
 

Supplementary Methods 

 

Strains and growth conditions 

Microarray expression data for salt stress, oxidative stress and heat shock for all species 

other than S. japonicus and S. pombe were collected as described by (Wapinski et al. 

2010) and are available at GSE38478. The strains, growth conditions and heat shock 

experiments for S. japonicus and S. pombe are described below, followed by the 

microarray hybridization and pre-processing for all species and experiments. 

 

The strains used in the study are described in (Wapinski et al. 2010) with the addition of 

S. pombe 972 h+ and S. japonicus IFO1609.  Briefly, cultures were grown in the 

following rich medium (termed BMW): yeast extract (1.5%), peptone (1%), dextrose 

(2%), SC amino acid mix (Sunrise Science) 2 g/L, adenine 100 mg/L, trptophan 100 

mg/L, uracil 100 mg/L. For each strain, cells were plated onto BMW plates from frozen 

glycerol stocks. After 2 days, cells were taken from plates and re-suspended into liquid 

BMW, and counted using a Cellometer Auto M10.  A 3 mL BMW culture inoculated at 

1x106 cells/ml and placed in a New Brunswick Scientific Edison model TC-7 roller drum 

on the highest speed until saturated (1-2 days).  The saturated cultures were then used to 

inoculate batch cultures in 2 liter Erlenmeyer flasks for the Heat shock experiments 

described below.  Flasks were transferred to New Brunswick Scientific Edison and water 

bath model C76 shakers set to 200 rpm. 

 



Expression datasets measuring heat shock response in Schizosaccharomyces 

Cultures for each species were grown in 650 ml of BMW at 22 °C to between 3 × 107 and 

1 × 108 cell/mL (OD600 = 1.0 for S. pombe, and 1.5 for S. japonicus).  The shift to heat-

shock temperature was carried out as follows by splitting the overnight culture into two 

300-ml cultures and collecting cells via vacuum filtration (Nanopore). The cell-

containing filters were resuspended in prewarmed media to either control (22 °C) or heat-

shock temperatures (37 °C). Density measurements were taken approximately 1 min after 

cells were resuspended to ensure that concentrations did not change during the transfer 

from overnight media. A total of 12 ml of culture was harvested 5, 15, 30, and 60 min 

after resuspension by quenching them in liquid methanol at −40 °C, which was later 

removed by centrifugation at −9 °C and stored overnight at −80 °C. Cell density 

measurements were repeatedly taken every 5–15 min for the first 2 hr after treatment. 

Harvested cells were later washed in RNase-free water and archived in RNAlater 

(Ambion) for future preparations. Cells were also harvested from cultures just before 

treatment for use as controls. 

 

RNA preparation, probe labeling, and microarray hybridization   

Analysis was carried out as described previously (Wapinski et al. 2010).  Briefly, total 

RNA was isolated using the RNeasy midi or mini kits (Qiagen) according to the provided 

instructions for mechanical lysis. Samples were quality controlled with the RNA 6000 

Nano ll kit of the Bioanalyzer 2100 (Agilent). Total RNA samples were labeled with 

either Cy3 or Cy5 using a modification of the protocol developed by Joe DeRisi 

(University of California at San Francisco) and Rosetta Inpharmatics that can be obtained 



at http://www.microarrays.org. 

Microarray hybridization and data pre-processing was carried out as described previously 

(Wapinski et al. 2010). Briefly, for each time point, either two or three biological 

replicates were hybridized with the Log phase sample as the reference in all cases. We 

used two-color Agilent 55- or 60-mer oligo-arrays in the 4X44 K or 8X15 K format for 

the S. cerevisiae strain (commercial array; four to five probes per target gene) or the 

custom 8X15 K format for all other species (two probes per target gene). After 

hybridization and washing per the manufacturer's instructions, arrays were scanned using 

an Agilent scanner and analyzed with Agilent’s Feature Extraction software (release 

10.5.1.) The median relative intensities across probes were used to estimate the 

expression values for each gene per replicate, and these median values across replicates 

were used to estimate the overall expression response per gene per time point. 

 

 

Arboretum algorithm details 

 

Arboretum is a model-based clustering approach that uses a probabilistic generative 

model to analyze multiple expression datasets, one for each species. Each dataset resides 

at a leaf node (extant species) of a species tree describing the phylogenetic relationships 

between species. The generative model generates values for two types of random 

variables: (a) hidden variables representing the module assignments in both ancestral and 

extant species, and (b) observed variables encoding expression for each gene in a species. 

