a DBN prior

• The partition function is computed easily by 
summing over all variables and their potential 
parent sets

Z(�) =
X

G

exp(��E(G))

=
X

⇡G(1)

· · ·
X

⇡G(N)

exp(��(E(N,⇡G(1)) + · · ·+ E(1,⇡G(N))))

Each summation represents a sum over possible configurations for the parent set.
If we restrict the number of parents to m, this is polynomial in N



Plan for today

• Overview of integrative network inference
• Defining priors on graph structure
• Learning Bayesian networks with priors using 

Markov Chain Monte Carlo 
• Applications of Bayesian networks with priors
– Inferring the yeast cell cycle network
– Inferring cancer signaling



Markov Chain Monte Carlo (MCMC) sampling

• We have looked at a greedy hill climbing 
algorithm to learn the structure of the graph

• MCMC provides an alternative (non-greedy) way 
of finding the graph structure

• The idea is to estimate the distribution, P(G|D), 
and draw “samples” of G from this distribution

• MCMC is a general strategy to sample from a  
complex distribution
– If we can sample from the distribution, we can also 

estimate specific properties of the distribution



MCMC for learning a graph structure

• Recall the Bayesian framework to learning 
Bayesian networks

• We wish to estimate P(G|D) and draw 
multiple G’s from this distribution
– But this distribution is difficult to estimate directly

• We will devise a Markov Chain such that its 
stationary distribution will be equal to P(G|D)

• We will then use the Markov Chain to also 
draw potential G’s



Markov chain

• A Markov chain is a probabilistic model for sequential 
observations where there is a dependency between 
the current and the previous state

• It is defined by a graph of possible states and a 
transition probability matrix defining transitions 
between each pair of state

• The states correspond to the possible assignments a 
variable can state

• One can think of a Markov chain as doing a random 
walk on a graph with nodes corresponding to each 
state



A very simple Markov chain

• Suppose we have a time series measurement of a 
gene’s expression level

• Let the gene’s expression be discretized and so 
the gene can take three values: HIGH, MEDIUM, 
LOW

• Let Xt denote the expression state of the gene at 
time t

• The temporal nature of this data suggests Xt+1
depends on Xt

• We can model the time series of gene expression 
states using a Markov chain



A very simple Markov chain
0.6

high

medium low

0.1

0.1

0.7
0.20.6

0.2

0.3

0.2

P(Xt+1=high|Xt=low)=0.1

We will use the T(Xi|Xj) to denote the transition probabilities 

These define the transition 
probabilities



Markov Chain and Stationary distributions

• The stationary distribution is a fundamental 
property of a Markov chain

• Stationary distribution of a Markov Chain 
specifies the probability of being in a state 
independent of the starting position

• A Markov chain has a stationary distribution if it 
is: 
– Irreducible: non-zero probability to all states 
– Aperiodic: has self transition probability

• Not all Markov Chains have a stationary 
distribution



Stationary distribution of a Markov chain

• Given a Markov chain with transition 
probabilities T(Xi|Xk)

• We define the probability distribution over 
states at the next time step as Xi as:

• When n tends to infinity,                      
converges to the stationary distribution 

Pn+1(Xi) =
X

k

T (Xi|Xk)Pn(Xk)
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Markov Chains for Bayesian network structure 
learning

• We need to devise a Markov chain over the 
space of possible graphs such that the 
stationary distribution of this Markov chain is 
the posterior distribution of the graph, P(G|D)

• Let Gi denote a graph at step i and let Gk
denote the graph at previous step k

• We need to define the transition probability of 
going from Gk to Gi



How do we make sure we will draw from the 
right distribution?

• That is, when the Markov chain has converged 
to its stationary distribution, how do we make 
sure that the stationary distribution is the 
right posterior distribution?

