
BMI 826. Computational network biology. Homework 1
Due Oct 16th, 2018

Instructions

In this assignment we will review concepts on probabilistic graphical models and how they can be used
to learn molecular networks. There are 7 problems in all, the first 6 are required and Problem 7 is extra
credit/optional. Problem 5 is an implementation assignment and needs to be submitted by Oct 16th 5:00pm
via the biostat servers
mi1.biostat.wisc.edu or mi2.biostat.wisc.edu.
You should have accounts created on these servers. Please see detailed submission instructions for Problem
5. Answers to all other questions are due in class on Oct 16th.

Problem 1 (10 points). Defining concepts.

For each of the terms below provide a brief description of what they mean.

• Probabilistic graphical model

• Regulatory network

• Conditional independence

• Regression tree

• Precision-recall curve

• Lasso

• Precision matrix

• Conditional probability table

• Markov blanket

• Structure learning
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Problem 2 (10 points). Probabilistic Graphical Model types.

Listed below are pairs of models that could be used to represent a network. Compare and contrast each
model in a pair describing one strength and weakness of each approach. Briefly describe a structure learning
algorithm for each model type.

(a) Correlational networks versus Gaussian Graphical Models.

(b) Dependency network versus Bayesian network.

Problem 3 (20 points). Probabilistic graphical models for gene expression
data.

For each algorithm below describe what each algorithm takes as input, produces as output, and what it does.

(a) Sparse candidate

(b) Module networks

(c) GENIE3

(d) Given gene expression data for 5,000 genes, 200 experiments which algorithm would you use to
reconstruct a gene regulatory network? Explain your choice.

(e) Now assume a biologist told you that there are some genes that are regulators. How will you incorpo-
rate this information in the network inference problem?

Problem 4 (10 points). Bayesian networks.

You are given the following set of observed measurements in Table 1 for each of the five binary random
variables, A, B, C, D and E and the following partially known Bayesian network structure. This Bayesian
network is partially known because we do not know the parents of A yet.

A

D

E

B

C

Figure 1: A partial Bayesian network for five boolean random variables

(a) Using the Bayesian network structure of Figure 1, estimate the relevant conditional probability tables
for B and C.
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A B C D E
0 1 1 1 1
1 1 0 1 0
1 0 0 1 0
1 0 0 1 0
0 0 0 1 1
1 0 0 0 1
1 1 1 0 1
0 0 1 0 1
0 0 1 1 1
0 1 1 0 0

Table 1: Samples of observations for the random variables

(b) Describe a score-based procedure to determine the parents of A. Assume that A can have no more
than 2 parents and the parents can be any of the other variables. Assume that the rest of the network
is the same as in Figure 1.

(c) Briefly describe a greedy structure learning algorithm for Bayesian networks. Describe one advantage
and weakness of a greedy structure search learning algorithm.

(d) What would you change in your Bayesian network representation and learning if A’s values could be
one of five different colors, RED, BLUE, GREEN, YELLOW, CYAN?

(e) What would you change in your Bayesian network learning if the variables were continuous variables?

Problem 5 (25 points). Comparing the structure of two graphs.

Problem description. The goal of this problem is to write a program, compareGraphs, that will com-
pare the structure of two graphs, G1 = (E1, V ) and G2 = (E2, V ), using precision, recall and F-score.
Assume G1 is the true graph and G2 is the predicted one. E1 and E2 are the edge sets and V is the set of
vertices. Precision is defined as p = |E1∩E2|

|E2| , Recall is defined as r = |E1∩E2|
|E1| , and F-score is defined 2∗p∗r

p+r .
F-score is the harmonic mean of precision and recall and provides a concise way to report how similar a set
of predictions are to the true set of predictions.

compareGraphs should take in three arguments, two are the file names of the two graphs and the third
binary input to denote whether the graph is directed or undirected. Hence, it should be able to handle both
directed and undirected graphs. The exact usage of your program will depend on the language but it should
be command line runnable. For example, if you compiled your code into an executable compareGraphs,
the usage for two undirected graphs should be as follows:

./compareGraphs graph1.txt graph2.txt 0
and if the graphs are directed should be as follows:
./compareGraphs graph1.txt graph2.txt 1

The format of graph1.txt and graph2.txt is a tab-limited file, with one line per edge. Each is tab-
delimited with two columns, one for each of the vertices of the edge. See http://pages.discovery.
wisc.edu/˜sroy/teaching/network_biology/fall2018/homeworks/hw1/factors_net.
txt for an example of the input graphs.
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The program should output the precision, recall and F-scores when comparing the two input graphs in
the following format
Precision: 0.5 Recall: 0.5 F-score: 0.5