The cluster membership is modeled by conditional distributions for every branch of the 



species tree, describing the probability of a gene belonging to a cluster in a species given 

the cluster membership in its immediate ancestor. The expression data at each leaf node 

is modeled by a Gaussian mixture model. (Since modeling expression at the ancestral 

nodes requires the inference of additional hidden variables, we restricted ourselves to 

inferring only module memberships at ancestral nodes). An integral part of Arboretum is 

that it naturally handles one-to-many mappings of genes over any number of species. 

This is done by incorporating the gene tree directly inside Arboretum’s cluster inference. 

In the following sections we describe the different parts of the model in detail, inference 

of cluster assignments and parameter estimation. 

 

Modeling module assignments and their evolution 

We assume that every gene in an extant species evolves its module assignment from a 

single ancestral version, which is present at the LCA (root of the species tree) and let K 

denote the maximum number of modules that can exist in a species. The LCA has a prior 

probability distribution, a multinomial, p(k), 1 ≤ k ≤ K, which specifies an initial 

assignment to a module. Every other species t has a module transition matrix, Pt, which 

relates the modules in species t to modules in t’s immediate ancestor. Every element in 

the transition matrix Pt(i,j) is the conditional probability of a gene to be in module i in 

species t given that its ancestral gene was in module j in t’s immediate ancestor. 

 

The module evolution process generates the module assignment of all genes in an 

orthogroup, one at a time, using the structure (but not branch lengths) of the gene tree 

associated with the orthogroup. The structure of the gene tree for an orthogroup with no 



duplications or losses (‘uniform orthogroup’) is the same as the species tree (Wapinski et 

al. 2007a). To generate the module assignments for an orthogroup, we sample a module 

assignment from the prior distribution at the LCA, propagating the assignment down the 

tree via the transition matrices along the branches of the species tree. For example, if a 

transition matrix has a high value on the diagonal, the gene is more likely to maintain its 

module assignment at that branch. At the leaf nodes, we generate the expression of a gene 

from the Gaussian indicated by the propagated module assignment.  For a non-uniform 

orthogroup with a duplication event, we proceed down the tree as in the uniform 

orthogroup case, until we reach the point of duplication. At the duplication node, we 

draw two samples from the transition matrix, each of which evolves down the rest of the 

tree independently following the same procedure as before. Thus the evolution process 

takes into account the phylogenetic relationships across the species and between 

orthologs and paralogs. We use this tree structure to devise a tractable module inference 

procedure. 

 

Modeling observed expression data 

The expression data at an extant species t is modeled by a mixture of K Gaussians (Hastie 

et al. 2003): 

       

where the kth mixture component describes the expression profile of the kth module, 1 ≤ k 

≤ K, xti denotes the expression profiles of the genes, μtk is a dt-dimensional mean vector, 

 is the diagonal covariance matrix for the kth mixture component, and dt is the number 

of measurements for each gene in species t.  Note, dt may be different for different t, 
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enabling us to handle cases with different number of measurements per species.  

 

Expectation Maximization (EM) framework for model learning 

The EM framework for model learning has two steps: expectation step, in which hidden 

variables are inferred from the current model parameters, and maximization step, in 

which parameters are estimated from the expected values of the hidden variables. 

 

Expectation: Inference of module assignments. Let zi denote the set of hidden variables 

denoting the module assignments for all genes in the ith orthogroup, Gi. These hidden 

variables are related via Gi’s gene tree such that a gene’s module membership in a non-

root species t depends upon the gene’s module membership in t’s immediate ancestori 

Accordingly, zi is composed of zri, denoting a gene’s module assignment at the LCA, r, 

and  denoting the conditional membership for all other species t in module k given 

that its immediate ancestral version is in module k′. Our inference problem is to infer the 

posterior probability distribution of these hidden variables given the data, P(zi|xi), where 

xi denotes the measured expression profiles of the genes associated with Gi. Let  

specify the posterior probability of t’s gene to be in module k, given that the immediate 

ancestral version of this gene is in module k′. To infer this posterior probability, we make 

a crucial independence assumption needed to perform tractable inference: the module 

assignment of a gene at species t depends only upon the subset of the expression data that 

comes from the subtree below.  This allows us to compute the posterior probability at 

each internal node using computation from its child nodes.  Our inference procedure is 

thus recursive, where the computation we perform at a non-root node, t, to estimate the 
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posterior probability at that node is used for estimating the normalization constant of t’s 

parent. We begin at the leaf nodes, to estimate the γ’s. The product of γ’s at two sibling 

leaf nodes would then give the normalization constant for their immediate common 

ancestor node. If a node represents a duplication event, because we assume that after 

duplication the two duplicates evolve independently, the contribution from the sub-tree 

below the duplication is also a product. Subsequently, we would obtain the normalization 

constants of an intermediate node by taking the product of its subtrees. When we reach 

the LCA, the product of the subtrees give the full posterior distribution of the joint of 

module assignments given the expression data pertinent to the orthogroup. 