• If the transition probabilities satisfy, a 
condition called “detailed balance”, we can get 
the right distribution



• In practice, for us to set up a Markov chain for Bayesian 
network search, we need to propose a new structure, 
and accept it with some probability

• Let Q(Gi|Gk) denote the proposal probability
– This is dependent upon the local graph moves we allow

• Let A(Gi|Gk) denote the acceptance probability:
– This is designed in a way to make the jump to Gi

proportional to how well Gi describes the data
• The transition probability is T(Gi|Gk)=Q(Gi|Gk)A(Gi|Gk)
• We will keep running the propose and accept steps of 

our chain until convergence

Markov Chains for Bayesian network structure 
learning



Acceptance probability

• The acceptance probability is defined as

• If the proposal distribution is symmetric, the 
above simplifies to (this is not the case for 
DAGs)

A(Gi|Gk) = min


P (D|Gi)P (Gi)Q(Gk|Gi)

P (D|Gk)P (Gk)Q(Gi|Gk)
, 1

�

A(Gi|Gk) = min


P (D|Gi)P (Gi)

P (D|Gk)P (Gk)
, 1

�



Metropolis Hastings algorithm

• Start from an initial structure G0

• Iterate from n=1.. N

– Propose a new structure Gn from Gn-1 using Q(Gn|Gn-1)
– Accept Gn with probability

• Discard an initial “burn in” period to make sure the 

Markov Chain has reached a stationary distribution

• Using the new samples, estimate different features 

of the graph, or aggregate different graphs

A(Gn|Gn�1)



Elementary proposal moves for DAGs

The proposal distribution is defined by the moves on the graph. The above example shows
a scenario where we have two valid configurations, and a third invalid configuration.

Husmeier, 2005



MCMC example

Husmeier 2005



Defining a proposal distribution from 
elementary moves

Notice that the neighborhood of the two DAGs are not of the same size



A heuristic to check for MCMC convergence36 Dirk Husmeier

MCMC simulation 1 MCMC simulation 2

MCMC 1

MCMC 2

MCMC 2

MCMC 1

MCMC 2

MCMC 1

MCMC 2

MCMC 1

T infinite T long enoughT too short

Fig. 2.17. Convergence test for MCMC simulations. Top: MCMC simu-
lations are started from different initializations and/or different random number
generator seeds. Corresponding posterior probabilities of the edges, obtained from
different simulations, are plotted against each other. Bottom left: Infinite simula-
tion time T . For an infinitely long simulation time, all MCMC simulations give the
same results: the estimated posterior probabilities of the edges are equal to the true
posterior probabilities irrespective of the initialization of the Markov chain, and
the scatter plot has the form of a straight line. Bottom middle: Simulation time T
too short. Insufficient convergence or mixing of the Markov chain is indicated by a
scatter plot that strongly deviates from the straight line. This deviation indicates
a strong dependence of the results on the initialization, resulting from insufficient
convergence or mixing. Bottom right: Simulation time T long enough. A necessary
condition for sufficient convergence and mixing is a scatter plot that does not deviate
markedly from the diagonal line.



MCMC for learning a graph prior and structure

• Recall that our prior distribution over graphs 
has a parameter 

• Ideally, we would like to search over the space 
of priors and structures, that is sample from

• The proposal distribution and the acceptance 
probabilities need to be updated

�

P (�, G|D)



MCMC over graph structure and parameters

• We need two proposal distributions, one for the 
graph structure and one for the hyper parameter

• Proposing new graph structures

• Proposing new a hyper parameter

• Accordingly, we need to define new acceptance 
probabilities

Q(Gnew|Gold)

R(�new|�old)



Acceptance probabilities

• Acceptance for the graph

• Acceptance for the hyperparameter



MCMC over graph structure and 
hyperparameter

• This would proceed in a similar way as before
• We start with an initial configuration
• Repeat for n=1.. N steps
– Given current value of the hyperparameter

propose Gn from Gn-1 and accept with

– Given current Gn propose a new parameter and 
accept with probability

{G0,�0}

�n�1

A(�n|�n�1)