Submission instructions. Please put your code into /u/medinfo/bmi826/2018-hw//hw1/username
where username is your user name you use to login to this machine. You can use either C++, Java, Perl, or
Python to implement this program. If you want to use R, please make sure to write an R command line script
for me to run your program. Note, I am most familiar with C++. Your program should be executable on
mi1.biostat.wisc.edu or mi2.biostat.wisc.edu. I will run this using one of the following
versions depending upon the language.
C++: ./compareGraphs graph1.txt graph2.txt 0
Java: java ./compareGraphs graph1.txt graph2.txt 0
Perl: perl ./compareGraphs graph1.txt graph2.txt 0

Problem 6 (25 points). PGMs in practice.

In this assignment, we will explore some practical applications of Bayesian network and Graphical Gaussian
Model learning algorithms and learning PGMs from data. The assignment requires a little bit of MATLAB
familiarity.

Instructions.

1. Download required data and MATLAB scripts from http://pages.discovery.wisc.edu/

˜sroy/teaching/network_biology/fall2018/homeworks/hw1/prob6.tgz. You
would need to run these programs on a computer that has MATLAB installed. The class servers
mi1.biostat.wisc.edu and mi2.biostat.wisc.edu should have MATLAB installed.

2. Unzip this file as follows tar -xvzf prob6.tgz. This will result in the directory prob6.

3. List the contents of this directory, ls prob6 and you should see two directories code and data.
code has the list of MATLAB programs that can be executed within the MATLAB prompt. data
has two datasets, dataset1 and dataset2. In each dataset-specific directory, the data.txt
file has the data to be used to learn a network and net.txt has the Bayesian network that was used
to generate these data.

4. Start MATLAB by typing matlab

5. Set the current directory to code as all the scripts are in that directory.

6. Execute the scripts listed below as described in the subsequent question parts. Note, for each script,
you can type help <script name> and you should be able to see a basic explanation of the inputs
of the script.
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Problem description

(a) We will first apply the Sparse Candidate algorithm to infer a Bayesian network on dataset1
available in the files you have downloaded in prob6.tgz. Apply the bnetLearn.m script on
data/dataset1. This can be run within MATLAB as follows.
bnetLearn(‘dataset.txt’,k,‘outputgraph.txt’)
This script calls the sparse candidate structure learning algorithm and takes in as argument the file path
for the input dataset (‘dataset.txt’), the number of possible candidates (k), and the file path for
the output learned network (‘outputgraph.txt’). Experiment with different sizes of parents,
k ∈ {2, 3, 4}. Use the program, compareGraphs you wrote in Problem 5 to compare the true and
the predicted graph and report the corresponding precision, recall and F-score for each candidate size.
What can you conclude from these results?

(b) We will use Sparse Candidate again but we will first learn a Dependency Network and use that as input
for constraining the network structure. Apply the code bnetLearn MB.m to learn a Dependency
network constrained Bayesian network on dataset1. This can be run in MATLAB as
bnetLearn(’dataset.txt’,mbtype,’outputgraph.txt’)
Here mbtype is the type of Markov blanket correction that needs to be used. If mbtype=0, the OR
correction is used and mbtype=1, the AND correction is used. Compare the output networks learned
using these two settings using your compareGraphs program and report the precision, recall and
F-score. Which one gives you a better network? Discuss these results against the precision, recall and
F-score when using a fixed k candidate parents?

(c) We will compare the two algorithms for learning a GGM using the data we used. Apply the code
GGMLearn.m to learn an undirected graphical model. This can be run in MATLAB as
ggmLearn(’dataset.txt’,lambda,algo,’outputgraph.txt’)
lambda is the regularization parameter for the sparsity of LASSO. algo is 0 or 1 to determine the
algorithm that will be used for learning the GGM model. algo=0 will select the Graphical LASSO
algorithm, while algo=1 will use the neighborhood selection algorithm. Experiment with lambda
∈ {0.1, 0.3, 0.5,0.7,0.9} for the two algorithms and report the precision, recall and F-
score numbers for each value of lambda for both algorithms. Note that the GGM will output an
undirected graph and hence you should compare the true and inferred networks as undirected graphs.
What do you observe in terms of the effect of lambda on the structure of the network inferred?
Which algorithm seems to work best here? Please discuss your observations.

Problem 7 (25 points). Extra credit PGMs in practice.

Using the instructions and scripts described in Problem 6, compare Sparse Candidate, Markov blanket con-
strained Sparse Candidate and the GGM models on dataset2.
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