 

Maximization: estimation of parameters 

The parameters in our model are: (a) module transition probabilities, (b) Gaussian 

mixture model parameters. These parameters can be estimated in closed form by deriving 

the expected likelihood with respect to the parameters . The maximum likelihood mean 

estimate for the jth module of the tth species, μjt, is very similar to the standard Gaussian 

mixture model case, except the hidden variables, and takes k2 rather than k, because of the 

conditional dependence on the immediate ancestral module: 

       

Here  represents the expected value of the joint assignment in module j in child 

species t, and module l in t’s ancestor. Similarly for the variance estimate, we need an 

additional sum to account for the fact that the module assignment in an extant species is 
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dependent upon its parents. We assume that the co-variance matrix is diagonal. The 

transition probabilities for each species is estimated from the expected value of the joint 

assignment of a child and parent module assignment pair, P(zti = k, zui = k′|xi), which is 

P(zti = k|zui = k′, xi)P(zui = k’|xi). Note P(zti = k|zui = k′,xi) = γti
k|k, which we already have 

from the expectation step. The marginals P(zti = k|xi) are estimated recursively by using 

the marginal at an ancestor to estimate the joint at a child and then the marginal. We 

begin at the LCA, where we already have the marginal, descending one level to first 

estimate the joint and then the marginals, until we reach the leaf nodes.  

 

Learning algorithm 

Our learning algorithm begins with an initial clustering assignment obtained from 

partitioning all orthogroups into k partitions. This partitioning can be obtained by 

randomly splitting the data, or by a clustering algorithm that merges all the species data 

together into a single vector and clusters these concatenated data into modules. We found 

the second option to have better results in practice (SR, DAT and AR, unpublished data). 

The clustering is not expected to be good because orthologous genes may not cluster 

together across species. The algorithm uses these initial module partitions to seed the 

parameters values for the Gaussian mixtures. We then repeat the expectation and 

maximization steps until convergence. 

 

During the first round of EM learning module indices may get permuted, in the sense that 

the assignment of a gene to a module in a leaf node would not be consistent with its 

assignment in the ancestor (the phenomenon is unique to the leaves). We take two 



measures to avoid this. First, the transition matrices are initialized to have heavy 

diagonals such that a species has a higher prior probability to conserve a gene’s module 

assignment from its immediate ancestor. Second, we have two rounds of EM. After the 

first EM training, we check for each gene cases where the gene’s module assignment is 

conserved in all intermediate nodes from a leaf to the root, except at the leaf node. If such 

a case arises, we swap the probabilities of a gene belonging to the module at the leaf and 

the rest of the path to the root, and perform another training phase of the EM. This step 

minimizes ‘index flipping’ at the leaves, and ensures that all modules of the same index 

across extant and ancestral species are derived from a single ancestral module. Following 

this step, modules with the same ID have the highest gene content overlap, as expected.  

 

Determining the number of clusters 

We selected the number of modules using a combination of penalized log-likelihood of 

data per species and manual inspection. First, based on penalized log likelihood the 

maximum number of modules for any species was k=11 (Supplementary Fig. 15a, 

Supplementary Methods). We use Minimum Description Length (MDL) to define the 

penalized likelihood: L-nparams/2log(nogs) where nparams is the number of free parameters, 

nogs is the number of orthogroups and L is the data likelihood. For clustering a dataset per 

species, we learn a standard Gaussian mixture model with nparams = 2kT, for the k means 

and variances for all T time points. For Arboretum the number of free parameters for k 

modules in an extant species is 2kT+k(k-1),  the first term corresponding to the Gaussian 

mixture for the T time points, and the second term to the kXk transition matrix. For an 

ancestral node other than the root we have k(k-1) parameters. At the root node we have k-