A(Gn|Gn�1)



Plan for today

• Overview of integrative network inference
• Defining priors on graph structure
• Learning Bayesian networks with priors using 

Markov Chain Monte Carlo 
• Applications of Bayesian networks with priors
– Inferring the yeast cell cycle network
– Inferring cancer signaling



Performance on real data

• Two settings
– Yeast cell cycle time series expression data

• Two time course datasets were available
• Two prior networks

– RAF signaling pathway
• One non-time course data
• One prior network

• Questions asked
– Can different prior networks be distinguished
– Does prior improve the network inference
– Are the hyperparameters estimated accurately



Inferred hyperparameters for the yeast cell 
cycle

The two prior 
networks are very 
similar 

Red and blue 
show the 
trajectory of the 
hyperparameter
values during 
the MCMC

Posterior 
probability of 
the hyper 
parameters: 
close to 0.



Using a slightly different prior 

• Use one of the expression datasets to learn a 
graph

• Use this graph as one prior and combine with 
one of the other two binding network priors



Prior hyperparameters can be distinguished

Prior that is 
consistent with 
the data



Conclusions from the Yeast cell cycle study

• None of the TF binding priors appear 
consistent with the data

• More consistency is observed if a prior 
network is obtained from an expression 
dataset



Assessing on a well-studied gold standard 
network: Raf signaling pathway

11 phospho proteins in all.



Results on RAF signaling

• The data are not time course
• However the partition function computation is 

a “tight” upper bound and can be used
• Compare against
– Prior alone
– Data alone



Prior helps!
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Figure 15: Reconstruction of the Raf signalling pathway with different machine

learning methods. The figure evaluates the accuracy of inferring the Raf signalling path-

way from cytometry data and prior information from KEGG. Two evaluation criteria were

used. The left panel shows the results in terms of the area under the ROC curve (AUC

scores), while the right panel shows the number of predicted true positive (TP) edges for a

fixed number of 5 spurious edges. Each evaluation was carried out twice: with and with-

out taking the edge direction into consideration (UGE: undirected graph evaluation, DGE:

directed graph evaluation). Four machine learning methods were compared: Bayesian net-

works without prior knowledge (BNs), Graphical Gaussian Models without prior knowledge

(GGMs), Bayesian networks with prior knowledge from KEGG (BN-Prior), and prior knowl-

edge from KEGG only (Only Prior). In the latter case, the elements of the prior knowledge

matrix (introduced in Section 2.3) were computed from Equation 43. The histogram bars

represent the mean values obtained by averaging the results over five data sets of 100 protein

concentrations each, independently sampled from the observational cytometry data of Sachs

et al. (2005). The error bars show the respective standard deviations.
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Method can discriminate between true and 
random prior



Plan for today

• Overview of integrative network inference
• Defining priors on graph structure
• Learning Bayesian networks with priors using 

Markov Chain Monte Carlo 
• Applications of Bayesian networks with priors
– Inferring the yeast cell cycle network
– Inferring cancer signaling



Bayesian Inference of Signaling Network 
Topology in a Cancer Cell Line (Hill et al 2012)
• Protein signaling networks are important for many 

cellular diseases
– The networks can differ between normal and disease cell 

types
• But the structure of the network remains incomplete
• Temporal activity of interesting proteins can be 

measured over time, that can be used infer the 
network structure

• Build on prior knowledge of signaling networks to learn 
a better, predictive network

• BNs are limiting because they do not model time



Applying DBNs to infer signaling network topology

Hill et al., Bioinformatics 2012



Application of DBNs to signaling networks

• Dataset description
– Phospho-protein levels of 20 proteins
– Eight time points
– Four growth conditions

• Use known signaling network as a graph prior
• Estimate CPDs as conditional regularized 

Gaussians
• Assume a first-order Markov model
– Xt depends on on Xt-1



Integrating prior signaling network into the 
DBN

• A Bayesian approach to graph learning

• Graph prior is encoded as (Following Mukherjee & Speed 
2008)