1 parameters for the initial module prior distribution. Thus combining over all species we 

have nparams=k(2T+k-1)se+ (k-1)(sak + 1), se is the number of extant species and sa is the 

number of ancestral species other than the root. We next ran Arboretum on the entire 8 

species dataset with k=5, 7, 9, 11, 13, and 15 modules and found k=11 to be optimal as 

well. However, upon manual inspection of the k=11 case, we observed that higher values 

of k did not produce significantly different expression modules, and were prone to 

seemingly arbitrary re-assignment of module genes between species, given the very 

similar expression patterns in ‘adjacent’ modules. We therefore picked k=5 based on 

manual inspection of the means of the modules inferred by Arboretum (Supplementary 

Fig. 15b), choosing a number where different modules had clearly distinguishable 

expression patterns (k=5 for heat stress and k=7 for pan-stress below). Although we 

computed the penalized log likelihood for the different Arboretum runs, we found that 

that this was not as informative of the different patterns (Supplementary Fig. 15c).  

For the Candida species, the response to heat shock was measured at both 37°C and 42°C 

(Wapinski et al. 2010). Modules for C. albicans’s under both conditions were similar; we 

focused on data with 42°C, since this is a stronger and more robust response (Wapinski et 

al. 2010), as C. albicans may be adapted to 37°C because of its role as a commensal 

human pathogen. For C. glabrata, the transition matrix was much more diffused and the 

modules were much less conserved at 42°C than 37°C, and we picked the latter dataset as 

a conservative choice. Expression patterns of S. cerevisiae ESR induced genes are 

comparable in 42°C and 37°C for C. glabrata (Supplementary Fig. 16).  

 

Algorithms used to compare against Arboretum  



We compared Arboretum to two algorithms, Ortho-seeded species-specific clustering 

(Waltman et al. 2010) and soft k-means clustering (Kuo et al. 2010).   

 

The ortho-seeded species-specific clustering is the most straightforward way of clustering 

multi-species data, and has been previously used in a bi-clustering context In this 

approach, we concatenate individual species-specific expression data to generate a new 

matrix with as many columns as the total number of microarray experiments across all 

species, and as many rows as there are genes in S. cerevisiae and at least one other 

species, filling in columns due to gene losses using the mean from the other 

measurements. This concatenated matrix is clustered using a standard Gaussian mixture 

model followed by another round of clustering on individual species-specific data starting 

with the modules from the first round of clustering on the merged data.  

 

The soft k-means algorithm clusters expression data across multiple species such that the 

measurement points across the different species are all aligned. (Thus, unlike Aboretum 

and ortho-seeded clustering it requires matching experiments across species.) The 

algorithm clusters a concatenated matrix of as many columns as there as experiments in 

any one species, and as many rows as the sum of the rows in species-specific data 

matrices. The algorithm uses a soft heuristic, which favors orthologous genes to be in the 

same expression module. This is done by extending the standard k-means objective with a 

user-defined parameter, 0≤ρ≤1, which controls the trade-off between optimizing the 

traditional k-means algorithm and favoring orthologous genes to co-cluster. ρ=0 yields 

the canonical k-means algorithm. This approach requires ‘matching’ experiments across 



species. 

 

Measures for comparing Arboretum and other algorithms for module inference 

We used four measures to compare the performance of Arboretum to other algorithms. 

 

Module stability. We measured stability of modules by estimating the proportion of gene 

pairs that co-clustered under different random initializations. We used r = 20 different 

random initializations for each algorithm. Because both Arboretum and ortho-seeded 

clustering are initialized on modules learned from the merged datasets, this initial 

clustering could have enabled Arboretum and ortho-seeded clustering to infer more stable 

modules. However, we found that irrespective of whether Arboretum (and ortho-seeded) 

clustering was initialized on modules from a merged dataset or not, both approaches 

identified more stable modules, with Arboretum outperforming the ortho-seeded 

clustering. We computed these stability measures for different species subsets and 

observed a similar stability performance. 

 

Expression coherence. We measured expression coherence in each module as the 

average proportion of genes whose expression profiles had a high (>0.8) correlation with 

the module’s mean. We computed this metric for different random initializations of each 

algorithm and obtained a mean and standard deviation of the module coherence.  

 

Conservation of gene content across species. We estimate the extent of gene content 

conservation between modules from different species by considering modules in one 



species, s, at a time and comparing with all the other species. To measure conservation of 

modules for a pair of species, s and t, we first pair one module from s to a module of t 

using maximal overlap of orthologs based on the Hyper-geometric p-value. Conservation 

of gene content for modules from s and t is defined as the average of the maximal overlap 

scores between s and t. Conservation of gene content for a species s is defined as: 

 where Cst is the conservation score between species s and t’s modules, 

and S is the total number of species. 

We measure orthology overlap for the ith module from species s with  genes and the jth 

module with    genes from species t, with  genes in common as the average of the 

negative logarithm of two p-values; one considering the total number of genes in s as the 

background, and one considering the total number of genes in t as the background. 

 

Performance on (simulated) ground truth. We used the same simulated data used to 

study Arboretum parameters above to assess how well other algorithms infer modules in 

extant species. For soft k-means clustering we considered different values of the 

parameter (ρ) that controls the extent of supporting orthologous genes to cluster in the 

same module, estimated module match with each of these settings and used the module 

match that was the highest. Similarly, for Arboretum we considered different values of 

the parameter initializing the transition matrix and used the highest module match. 

 

Accuracy and sensitivity analysis of initial parameter settings of Arboretum 

We examined the ability of Arboretum to reconstruct modules and parameters as a 
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function of different initial parameter settings using simulated data for which we already 

knew what the true modules were (‘ground truth’). To generate the ground truth modules 

and parameters, we learned module parameters on the heat shock data of eight species, 

followed by sampling data from the model using the learned parameters. We used this 

sampled data as input to Arboretum and inferred modules. Then we compared these 

inferred modules from Arboretum to the ground truth modules (Supplementary Fig. 3), 

and the inferred transition matrices to the ground truth transition matrices 

(Supplementary Fig. 4). 

 

In particular, we examined the performance of Arboretum by these measures at different 

values of the ‘self transition probability’ p ∈{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, the 

user-defined parameter controlling the initialization of the transition matrix. For each 

value of p, we performed 20 runs each with a different random initialization to also 

examine how Arboretum’s performance depends on the initial means and variance 

parameters. We defined a module similarity score for each species based on an F-score 

overlap (described below in GO process conservation section). This is obtained by 

matching each module in the inferred set to a module in the ground truth set based on the 

maximal match of gene content (as defined by F-score), followed by taking an average 

across the modules.   

 

We found that the accuracy of module assignment was not sensitive to the initial value of 

p (Supplementary Fig 3), was highly accurate at the leaf nodes (80-95%) and more 

modestly accurate at ancestors (40-65%), with decreasing accuracy the more ancient the 



ancestor. Most assignment errors were due to re-assignments to a ‘neighboring’ module 

(e.g., a gene assigned to module 4 in the ground truth, is assigned to module 5 in the 

inferred module, Supplementary Fig. 5). Furthermore, errors in the lower nodes would 

contribute to errors in the higher (more ancestral) nodes, resulting in decreasing accuracy 

with increasing distance from the leaf nodes. The estimation of transition matrices was 

highly accurate (mean squared error between the true and inferred transition matrices 

close to zero for most cases), and did not depend on the initial value of p 

(Supplementary Fig. 4). 

 

Enrichment analysis of Gene Ontology (GO) processes and cis-regulatory elements 

We use the FDR corrected hyper-geometric p-value to assess enrichment of GO 

processes in a given gene set. We use the GO terms for S. cerevisiae downloaded from 

the Saccharomyces Genome Database (SGD) Release version 1.1556. For all other 

species, we use orthology to transfer the Gene Ontology annotations, as previously 

described (Wapinski et al. 2007b).   

 

For cis-regulatory elements we use a database of species-specific motifs to search for cis-

regulatory elements in 600 bp upstream of the start codon (Habib et al. 2012). 

Enrichment is assessed based on the p-value from the Hyper-geometric distribution. The 

species-specific motif library is created by starting from known position weight matrices 

in S. cerevisiae and refined using an expectation maximization framework on individual 

species sequences.  

 



Comparison to the S. cerevisiae Environmental Stress Response (ESR) 

We traced the evolutionary history of the ESR induced and repressed genes  (Gasch et al. 

2000), using Arboretum module assignments inferred under heat shock. Because 

identifying orthologs in gene families with many duplication events is less reliable 

(Wapinski et al. 2007), we first analyzed a smaller set of the original induced and 

repressed genes in S. cerevisiae’s ESR program (Fig. 4a) that belonged to gene families 

with at most one duplication event.  

 

To infer the ancestral ESR we used the combined expression data from three stresses and 

five species and included orthogroups with any number of gene duplications, only 

requiring that the orthogroup have a gene member in S. cerevisiae and at least one other 

species. We used the LCA modules 1 and 2 to define the repressed Ancestral genes, and 

the LCA modules 6 and 7 to define the induced Ancestral ESR genes and tested for 

overlap of these modules with the induced and repressed ESR genes in S. cerevisiae, 

assessing significance using the Hyper-geometric test. 