• Where f(G)=-|E(G)\E*| is defined as the number of edges in 
the graph G, E(G), that are not in the prior set E*

• This prior does not promote new edges, but penalizes 
edges that are not in the prior

Data likelihood Graph prior

Prior strength Graph features



Calculating posterior probabilities of edges

• For each edge e, we need to calculate

• Although this is intractable in general, this work makes 
some assumptions
– Allow edges only forward in time

• The learning problem decomposes to smaller per-variable 
problems that can be solved by variable selection

– Assume P(G) factorizes over individual parent sets
– To compute the posterior probability, the sum goes over all 

possible parent sets
• Assume a node can have no more than dmax parents



Inferred signaling network using a DBN

Results are not sensitive to prior values

Results are robust to prior graph

Inferred signaling network

Collapsed 
network

DBN



Using the DBN to make predictions

• Although many edges were expected, several edges 
were unexpected

• Select novel edges based on posterior probability and 
test them based on inhibitors

• For example, if an edge was observed from X to Y, 
inhibition of X should affect the value of Y if X is a 
causal regulator of Y

• Example edge tested 
– MAPKp to STAT3p(S727) with high probability (0.98)

• Apply MEKi, which is an inhibitor of MAPK, and measure MAPKp
and STAT3p post inhibition

– AKTp to p70S6Kp, AKTp to MEKp and AKTp to cJUNp



Experimental validation of links

! MEKp and AKTp! cJUNp. The former suggests possible
crosstalk between the AKT and MAPK pathways, and the latter
suggests crosstalk between the AKT and JNK/JUN pathways.
We tested these links using an AKT inhibitor (AKTi; Fig. 4b).
Phosphorylation of p70S6K was reduced by AKTi
(P ¼ 5" 10#3), validating the edge predicted (and verifying the
effect of the inhibitor). We also observe a clear decrease in MEKp
levels P¼ 1.8" 10#3) and an increase in JNKp levels (P¼ 0.047).
Furthermore, we see dose dependence, with the effects changing
monotonically with dose of the inhibitor. This provides independ-
ent evidence in favor of the existence of crosstalk in both cases
(JNK is known to be directly upstream of cJUN).

4 DISCUSSION

Network inference in general, and model averaging in particular,
are often viewed as computationally burdensome. Certainly, this
can often be the case (e.g. for static BNs with many nodes).
However, for the DBNs employed here, using the approaches
described above, network inference is relatively efficient and,
for datasets of moderate dimensionality, arguably fast enough
for routine exploratory use. For example, empirical Bayes ana-
lysis and inference of posterior edge probabilities for the 20 vari-
ables in our cancer study took under 20 s (on a standard
single-core personal computer).
We took account of known signaling biology by means of a

prior distribution on networks, weighted objectively using

empirical Bayes. The use of a prior incorporates existing know-
ledge in a ‘soft’ probabilistic manner that can be over-ridden by
data. In contrast to hard constraints, this does not preclude dis-
covery of unexpected edges. This is an important feature in the
cancer setting since cancer-specific networks may be rewired and
therefore differ from the general biology upon which the prior is
built. Indeed, the network model yielded unexpected links that
were validated by targeted inhibition. We verified empirically
that results reported were not overly sensitive to prior specifica-
tion or data perturbation.
The network prior employed here is asymmetric in the sense

that it only penalizes edges that are not in the prior network
(‘unexpected edges’). This is motivated by the observation that
for context-specific networks and data obtained under specific
growth conditions (as is the case here) some edges in a prior
network based on canonical signaling may not be relevant, e.g.
some pathways may simply be inactive due to experimental con-
ditions or rewiring. In contrast, due to structural specificity, en-
tirely novel kinase–substrate pairs are arguably less likely to
arise. Werhli and Husmeier (2008) propose a more general
prior with two hyperparameters controlling penalization of un-
expected edges and non-edges, respectively. Applying this prior
to the cancer data, using empirical Bayes to set both hyperpara-
meters, we found that the hyperparameter for unexpected
non-edges was set to zero, reducing the prior to the asymmetric
form used in this work (and hence giving identical results).
Approximate inference methods such as MCMC are often