 

Details of Module Contraction and Expansion Index 

A module, m, could change in gene content at a phylogenetic point, s, in two ways: (a) 

module contraction: genes that are in module m in s’s ancestor switch to a different 

module in s, and (b) module expansion: new genes that were not in m join m at s. To 

assess module contraction and expansion at each phylogenetic point we estimate a 

Module Contraction Index and a Module Expansion Index at each species with an 

ancestor. At each of these phylogenetic points, denoted by s, we estimate three counts for 



each module m: (1) conserved pairs, the number of cases where the module assignment 

of a gene is m in both s and its ancestor, (2) expansions: the number of cases where 

module assignment in s is m but not in ancestor, (3) contractions: the number of cases 

where module assignment in s’s ancestor is m but not in s. 

We define the Module Contraction Index (MCI) for module m at a phylogenetic point s, 

as the ratio of the number of contractions divided by the number of genes in module m in 

s’s ancestor t. We define the Module Expansion Index (MEI) at s for module m as the 

number of expansions divided by total number of genes in module m in s. Thus 

contractions are defined with respect module size in the ancestral species, and expansions 

are defined with respect to the module size in the child species. 

We also define a global MCI of a module m as the sum of contractions for that module 

across all species with a parent (that is except the LCA) divided by a normalization term, 

Zm
c, defined as follows: , where S is the set of all species other than the LCA, t is 

s’s immediate parent, and  is the number of genes for which we have a module 

assignment in both s and t and the module assignment of the gene is m in the ancestor t. 

Similarly, we define MEI as the sum of all expansions divided by  defined as 

, where  is the number of genes for which we have module assignments in 

both s and t, but the module assignment of the gene is m in the child s. 

 

Comparing the re-assignment tendency of genes under different responses 

We use the inferred ancestral module assignments to estimate the number of times a gene 

is reassigned at any phylogenetic point starting from the LCA to any of the leaf nodes. 

€ 

Nst
m

s,t∈S,s≠ t
∑

€ 

Nst
m

€ 

Zm
e

€ 

Mst
m

s,t∈S,s≠ t
∑

€ 

Mst
m



We handle orthogroups with and without duplications separately. For orthogroups 

without duplication events, the re-assignment fraction is simply the number of 

reassignments for the gene divided by the number of phylogenetic points at which the 

gene is present (not lost). For orthogroups with duplications, we compute the re-

assignment fraction pre- and post-duplication separately. The pre-duplication re-

assignment fraction is the same as in the orthogroups without duplications. Post-

duplication, we average the two reassignment fractions from the two copies of the gene. 

Finally, the reassignment fraction of the entire orthogroup is an average of the pre and 

post-duplication re-assignment values. We classify a gene to be “high mobility” if it has a 

re-assignment score of ≥0.5 or more re-assignments, and “low mobility” or “stationary” if 

it has a re-assignment score of <0.05 or less. We chose these cut offs based on the shape 

of the cumulative distribution of the number of re-assignments. 

 

Assessing GO process conservation and divergence 

To assess the extent of orthologous gene content conservation for processes enriched in 

modules of the same IDs across species, we use an F-score based overlap for the modules 

for a pair of species, considering only those processes enriched in extant species. F-score 

similarity for a pair of gene sets G1 and G2, with the set G12 of genes in common is 

defined as , where P is defined as precision,   and R is defined recall, . 

F-score is a number between 0 (no overlap) and 1 (complete overlap). Let a process p be 

enriched in a set of extant species Si in module i and in set Sj in module j.  To compute 

the conservation of gene content for same module IDs, we take an average of F-scores 
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first over each set Si and Sj, and then over modules i and j. To compute the gene content 

conservation for different module IDs, i.e., between modules i and j, we take the average 

F-score between all pairs of species s and t, where s ∈ Si and t ∈ Sj. To identify 

representative examples of processes that are conserved in gene content we used a cut off 

of F-score >0.8 for processes associated with modules with same IDs, and >0.7 for 

processes associated with modules of different IDs.  To identify examples of processes 

that are not conserved in gene content, we used a cut off of F-score <0.4 for processes 

associated with modules of the same IDs, and F-score <0.3 for processes associated with 

modules of different IDs. These thresholds were selected to capture processes in the top 

and bottom 10% of the cumulative distributions. 
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