used for inference in BNs and DBNs (Husmeier, 2003;
Madigan et al., 1995). In contrast, we used a variable selection
approach and sparsity constraints to calculate posterior edge
probabilities exactly, thereby removing Monte Carlo uncertainty
(and the need for associated diagnostics). The exact approach
also facilitates the empirical Bayes analysis. In high dimensions,
where the exact approach becomes intractable, the fully Bayesian
MCMC approach proposed in Werhli and Husmeier (2007) can
be used to sample from the joint posterior over networks and
hyperparameters. The variable selection approach we describe
also provides benefits for model averaging with MCMC-based
inference since it factorizes the problem and also allows compu-
tations to be trivially run in parallel.
Prior specification for Bayesian variable selection remains an

active research area (Casella et al., 2009; Forte Deltell, 2011).
The parameter prior employed here (a form of the g-prior) has
benefits but can suffer from matrix ill-conditioning. This issue
was not prominent in this work due to the use of in-degree
constraints. Alternative priors that do not suffer from
ill-conditioning, such as standard shrinkage priors or the ‘BGe’
prior, could also be used within our formulation.
The DBN model in this work makes a widely used assumption

of homogeneity of parameters and network structure through
time. However, these assumptions are likely to be unrealistic
for cellular protein signaling. The softening of these homogeneity
assumptions can lead to a rapid increase in numbers of param-
eters and/or the size of graph space, resulting in statistical (and
computational) challenges. Recently, non-homogeneous DBN
methods have been proposed in the literature that aim to ameli-
orate these effects (Grzegorczyk and Husmeier, 2011; Robinson
and Hartemink, 2010).

Fig. 4. Validation of predictions by targeted inhibition in breast cancer
cell line MDA-MB-468. (a) MAPK-STAT3 crosstalk. Network inference
(Fig. 3a) predicted an unexpected link between phospho-MAPK
(MAPKp) and STAT3p(S727) in the breast cancer cell line
MDA-MB-468. The hypothesis of MAPK-STAT3 crosstalk was tested
by MEK inhibition: this successfully reduced MAPK phosphorylation
and resulted in a corresponding decrease in STAT3p(S727). (b) AKTp
! p70S6Kp, AKT-MAPK crosstalk and AKT-JNK/JUN crosstalk.
AKTp is linked to p70S6kp, MEKp and cJUNp. In line with these
model predictions, use of an AKT inhibitor reduced both p70S6K and
MEK phosphorylation and increased JNK phosphorylation. (RPPA
data; MEK inhibitor GSK1120212 and AKT inhibitor GSK690693B at
0 uM, 0.625 uM, 2.5 uM and 10 uM; measurements taken 0, 5, 15, 30, 60,
90, 120 and 180min after EGF stimulation; average values over 3 repli-
cates shown, error bars indicate SEM)
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Add MAPK inhibitor and measure  MAPK and STAT3

Their success is measured by the difference in the levels of the targets 
as a function of the levels of the inhibitors 

MAPK is significantly inhibited (P-value 5X10-4)
STAT3 is also inhibited (P-value 3.3X10-4)



Summary

• Prior knowledge can be incorporated as a energy functions 
on a graph and used to define a prior distribution
– Extensible to multiple priors

• Markov Chain Monte Carlo (MCMC) sampling approach 
enables us to search over the graph and hyperparameter
space

• MCMC can distinguish between good and bad (inconsistent 
priors)

• Adding prior helped network structure learning for a small 
gold-standard network

• Adding priors was also helpful in simulations for the cancer 
signaling network
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